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A LEBESGUE DECOMPOSITION THEOREM FOR 
C* ALGEBRAS 

BY 

MICHAEL HENLE 

1. Introduction. This paper, by generalizing von Neumann's proof of the 
Radon-Nikodym and Lebesgue decomposition theorems [3], obtains analogous 
results for positive linear functional on a C* algebra. The concept of "absolute 
continuity" used and the Radon-Nikodym portion of the resulting theorem are 
due to Dye [2]. 

2. Definitions and notation, (i) Let B be a fixed C* algebra. (For basic facts 
regarding C* algebras one may consult Dixmier's book [1].) Let P be the positive 
cone of B*. To each p e P there corresponds (a) a Hilbert space L2(p) which is the 
completion of B in the norm \\T\\p=p(T*T)112, (b) a representation ITP of B on 
L2(p) which is the extension of left multiplication from B to L\p), and (c) a 
distinguished element lp of L\p)y cyclic with respect to the representation irpi 

such that for TeB, P(T) = (TTP(T)IP, lp}p. This triple is uniquely determined by p 
in the sense that if H is any Hilbert space, IT a representation of B on H, and x e H 
a cyclic vector for n such that for T e B , <JT(T)X, x)n = p(T); then there is a 
unique unitary operator U:H->L2(p) such that Ux — lp, and for TeB, UTT(T)U* 

=7TP(77). For Te B we use the notation Tp for the element 7rp(T)lpeL2(p). 

(ii) Let / , peF. fis dominated by p if there exists a constant K> 0 such that 
Kp-fe P. For such/ the bilinear form f(S*T)9 at first defined only for S, Te B, 
may be transferred to the subspace BP={TP | Te B} of L2(p), and then extended to 
all L2(p). This extended form is written [x9 y]p

f, x, yeL\p), to distinguish it from 
the usual inner product on L2(p). It is uniquely determined by the equation 

[Tp, Sp]p
f = f(S*T) for T, S e B. 

There is a unique bounded operator H on L2(p) such that [x, y]f = <JC, Hy}p. H is 
positive and commutes with all operators TTP(B). Conversely any positive operator 
H on L2(p), commuting with TT-P(B), defines by f(T) = (Tp, Hlp}p an element/of 
P dominated by /?. Consider the range subspace: R(H)=closed linear span in 
L\p) of HBP = closed linear span ofirp(B)HIp. It is well known that R(#)=R(# 1 / 2 ) , 
therefore Hll2lp is a cyclic vector for the representation TTP \ R(H). Furthermore 

«vjCnH1*2!,, H"%}p = f(T), TeB 

therefore (R(#), TTP \ R(H), Hll2lp) may be identified with (L2(/), TT/5 lf). 
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(iii) Now let H be a positive operator on L2(p), not necessarily bounded, but 
such that (a) H commutes, in the sense appropriate to unbounded operators, with 
7TP(B); and (b) lp is in the domain of H1'2. Consider the functional 

(1) f{T) = <jrp{T)HU%9 HV%\, Te B. 

Clearly fe P. In view of (a) we may identify (L2(f)9 irf9 lf) with (R(H), TTP \ R(H), 
Hll2lp) just as in (ii). In general for/, p e P we call /almost dominated by p if for 
any sequence {Tn}^B such that Tg converges to zero (in L2(p)) and {Tf

n} is Cauchy 
(in L2(f)), then 7^->0. This is abbreviated /« /? . The functional / defined by (1) 
is almost dominated by p. For suppose that {Tn}^B with Tg-^0 and {7^} Cauchy. 
Since Ts

n may be identified with 7Tp(Tn)H
ll2lp = Hll2T£, T'->0 follows from the 

fact that H112 is a closed operator. It turns out that the functional / o f this form 
are all the functional almost dominated by p. This is the Radon-Nikodym part 
of the theorem to follow. (See Dye [2].) 

(iv) Let / , peF, and let H be the unique bounded operator on L2{p+f) such 
that, 

(2) [x,y]p
f
+f = <x,Hy}p+f, x,yeL2(p+f). 

Then also [x, y]p
p
+f = <x, (I-H)y}p+f. We may identify L\f) with R(H) and 

L2(p) with R(I-H). With this identification L2(p+f)=L2(p)+L2(f). Clearly 
L2(p+f)=L2(p)@L2(f) iff R(H) is orthogonal to R(I-H). This occurs iff 
K(H)1 = R(H) = R(I-H)1 = K(I-H), or iff H is the projection of L2(p+f) onto 
L2(/) . In this case we say tha t / i s singular to p, abbreviated/ J_ p. 

3. Existence of the Lebesgue decomposition. 

THEOREM 1. Let p9 fe P. Then there exist fl9 / 2 e P such that f=fx +f2 and (a) 
f1«pand(b)f2±p. 

Proof. The Set Up. Consider L2(p+f). Let H satisfy (2) and identify L\f) with 
R{H) and L2(p) with R(I-H). Let P be the projection of L2(p+f) onto L2(/?). 
Since R(I— H)=K(I— H ) 1 = (the fixed points of / f ) 1 , P is the support projection 
of /— H9 in particular a spectral projection of H. 

Define for T e B , 

/ i ( r ) = [T*+f9Plp+f]rf = <Tp+'9PHlp+f>p+f 

= <jrp+f(T)H^2Plp+f9H^2Plp^\^h 

and 
/ 2 ( D = [ r * + ' , ( / - p ) / p + / » + ' = <Tp+',H(i-p)ip+fyp+f 

= <irp + f(T)(I-P)lp + f, (I-P)lp+f>p + f. 

Clearly/ l 5/2 G P, a n d / ^ + A . 
Since JP is a spectral projection of /f, 7/ leaves invariant L2(p)=PL2(p+f). 

Let H=H | L2Q?). 1 is not in the point spectrum of Ï7, therefore H^—H)'1 exists 
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as a possibly unbounded, positive operator on L2(p). Clearly the domain of 
Hll2(I-Ey112 contains (J-H)ll2lp+f = lp. And as a function of H9 Hy-H)-1 

commutes with all operators with which H commutes, including therefore TTP(B). 

We have 

(Hll2(I-H)-ll2)lp = PHll2(I-HYll2P(!-H)ll2lp+f = Hll2Plp+f 

therefore/x is of the form (1). By §2(iii),/i is almost dominated by p. This proves (a). 
From the definition of f2, L2(f2) may be identified with R(7—P). Since this is 

orthogonal to R(P(I-H))=R(I-H)=L2(p)9 L2(p+f2) may be identified with 
R(P( / -# ) + (/-P)). From this it is clear that L2(p+f)=L2(p)@L2(f). This 
proves (b). 

COROLLARY. (Dye [2]). Iff is almost dominated by p9 then fis of the form (7). 

Proof. It suffices to prove, in the set up of Theorem 1, that P=/ . Let x e L\p +/), 
and take a sequence {Tn}^B such that Tg+f->x. Suppose that Px=0. Then 
xeK(I-H)md 

Tl = 7Tp(Tn)lp = 7rp+f(Tn)(I-Hyi2lp+f = (I-Hy2TVf 

- > ( / - # ) 1 / 2 J C = 0. 

Since / « p , and {T{} is clearly Cauchy, it follows that Tf
n -> 0. Therefore, 

||*||s+/ = lim \\Trf\\Uf = «m ||Pn1|P
2 + lim \\T'n\\

2 

= 0. 

This proves that P=J, hence / 2 =0. 

4. Uniqueness of the decomposition. 

THEOREM 2. Let p9 f be elements of P, and letf=f +/2 be the decomposition of 
Theorem L Letf=gx +g2 be a second decomposition off such that gx«p and g2 _L p. 
Thenf1=g1 andf2=g2. To prove this we require the following: 

LEMMA. Let f p9 he P. (a) Iff«p andp J_ K thenf± h. (b) Iff«p andf±p9 

thenf=0. 

Proof of the lemma, (a) Let P be the projection of L2{p+h) onto L2(p). Since 
plh, L2(A)=R(/~P). By the corollary to Theorem 1, there is a (possibly un­
bounded) operator H on L2(p) such that 

f(T) = <jrp(T)H^lP9m'2lp\ = <np+h(T)H^2Plp+h,H^2Plp+h)p+h. 

Then in L2(p+h)9 L2(f+h)=R(Hll2P+(I-P))=R(PHP+(I-P)). From this 
realization of L2(f+h) it is clear that/_L h. 

(b) Let P be the projection on L2(p+f) such that L2(p)=R(P) and L\f) 
=R(/-P) . Let xeL2(p+f)9 and suppose that Px=Q. Exactly as in the proof of 
the corollary to Theorem 1 one shows that x=0. (In this case P plays the roles of 
P and H.) Thus P=I9 and/=0. 
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Proof of Theorem 2. By our lemma (a), fx J_ / 2 and g± _L g2- Let P and g be 
the projections of L2(f) onto L2(/i) and L2(gx) respectively. It suffices to prove 
that P=Q. Identifying L2(f) with R(H)^L2(p+f), referring to the set up in the 
proof of Theorem 1, it is clear that the projection P just defined is the restriction of 
the projection P occurring in the proof of Theorem 1 from L2(p+f) to L2(f). Q, 
however, is only defined on L2(f). Let xeL2(f) and let {Tn} be a sequence in B 
such that Tg+f -> x. Suppose Px=0. As in the proof of the corollary to Theorem 1, 
this implies x e K ( / - # ) , and that Tp

n -> 0. Therefore T^ -> 0, since g±«p. 
We also observe that 

lim Tl = lim Hll2T£+f = Hll2x = x, 

so that 

\\Qx\\2
f = lim | | g r i l ? = lim \\T^\\2

gi = 0. 

Thus Q<P. What we have proved is that / i is in some sense the maximal part of 
/almost dominated by/?. 

Now consider the functional h e P defined by 

h(T) = <iTf(T)lf9(P-Q)lf>f. 

h is clearly almost dominated by/i and g2. Two applications of the lemma (a) show 
that also h _L/i. Therefore by the lemma (b) h = 0. Thus P=Q, and the decomposi­
tion is unique. 

5. Remarks, (a) Dye [2] has proven that if, in a sequence {/n}^P, a l l / n are 
almost dominated by p, and 2 II/nil <°°5 then 2/n«/ ?- I n particular {/"|/<<p} is 
closed under addition. 

(b) This same statement with "singular t o " replacing "almost dominated by" 
is true for Abelian algebras, but far from true in general. A counter-example 
appears in the simplest of non-Abelian C* algebras. Let M2 be the algebra of 2 x 2 
complex matrices and consider the functionals 

All three are pure states of M2 ; their corresponding representations are irreducible. 
Therefore any two of them must be either mutually singular or mutually almost 
dominating, since none can be decomposed into mutually singular parts. 

The matrix 

r-u "!)=ri)*ri)^ 
satisfies f1(T)=f2(T) = l, g(T) = 0. Therefore fx ± g, and / 2 ±g. But not only is 
/1+/2 not singular to g, but actually g is almost dominated by/ i+Zi , since the 
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latter is a faithful trace on M2. It is worth mentioning in this context (as suggested 
by the referee) that {f\f±.p} is closed under increasing suprema. 

(c) If B is a von Neumann algebra and fis a normal positive linear functional, 
then/i and/2 of the Lebesgue decomposition off are also normal, whether/? is 
normal or not. This follows from the fact that irf is normal when fis normal. 
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