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This work presents an experimental investigation of the effects of vortex shedding
suppression on the properties and recovery of turbulent wakes. Four plates, properly
modified so that they produce different vortex shedding strengths, are tested using
high speed particle image velocimetry and hot-wire anemometry, and analysed using
spectral proper orthogonal decomposition, mean-flow linear stability analysis and various
turbulence statistics. When present, vortex shedding is found to exhibit a characteristic
frequency that scales with the mean shear, providing a link between the mean flow and the
main turbulent motion. To achieve full suppression of shedding, we combine the effects
of porosity and fractal perimeter. The mean shear is then decreased to the point where
the flow becomes convectively unstable and shedding vanishes. In that case, the onset of
self-similarity is delayed, compared with the case with vortex shedding, and appears after
another large-scale structure, the secondary vortex street, emerges. It is also found that
both large- and small-scale intermittency are starkly reduced when shedding is absent.
A simple theoretical representation of the wake dynamics explains the evolution of the
wake properties and its connection to the coherent structures in the flow.

Key words: vortex streets, intermittency

1. Introduction

Understanding and modelling the physics of the turbulent wake is of primary importance
to various applications of the transportation and energy sectors, where bluff body
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aerodynamics play a central role. When analysing its dynamics, the turbulent wake
is conventionally divided into a near non-self-preserving region and a subsequent
self-preserving region (Tennekes & Lumley 1972; Bempedelis & Steiros 2022), the
region of self-preservation starting several bluff body characteristic lengths downstream
of the bluff body (Bevilaqua & Lykoudis 1978; Nedić, Vassilicos & Ganapathisubramani
2013b; Dairay, Obligado & Vassilicos 2015; Obligado, Dairay & Vassilicos 2016). When
self-preservation occurs, it allows for a significant simplification of the flow dynamics
by reducing the number of the flow variables that govern the flow evolution subject
to constraints via the Reynolds-averaged budget equations (Tennekes & Lumley 1972;
Townsend 1976).

It is therefore critical to understand when and under which conditions a wake becomes
self-preserving. It has been postulated (Townsend 1956, 1970, 1976) that self-preservation
is the result of a loss of memory of inlet/initial conditions, i.e. when the flow has departed
sufficiently from the bluff body, so that its details are forgotten. However, Bevilaqua
& Lykoudis (1978) experimentally demonstrated that self-preservation can coexist with
turbulence memory carried by large coherent structures that form close to the body. This
led to the hypothesis that self-preservation of the mean velocity and Reynolds stress
profiles appears when large scale coherent structures can provide the necessary connection
between turbulent fluctuations and the mean flow.

Several types of large-scale coherent structures may exist in a turbulent wake, generated
by different instabilities (see e.g. Williamson 1996; Prasad & Williamson 1997; Castro
2005). Bevilaqua & Lykoudis (1978) focused on the large-scale vortices that are shed from
the bluff body, i.e. vortex shedding. This is perhaps the most widely studied instability
of the turbulent wake because it induces large velocity and pressure fluctuations which,
on one hand, significantly influence the average flow field (Mantič-Lugo, Arratia &
Gallaire 2014) and, on the other, generate periodic loads on the bluff body (Williamson
& Govardhan 2004). Even though vortex shedding has been studied for more than a
century, a universal explanation for its emergence has not been put forward. Still, several
passive ways for controlling the amplitude of vortex shedding have been proposed. Gerrard
(1966) postulated that a growing vortex is shed the moment it is large enough to draw
opposite-signed vorticity from the other shear layer across the wake. Indeed, the shedding
of vortices can be suppressed by impeding the interaction of the two shear layers, e.g.
with the introduction of a splitter plate in the wake (Anderson & Szewczyk 1997; Steiros
& Hultmark 2018). If shear layers are allowed to interact, vortex shedding will occur,
but can still be attenuated by reducing the mean velocity gradient in the wake, e.g. by
introducing fluid bleeding in the bluff body ‘base’ (Castro 1971; Steiros et al. 2020).
Shedding attenuation can also be achieved by introducing irregularities on the perimeter of
the bluff body (Law & Jaiman 2018). In the case of flat plates, irregularities that follow a
multiscale/fractal pattern have been shown to be particularly effective for vortex shedding
suppression (Nedić, Ganapathisubramani & Vassilicos 2013a; Steiros et al. 2017). It should
be noted that no matter the suppression technique, a simple inspection of the flow field is
not sufficient to determine whether vortex shedding has been completely eliminated, as
sharp frequencies in the velocity signal of the near wake may persist even when coherent
vortices cannot be easily discerned (Castro 1971). It is thus important to properly extract
and assess the flow structures that correspond to these spectral peaks, e.g. via the use of
modal decomposition techniques (Lumley 1970; Towne, Schmidt & Colonius 2018).

Bevilaqua & Lykoudis (1978) also studied a turbulent wake where vortex shedding was
completely suppressed via the use of high base bleeding. In that case, it was found that the
onset of self-preservation was significantly delayed, compared with a wake that allowed for
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the formation of vortex shedding. To be consistent with their hypothesis of a connection
between coherent structures and self-preservation (see above) Bevilaqua & Lykoudis
(1978) postulated that, instead of vortex shedding eddies, this type of self-preservation was
connected to the emergence of ‘vortex-pair’ eddies. The existence of these hypothetical
structures was based on the earlier works of Grant (1958) and Townsend (1976), who
inferred these vortices from measurements of the velocity correlation function in the very
far wake (of the order of 500 body diameters). The vortex-pair vortices were hypothesised
to form due to the straining of turbulence by the mean flow, i.e. without the influence of
the bluff body’s initial conditions, as per the Townsend self-preserving hypothesis. Still,
Bevilaqua & Lykoudis (1978) did not attempt to identify the formation of such vortices in
the self-preserving part of the flow.

It is noteworthy to mention that the subsequent smoke visualisation experiments of
Cimbala, Nagib & Roshko (1988) hinted that such vortex-pair eddies may originate from
earlier vortical structures which appear between O(10) and O(100) diameters downstream
of the body, and are known as the ‘secondary vortex street’ (in contrast to the ‘primary’
Kármán street closer to the body). Numerous studies have investigated these secondary
vortices in both laminar and turbulent regimes, see for instance Wygnanski, Champagne
& Marasli (1986); Cimbala et al. (1988); Williamson & Prasad (1993); Huang, Kawall &
Keffer (1996); Huang & Keffer (1996) and Jiang & Cheng (2019). Their formation has
been attributed to both the strain of turbulence by the mean flow (Cimbala et al. 1988),
and the interaction and merging of earlier vortices that form in the vicinity of the body
(Huang & Keffer 1996). The exact formation mechanism of these secondary vortices is
not the focus of the current work, but we note its potential relevance to the Townsend
self-preserving hypothesis.

We close this brief review by noting that, if the hypothesis of Bevilaqua & Lykoudis
(1978) is accurate, i.e. if self-preservation is a manifestation of the coupling between
the mean flow and the ‘main turbulent motion’ (to use Townsend’s terminology)
via large-scale coherent structures, then this could mean that various self-preserving
behaviours exist for the same flow type (e.g. wake), depending on the dominant structure
at play. Indeed, Bevilaqua & Lykoudis (1978) found that self-preservation connected with
vortex shedding produced characteristic length and velocity scales with starkly different
growth rates, compared with self-preservation when vortex shedding is absent. No mention
of small-scale differences was made in their work. However, it is now known, since the
works of Nedić et al. (2013b), Dairay et al. (2015), Obligado et al. (2016), Cafiero &
Vassilicos (2019), Chongsiripinyo & Sarkar (2020) and Ortiz-Tarin, Nidhan & Sarkar
(2021), that different small-scale turbulence dissipation scalings lead to different growth
rates of the mean-flow velocity and length scales during self-similar evolution. It is
therefore not inconceivable that differences in large-scale coherent structures such as those
discussed by Bevilaqua & Lykoudis (1978) may also lead to differences in the small scales
of the turbulence and the cascade as a whole (see Goto & Vassilicos 2016; Alves Portela,
Papadakis & Vassilicos 2018). In particular, while vortex shedding was found by Bevilaqua
& Lykoudis (1978) to generate large-scale intermittency at the edges of the wake due to
the rapid alternation between slow fluctuations of low intensity and rapid fluctuations of
high intensity, small-scale intermittency was not examined by them and the works of the
past ten years mentioned above make it conceivable that coherent structures may also have
a direct effect on small-scale intermittency. Demonstrating such an effect is one of this
paper’s aims.

Based on the above discussion, the primary goal of this work is to shed some
light on two issues. First, is the hypothesis of Bevilaqua & Lykoudis (1978) justified,
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i.e. does self-preservation come hand-in-hand with the emergence of large-scale vortices
in the turbulent wake? More specifically, if vortex shedding were to be suppressed, would
self-preservation disappear and reappear only when another large-scale coherent structure
is formed? Our findings hint that this is indeed the case. Second, are small scales sensitive
to the different types of large structures, i.e. do different types of self-preservation alter
the cascade as a whole?

To answer these questions, this paper reports on four bluff body wakes whose
level of vortex shedding was carefully varied by combining two shedding suppression
methods: base bleeding and multiscale perimeter modification. We note that these
choices do not exhaust the possibilities for wake suppression. The potential to suppress
shedding is characterised via modal decomposition and linear stability analysis techniques.
The extracted characteristic frequencies are found to scale with mean-flow properties,
in support of the ideas of Roshko (1955). Our results confirm and strengthen the
finding of Bevilaqua & Lykoudis (1978) that, with decreasing vortex shedding, the
wake becomes self-preserving further downstream from the bluff body. We find that,
when vortex shedding is completely suppressed, self-preservation occurs when other
large-scale structures, namely the secondary vortices, emerge. Furthermore, we find that
small-scale intermittency is dependent on the type of coherent structure present, and in fact
increases with vortex shedding intensity. Finally, with regard to the connection between
turbulence and mean flow that Bevilaqua & Lykoudis (1978) considered necessary for
self-preservation, we advance a mechanism based on the vortex shedding’s generation of
Reynolds shear stresses.

The structure of the article is as follows. Section 2 presents the experimental procedure
and post-processing methodology employed in the study. Section 3 characterises the vortex
shedding properties and describes its influence on the near and far turbulent wake. Finally,
§ 4 draws the conclusions of this study.

2. Methodology

2.1. Experimental details
Experiments were conducted in the Lille wind tunnel at Lille Fluid Mechanics Laboratory
(LFML). The tunnel test section is 1 m × 2 m × 21 m and is temperature regulated. The
free-stream velocity was set to U∞ = 7.5 ms−1. At that speed, the turbulence intensity
is 0.2 % when the tunnel is empty. Four types of plate shapes were tested (see figure 1):
a solid circular plate (C), a circular plate of 40 % porosity (PC), a solid fractal plate (F)
and a fractal plate of 40 % porosity (PF). Both fractal plates had two fractal iterations
and were designed via the procedure described in Nedić et al. (2013a). All plates were
3D printed. The circular plate diameter was D = 105 mm, and the gross area (i.e. before
perforating PC and PF) of all plates was identical. The plate thickness was 4 mm. The
global Reynolds number was Re = DU∞/ν = 52 500, where ν is the kinematic viscosity
of air corresponding to a fully turbulent regime. The plates were suspended in the middle
of the cross-section via the use of four piano strings, attached to a small bracket bolted on
the centre of the plates. Visual inspection showed that the plate vibrations were negligible.

Hot-wire anemometry (HWA) measurements were conducted using a single Pt-W 5
micron wire, 3 mm long, with a 1.25 mm sensing element. The probe was driven by a TSI
IFA300 anemometer. The acquisition frequency was set to 50 kHz with a low-pass filter at
20 kHz. For each measurement point, the acquisition time was 180 s. Calibrations of the
probe were conducted at the beginning and end of each measurement campaign. It was
verified that for all datasets we had at least kwη = 1, where kw = 2πf /U. In the above,
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C

Plate PIV1 at 1.78, 6, 33 and 55D

PIV2 at 33 and 55D

22 points of HWA at

6, 10, 20, 31.5 and 40D

y

x

PC

F

PF

(b)(a)

Figure 1. (a) Experimental configuration showing the plate mounting location and PIV/HWA measurement
plane dimensions. The PIV and HWA experiments were conducted at multiple downstream locations, as
indicated in the figure. (b) The various plates tested. From top to bottom: solid circular plate – C, porous circular
plate – PC, solid fractal plate – F and porous fractal plate – PF. The characteristic diameter is D = 105 mm.

η is the Kolmogorov scale, f the Fourier frequency and U the local time-averaged velocity.
The probe was translated using a vertical traverse system (see figure 1a), to conduct
measurements at 22 equidistant points, located at 0.76 > y/D > −2.1 with respect to the
centreline. Measurements were conducted at five locations downstream of the plate (6D,
10D, 20D, 31.5D and 40D) by manually moving the traverse system.

High-speed planar particle image velocimetry (PIV) measurements were conducted
using a Quantronix high-speed laser and a 4MP Miro camera equipped with a 200 mm
objective lens with an f-number equal to 5.6. The acquisition frequency was set to 100 Hz.
The time separation between frames was between 90 and 180 ms, depending on the
field of view. The seeding was water and glycol droplets of approximately 1 μm. To
obtain the vector fields, multipass processing was performed, with a final pass at 24 × 24
windows and 60 % overlap, leading to a final interrogation window size of 1.8 mm.
Measurements were conducted in vertical streamwise (streamwise x, lateral y) planes of
size 1.1D × 1.78D (see figure 1a) which could be moved at various locations by translating
the laser sheet and camera. For each case, 15 runs of 1018 velocity fields were acquired,
resulting in 15 270 fields. The wakes of the plates C, F and PF were measured in the top
plane 0.17 > y/D > −1.61 (see PIV1 plane in figure 1a), at distances 1.78D, 6D, 33D
and 55D downstream of the plate. At distances 33D and 55D, measurements were also
conducted in the bottom plane −1.40 > y/D > −3.20 (see PIV2 plane in figure 1a) for the
C, F and PF plates, in order to capture the full wake which, due to its expansion, exceeded
the boundaries of the PIV1 window. For those locations, the two measured planes were
stitched together. Additionally, the wakes of the PC plate were measured on the top plane
0.17 > y/D > −1.61, at downstream distances 1.78D and 6D. The measurement locations
for the PIV and HWA experiments are summarised in table 1. Figure 2 shows example
PIV snapshots at the near field of view of the four tested plates.

2.2. Post-processing methodologies

2.2.1. Spectral proper orthogonal decomposition
Spectral proper orthogonal decomposition (SPOD) was used to characterise the vortex
shedding structures emanating from the different plates. The simpler approach of binning
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PIV HWA

y-location Top (PIV1) Top (PIV1) Bottom (PIV2) 0.76 > y/D > −2.1
x-location 1.78, 6D 33, 55D 33, 55D 6, 10, 20, 31.5, 40D
Plates C, PC, F, PF C, F, PF C, F, PF C, PC, F, PF

Table 1. Measurement locations for each plate, for the PIV and HWA conducted in this study.

1.25 1.2 1.4 1.6 1.8 2.0 2.2 1.2 1.4 1.6 1.8 2.0 2.2 1.4 1.6 1.8 2.0 2.2 2.4

1.5

1.0

0.5

0

R F PC PF

1.5

1.0

0.5

0

1.5

1.0

0.5

0

1.5

1.0

0.5

0

1.75 2.25

x/D x/D x/D x/D

r/D

(b)(a) (c) (d )

Figure 2. Example velocity snapshots for the four plates tested in the near PIV field.

the high-speed PIV measurements to produce phase averages was first attempted, but
produced results which greatly resembled the total time average of the flow, instead of
the various phases of the coherent structure. This was thought to occur due to two reasons.
First, because the acquisition frequency of the PIV system could not be set to an exact
integer multiple of the average shedding frequency. Second, because turbulent vortex
shedding is not a strictly periodic phenomenon, but is rather characterised by a broad
range of frequencies.

A partial solution to the above is SPOD, which solves the eigenvalue problem of the
Fourier transform of the two-point space–time correlation tensor (Sieber, Paschereit &
Oberleithner 2016; Towne et al. 2018). In that way, modes that optimally represent the
second-order space–time flow statistics and oscillate at specific frequencies (i.e. have time
coherence) can be obtained. It can then be argued that the most energetic modes which
correspond to frequencies close to the ones of vortex shedding will be representative of
that phenomenon. The SPOD approach does not solve the issue that vortex shedding is
only quasi-periodic, and therefore its dynamics is distributed into multiple frequencies,
but ensures that the produced frequency-locked modes will contain information from the
most relevant frequency, and not from frequencies which are unrelated to the coherent
structure.

To obtain the SPOD modes from our PIV data, the algorithm described in Towne et al.
(2018) is used, where the PIV snapshots are separated in an ensemble of N realisations,
with each realisation containing the evolution of a quantity (in our case the radial velocity
fluctuations ur) in axial and radial coordinates, respectively, x, r, and time t. Note that
we consider a polar coordinate transformation, which for our planar data means that the
axial coordinate x is the same as the streamwise x considered before, while the radial
coordinate r is effectively the same as the vertical coordinate y. Subsequently, discrete
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Fourier transform is applied to the ensemble which consists of N realisations of the
evolution of the scalar in space x, r at different frequencies f . This allows the formulation
of an N × N spectral eigenvalue problem for the ‘cross-spectral density tensor’ (i.e. the
Fourier transform of the space–time correlation tensor evaluated at a particular frequency),
which is repeated for each of the desired frequencies. For each frequency a set of spatial
eigenmodes is produced, ranked according to the magnitude of their eigenvalues. For
our experiments, only the first (most energetic) mode exhibited distinctive peaks at the
shedding frequency. For more information on the SPOD algorithm see Towne et al. (2018).

2.2.2. Local linear stability analysis of the average flow
While the SPOD analysis is a great tool in extracting periodic instabilities from the flow
field, it cannot reveal whether they are absolute or convective in nature (see later in the
section for these definitions). To further examine the nature of the periodic instabilities
in the vicinity of the four plates, we performed stability analysis on the time-averaged
axial flow profiles, which are not stationary solutions of the Navier–Stokes equations.
We consider the standard Reynolds decomposition ûj = Uj + uj, where û is the
instantaneous velocity, U the time-averaged velocity and u the instantaneous difference
(fluctuation) between the two. The subscript j can be x, r or θ , denoting the axial, radial
and azimuthal components of velocity, respectively. The average azimuthal velocity, Uθ is
assumed to be zero for all cases, while the wake is assumed locally parallel, i.e. Ur ≈ 0.
Following several authors (Malkus 1956; Triantafyllou, Kupfer & Bers 1987; Cimbala
et al. 1988; Mantič-Lugo et al. 2014; Gupta & Wan 2019; Gupta et al. 2020), we consider
a ‘mean-flow disturbance’ which in our case leads to perturbation equations expressed in
(x, r, θ). The perturbations are assumed to be of the form (ũx, iũr, ũθ ) exp(i(mθ + kx −
ωt)), where ũx, ũr, ũθ and p̃ are perturbations to the x, r, θ mean velocities and mean
pressure, respectively. In the above, m is the azimuthal wavenumber, k = kR + ikI is the
streamwise wavenumber and ω = ωR + iωI is the angular frequency of the oscillation.
The subscripts R and I in k and ω denote the real and imaginary part of the quantities,
respectively. Upon linearisation, the perturbation equations become (see also Gupta &
Wan 2019)

0 = kũx + 1
r

∂

∂r
(rũr) + m

r
ũθ , ωũx = kp̃ + kUxũx + m

∂Ux

∂r
ũr,

ωũr = ∂ p̃
∂r

+ kUxũr, ωũθ = m
r

p̃ + kUxũθ .

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

Stability analysis is performed based on the Chebyshev spectral collocation method,
with the discretisation in the radial direction performed on a Gauss–Lobatto–Chebyshev
grid. This is mapped on a radially unbounded space r/D = ζ/(1 − ζ 2 + 1/Rmax), where ζ

is the Chebyshev grid from 0 to 1 and Rmax = 25 is large enough to represent an unbounded
space. The number of collocation points used was N = 120. Increasing both Rmax and N
did not alter appreciably the results. More information on the numerical method can be
found in Gupta & Wan (2019).

The above analysis was used to determine whether an observed instability is of the
absolute or convective type. If an impulsive disturbance grows exponentially at the location
of its generation (i.e. its group velocity ∂ω/∂k is zero) the flow is termed absolutely
unstable (Kupfer, Bers & Ram 1987; Gupta & Wan 2019). If, on the other hand, the
produced wave packet is convected downstream (group velocity non-zero), leaving the
flow at the location of its generation undisturbed, the instability is of the convective type.
The Kármán vortex street is generally accepted to originate from an absolute instability
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region close to the bluff body, shifting to a convective instability further downstream
(Triantafyllou et al. 1987; Williamson 1996).

To determine whether the near wake of the four tested plates is subjected to an absolute
instability (vortex shedding) the ‘cusp’ method is used (Kupfer et al. 1987; Hwang & Choi
2006). The spatio-temporal problem is solved, where the system of the above equations
receives the input of a complex wavenumber, and yields a complex frequency as output.
This procedure is repeated for a grid of complex k values, which are mapped on isolines
of kI = const at the complex omega plane. The absolute frequency ω0 is then identified
at the end of a typical cusp-like trajectory. If a cusp point is characterised by a positive
imaginary part, the instability is of the absolute type, whereas if no cusp with positive
imaginary part exists, only convective (amplifier) instabilities exist in the flow field. In our
case, it was made sure that the requirement of the cusp point being covered only once by
the image of kI = 0 on the omega plane was fulfilled.

The above analysis has two significant limitations. First, it assumes that the average
flow is locally parallel (i.e. that the average radial velocity is negligible). While this
assumption can be thought correct in the far, self-preserving wake (Tennekes & Lumley
1972; Cimbala et al. 1988), it is questionable in the near wake where the Kármán street
originates. Still, previous studies have indicated that local weakly non-parallel stability
analysis at the near wake of bluff bodies yields accurate predictions regarding the onset
of vortex shedding and the frequencies involved (see e.g. Triantafyllou et al. 1987). The
second limitation is that the above analysis assumes that the mean-flow disturbance does
not alter the Reynolds stresses of the flow (Malkus 1956), i.e. that turbulence remains
‘frozen’ under perturbations. Again, this assumption is questionable for high Reynolds
number flows. However, there is an abundance of works in the literature (see for instance
Triantafyllou et al. 1987; Cimbala et al. 1988; Gupta & Wan 2019) which suggests that the
above linearised analysis yields accurate predictions even at very high Reynolds numbers,
and in a variety of shear flows.

2.2.3. Zero crossings
A complementary analysis is also performed using the zero crossings of the streamwise
fluctuating velocity ux. This approach allows us not only to characterise various length
scales of a turbulent flow (Mazellier & Vassilicos 2008; Mora et al. 2019; Ferran, Aliseda
& Obligado 2023) but also its intermittency (Mazellier & Vassilicos 2008). The Rice
theorem, when adapted to turbulent flows (Liepmann & Robinson 1953) allows us to
estimate the Taylor micro-scale λ. In particular, it can be mathematically proved that λ is
proportional to the average distance l̄ between zero-crossing points: l̄ = Bλ. The constant
B is defined as B = C1π, where C1 is a constant that quantifies the non-Gaussianity of
velocity derivatives (dux/dx). For a Gaussian distribution C1 = 1, and C1 > 1 for an
intermittent small-scale turbulence. More specifically, the analytical expression of this
constant is (Mazellier & Vassilicos 2008)

C1 =
√

2
π

√(
dux

dx

)2

∣∣∣∣dux

dx

∣∣∣∣
, (2.2)

with the overline denoting the time average. The constant C1 provides a simple way to
quantify small-scale intermittency via the non-Gaussianity of the streamwise derivative of
ux. A larger value of C1 therefore implies a more intermittent small-scale turbulence.
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Figure 3. (a) Eigenvalue of the first SPOD mode, normalised with the sum of the eigenvalues for all modes,
evaluated at each St for the four tested plates. Results are shown for the cross-wise velocity component at the
near-wake PIV window (x/D ≈ 1.78). (b) The HWA spectra 10D downstream, 1D below the centreline.

3. Results and discussion

3.1. Characterisation of vortex shedding

3.1.1. Vortex shedding attenuation
We first test the effect of the plate modifications (see figure 1b) in the near wake,
aiming at a gradual attenuation of vortex shedding intensity. Figures 3 and 4 show the
results of the SPOD analysis for the radial velocity component at the near PIV field
(x/D ≈ 1.78). Figure 3 plots the eigenvalue of the first SPOD mode of each plate, over a
range of Strouhal numbers St = f D/U∞, normalised with the total energy at each Strouhal
number (i.e. the sum of the eigenvalues of all modes). The plates C, F and PC exhibit
peaks at Strouhal numbers of 0.13, 0.12 and 0.16, respectively, indicating the presence
of coherent vortices. These values agree with the ones measured with the hot-wire for
the streamwise velocity component (see figure 3b). As expected, the relative energy of
F and PC plates is significantly lowered compared with the one of the C plate, due
to the shedding–attenuating effect of wake bleeding and the fractal perimeter, already
documented in Castro (1971) and Nedić et al. (2013b), respectively. Remarkably, the
combination of both types of modifications (i.e. PF plate) completely eliminates the peak,
producing only a very small bump at St = 0.29 (see figure 3a), suggesting a further (if
not total) elimination of vortex shedding. We note that the ‘spectra’ of the suboptimal
eigenvalues did not exhibit any distinctive peaks (not plotted).

The above conclusions are also supported by the shapes of the first SPOD modes
corresponding to the most energetic Strouhal number (i.e. at the peaks of figure 3a), plotted
in figure 4. It can be seen that the C, F and PC plates exhibit strong alterations of the radial
fluctuating velocity, spanning almost the whole PIV window, indicating the presence of a
vortex. Even though the modes are qualitatively similar, there is a slight decrease in radial
extent of the structure, from the C to the F and then to the PC plate. The characteristic
mode of the PF plate is more fragmented, and remains confined to the upper section of the
PIV window, suggesting that the St = 0.29 peak corresponds to a shear layer, rather than
a vortex shedding type of instability. In Appendix A we show that the conclusions of the
SPOD analysis are independent of the relative angle of the PIV plane with respect to the
fractal plates.

It is noteworthy to mention that Castro (1971) proposed that two-dimensional porous
plates completely suppress vortex shedding for plates beyond 20 % porosity, based on the
observation of a sudden kink in the measured wake Strouhal number and drag coefficient
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Figure 4. Shape of the first SPOD mode of the radial velocity ur at the dominant frequency for each case, at
the PIV windows closest to the plate. Here, C, circular plate; F, fractal plate; PC, porous circular plate; and PF,
porous fractal plate.
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Figure 5. Normalised cross-term of the Reynolds stresses, uxur/U2∞, for the four tested plates at the
near-wake PIV window.

at that value. The peaks in the measured spectra found by Castro at higher porosities were
instead attributed to a flapping type of instability of the shear layers. Here, we instead
show that the porous circular plate exhibits clear traces of vortex shedding, even at 40 %
porosity, contrary to the postulation of Castro. Evidently, there seems to be a sudden
change in the nature of vortex shedding at 20 % porosity, generating the kink that Castro
(1971) observed, but shedding does not completely disappear. Low-order models (Steiros
& Hultmark 2018; Steiros, Bempedelis & Ding 2021) and recent measurements (Cicolin
et al. 2024) suggest that, at large porosities, vortex shedding is of low intensity, and occurs
sufficiently far from the plate, so that it has a negligible effect on the plate drag.

Figure 5 shows the Reynolds shear stress, uxur, of the different plates (the overline
denotes time average). A gradual decrease of stresses can be observed, both in magnitude
and extent, as the plate changes from the C to the F, PC and PF plate. The PF case exhibits
very small stress values confined to the shear layer (i.e. around r/D = 0.5), suggesting
a shear-layer instability, in agreement with the SPOD results. Appendix A investigates
the variation of the Reynolds shear stresses and mean streamwise velocities of the fractal
plates with the relative angle of the PIV field of view, relevant to the plates.
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Figure 6. Examples of the cusp method for the (a) F, (b) PC and (c) PF plates at x/D = 1.4. The x-coordinate
of the cusp corresponds to the frequency of the absolute instability (if it corresponds to a positive y-coordinate).
No cusp is found for the PF plate, suggesting only convective instabilities there.

The results of the SPOD and Reynolds stress analysis suggest that vortex shedding
might be completely eliminated in the PF plate case. To investigate this further, we
performed local linear stability analysis on the average Ux velocity profiles of the PIV1
window (Uθ and Ur are assumed negligible), for each plate. Using the cusp method, we
found that the m = ±1 modes of the C, F and PF plates exhibit an absolute instability
at Strouhal numbers of 0.1, 0.1 and 0.15, respectively (see some examples in figure 6),
not too far from the experimentally determined ones (see the titles of panels in figure 4).
The C plate exhibits an absolute instability for all streamwise distances considered (i.e.
1.2 < x/D < 2.3) while the F and PC plates exhibit an absolute instability only for
x/D < 2 and x/D < 1.45, respectively. No absolute instability could be determined for
the PF plate at any azimuthal mode, providing further support of the claim that the PF
modification completely eliminates vortex shedding.

3.1.2. Vortex shedding frequency scaling
The previous section indicates that a local linear stability analysis of the mean flow is
relatively successful in reproducing the value of the characteristic frequency of vortex
shedding if applied at the very near-wake location, in agreement with previous works
(see for instance Triantafyllou et al. 1987). This success hints that the shedding frequency
at the very near wake (i.e. at the vortex-formation location) is primarily connected to
the streamwise velocity gradient of the average flow, i.e. f = f (∂Ux/∂r). On dimensional
grounds, we may thus define a revised Strouhal number as

St∗ = f
1
2

∂Ux

∂r

, (3.1)

which we might expect to have a constant value for any of the plates tested and to be
applicable in the near vicinity of the plates (the coefficient 1/2 is added to render this
Strouhal number comparable to the one deduced by Roshko (1955), as will be shown
shortly). Figure 7 is a plot of the above Strouhal number for the four plates tested, along
with the streamwise distance interrogated at the near-wake PIV window. For each plate, the
frequency is the same for all x/D and is equal to the one acquired from the SPOD results
of figure 3, while the mean velocity gradient was calculated as a first-order approximation,
i.e. ∂Ux/∂r ≈ (Ux,max − Ux,min)/(rmax − rmin), where Ux,max and Ux,min are the maximum
and minimum streamwise velocities at a particular cross-section, corresponding to the
radial locations rmax and rmin. Note that, due to the proximity of the plate in the near-wake
PIV window, Ux,max > U∞, as the flow is locally accelerated in the shear layers; rmax is
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Figure 7. Revised Strouhal number vs normalised downstream distance for the four plates. Circle: C, square:
F, cross: PC, triangle: PF. The ‘universal’ value of Roshko is depicted with a dashed line.

the radial position where this local acceleration is maximum. Here, rmin is effectively zero
for all plates.

It can be observed that the three plates that exhibit vortex shedding have an almost
identical behaviour, while the PF plate is distinctly different, a further indication of its
drastically different near-wake physics. The C, F and PC plates exhibit a decreasing St∗ as
they approach the plate, due to the wake becoming narrower. Even though our PIV window
does not allow for an inspection of shorter streamwise distances, the three plates seem to
converge to St∗ ≈ 0.16 near the body (where vortex shedding is generated). The vicinity
of the body is where (3.1) is expected to hold, and it is noteworthy that there the predicted
value approaches the one that Roshko (1955) proposed to be universal for bluff bodies.

The coincidence of our value with Roshko’s is not fortuitous as his method for
estimating it shares remarkable similarities to ours (despite the obvious differences).
Roshko measured a wide range of vortex shedding frequency values, depending on the
bluff body and Reynolds number tested, but postulated that the right length and velocity
flow scales would collapse them into a single Strouhal value, independent of the body
details. To derive those scales, Roshko considered the potential flow model of Kirchhoff
(1869) for two-dimensional bluff bodies as a starting point, i.e. as a ‘base flow’. Kirchoff’s
model is known to be inaccurate, but Roshko adjusted it so that its predictions are
consistent with the experimentally measured average pressure at the rear side of the various
bodies (i.e. base pressure) he tested. Based on that revised Kirchoff model, Roshko then
derived predictions for the wake width d and velocity on the dividing streamline Us, which
in turn yielded a universal St ≈ 0.16 for all shedding frequencies, partially confirming his
postulation (even though counter-arguments exist, see Gerrard 1966).

Our stability analysis leads to the same conclusion as Roshko’s method, and that can be
seen from the fact that in his simplified model ∂Ux/∂r = 2Us/d, i.e. Roshko’s Strouhal
number definition becomes identical to (3.1). Therefore, both methods identify (via a
different starting point) the average velocity gradient as the appropriate normalisation
parameter for the vortex shedding frequency. This is in agreement with the idea of
Bevilaqua & Lykoudis (1978) that large-scale fluctuations (and the rate that those occur)
are intimately connected to the mean flow.

1002 A51-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1197


Turbulent shear flow without vortex shedding

0.50

1.0

0.5

1.0

C F PC PF

0.5

1.0 1.5 2.0

r/δ
0.5 1.0 1.5 2.0

r/δ
0.5 1.0 1.5 2.0

r/δ
0.5 1.0 1.5 2.0

0.50

0

1.0

0.5

1.0

0.5

0

0

1.0

0.5

1.0

0.5

0

0

1.0

0.5

1.0

0.5

0

�
U

/
�

U
m

ax

1.0 1.5 2.0 0.5

1.78D
6D
33D
55D

1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

r/δ

u x
u r

/
u x

u r
m

ax

(e)

(b)(a) (c) (d )

(c) (d )( f )

Figure 8. Similarity profiles of streamwise momentum deficit and cross-term of Reynolds stresses, for the four
plates. The four colours correspond to the four downstream PIV plane locations, as shown in the top left legend.

3.2. Effect of coherent structures on the wake

3.2.1. Onset of self-preservation
Given the variation of the vortex shedding intensity achieved with the various plate
modifications, we now proceed to test its effect on the self-preservation of the wake.
For that we consider the evolution of the streamwise velocity and the cross-term of the
Reynolds stress tensor, shown in figure 8. In particular, we plot the radial distributions of
�U = (Ux,max − Ux) and uxur, normalised with their maximum values at each streamwise
location (note that �Ux,max = (Ux,max − Ux,min)), vs the normalised radial coordinate r/δ,
with δ2 = (1/�Umax)

∫ ∞
0 �Ur dr. In the near-wake PIV window (x/D ≈ 2), Ux,max is

calculated as in § 3.1.2. In the other PIV windows Ux,max is effectively U∞. The upper
limit of integration for the calculation of δ is the lateral end of the PIV domain.

In figure 8 four colours are plotted per panel, corresponding to the four PIV windows
considered, i.e. at x/D = 1.78D, 6D, 33D and 55D (see figure 1), while the multiple lines
correspond to different streamwise locations within the PIV windows. The spikes (e.g. see
red line at r/δ ≈ 1 in panel a) correspond to locations where the PIV1 and PIV2 windows
were stitched (see figure 1). Note that at long distances downstream the velocity deficit is
very small and therefore small errors caused by the stitching lead to large spikes in the
normalised velocity deficit. The actual stitching error is actually smaller than 0.5 %U∞
(see for instance figure 15b). In Appendix B we confront the profiles of the various plates
at 55D downstream, and show that there is a significant difference in the profile shapes,
when vortex shedding is suppressed.

It can be observed that the earliest onset of self-preservation is achieved by the C and
F plates, with the streamwise velocity and Reynolds stresses roughly collapsing from
the second PIV window (6D). The PF plate which lacks the vortex shedding instability
exhibits a later onset of self-preservation, only approximately reaching it at the third PIV
window, i.e. at 33D, for both flow quantities. These results confirm and strengthen the
earlier conclusion of Bevilaqua & Lykoudis (1978) that vortex shedding accelerates the
onset of self-preservation.

A natural question that may arise is whether the delayed onset of self-preservation in
the PF case occurs because, in the absence of vortex shedding, another type of large-scale
vortical structure needs to be first formed in the wake to render self-similarity possible.
As explained in the introduction, this was the hypothesis of Bevilaqua & Lykoudis
(1978) that was not, however, verified. Our results indeed suggest that this is the case.
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Figure 9. Eigenvalue of the first SPOD mode for the radial velocity component, normalised with the sum of
the eigenvalues for all modes, evaluated at each St for the PF plate. Each curve corresponds to a different PIV
window downstream of the plate.

Figure 9 plots the normalised eigenvalues of the first SPOD mode for four PIV windows
at different downstream distances for the PF case. Well-defined periodicity, reflective of
the existence of coherent structures, appears only after 33D, i.e. at the point where the
wake becomes self-preserving. Figure 10 shows the shape of the SPOD modes at the peak
Strouhal number of each curve of figure 9, i.e. the most dominant coherent structure at
each PIV window. It can be seen that, up until 6D, the dominant structures are small and
confined to the shear layers of the wake, and are thus of the Kelvin–Helmholtz type, while
at 33D there is indeed the trace of a large-scale structure. By comparing these results with
those of Cimbala et al. (1988) and Huang & Keffer (1996) for porous strips, it can be
deduced that the large-scale structure that we observe at 33D is the secondary vortex street
which, under the absence of vortex shedding, appears around 25D downstream of bluff
bodies (Cimbala et al. 1988; Huang & Keffer 1996). The above results suggest that the
postulation of Bevilaqua & Lykoudis (1978) is indeed correct, i.e. that self-preservation is
a result of the formation of large vortices, capable of linking the mean flow with the ‘main
turbulent motion’.

3.2.2. Intermittency
We now turn our attention to the intermittency of the flow by distinguishing between
large-scale-dominated external intermittency and small-scale, internal, intermittency.
Bevilaqua & Lykoudis (1978) showed that the presence of vortex shedding vortices
increases large-scale intermittency near the edges of the wake, as their coherent motion
induces alternations between slow fluctuations of low intensity (i.e. outer flow) and rapid
fluctuations of high intensity (inner wake). This is something that we also observe in our
measurements. Figure 11(a) plots the intermittency coefficient Γ at 40D for all plates; Γ

is defined as the inverse of the flatness of dux/dx normalised by its minimum value over
the radial profile at x which is at, or very close to, r = 0. Therefore, Γ is defined using the
flatness of the velocity derivative, and not via its increments for a given scale separation.
Moreover, it is normalised in a way that its value is one for a fully turbulent flow and
drops to zero outside the wake’s interface. In consequence, in the way we have defined
it, and similarly to the approach taken in previous works (Townsend 1949), Γ ultimately
quantifies the radial dependency of the intermittency of the turbulent wake. The value
of Γ is much more sensitive to high values of dux/dx than C1, and so in the presence
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Figure 10. Shape of the first SPOD mode of the peak frequency of each curve of figure 9 for the PF plate.
Note that the near wake (x/D < 7) exhibits shear layers instabilities, and the far wake x/D > 30 a well-defined
vortex street, similar to the sketch of Huang & Keffer (1996) for two-dimensional porous plates, shown in
figure 9(b).

–2.0

0.2

0.4

0.6

0.8

1.0

1.3

1.2

1.1

0
–1.5 –1.0 –0.5 0 00.5 1.5 10 20 30 40

x/Dr/D

C1Γ

C
F
PC
PF

(b)(a)

Figure 11. (a) Intermittency factor Γ at 40D downstream of the plates and (b) C1 coefficient at the centreline
of the wake, for the four different plates. Both quantities were measured using HWA.

of a sharp dynamic interface between the inner turbulent wake and the outer laminar
flow, slowly decreasing values of Γ with increasing distance from the centreline reflect
high large-scale-dominated external intermittency whereas a steep slope of Γ suggests
reduced large-scale-dominated external intermittency at the wake boundary (Townsend
1976; Bevilaqua & Lykoudis 1978). It can be observed that the slope of Γ is steeper for
the plates with lower vortex shedding intensity (e.g. the PF plate), as shedding promotes
mixing: wakes with suppressed vortex shedding are thus expected to exhibit a sharper, and
more ‘insulated’ boundary between the wake and the outer flow.

The above result is in agreement with the conclusions of Bevilaqua & Lykoudis (1978)
regarding the large-scale ‘interface’ intermittency, where it was found that a wake with
the absence of shedding exhibits steeper Γ profiles compared with a wake dominated by
vortex shedding (see figure 3 in Bevilaqua & Lykoudis 1978). Figure 11(b), however, shows
a result concerning another type of intermittency, small-scale internal intermittency on the
centreline where Γ = 1 and the flow is not in the proximity of the wake boundary but
rather in the turbulent core. The coefficient C1 at the centreline of the wake characterises
the intermittency of the small scales of turbulence (see § 2.2.3) and it is plotted in
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Figure 12. Reynolds number based on the Taylor microscale at the centreline of each plate measured via
HWA.

figure 11(b) for all plates. The plates which exhibit vortex shedding show a consistent
increase of small-scale intermittency with streamwise distance, while the PF plate exhibits
small values very close to unity at all streamwise distances and therefore, effectively, near
absence of small-scale intermittency (note that C1 = 1 denotes absence of small-scale
intermittency). Evidently, the shed vortices of the C, F and PC plates are more capable
of affecting the small eddies of the flow, compared with the secondary street vortices
of the PF plate. It is a highly non-trivial conclusion that the large-scale vortices can
have such a big influence on the small-scale intermittency of the turbulence in the core
of the wake. One may think that the absence of vortex shedding reduces the Reynolds
number of the turbulence and thereby reduces small-scale intermittency as it is well known
that small-scale turbulence is increasingly intermittent with increasing Reynolds number.

Indeed, the Taylor length-based Reynolds number Reλ =
√

u2
xλ/ν of the small-scale core

turbulence measured via HWA is significantly larger for the C, F and PC plates than for

the PF plate (λ =
√

15ν

√
u2

x/ε). This is shown in figure 12, where it can also be observed,
however, that Reλ increases slightly with streamwise distance in the PF case whereas it
decreases quite sharply in the C, F and PF cases for which C1 in fact increases with
streamwise distance. Low/high values of C1 can therefore not be attributed to high/low
values of Reλ in our flows. The evidence therefore suggests that small-scale intermittency
in the core turbulence at the centre of the wake requires vortex shedding vortices. In fact,
Reλ and C1 are low in the PF case even in locations where the secondary street is shown to
be prominent (x/D > 30), suggesting that it may not be just the presence of a large-scale
coherent structure that matters for the appearance of small-scale intermittency at the core,
but even the type of it.

3.2.3. Wake recovery
Finally, we investigate the effect of vortex shedding (or the absence of it) on the wake
development. We consider a simplification of the Reynolds stress evolution equations,
in which the pressure terms (pressure-rate-of-strain tensor) are considered to cause a
redistribution of energy among the Reynolds stresses (Pope 2000). The turbulent transport
terms are assumed to attenuate the intense Reynolds stresses located at the shear layers of
the flow (Pope 2000), decreasing in that way the turbulent production. We may thus assume
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Figure 13. Maximum values over the radial direction of (a) turbulence kinetic energy, (b) Reynolds shear
stress and (c) production of the streamwise Reynolds stresses, as functions of the downstream distance, at the
four PIV windows. The plates are as shown in (c). The solid lines are power-law fits.

that, in our simplifying consideration, the effect of turbulent transport can be grouped with
that of the dissipation term ε. We thus end up with turbulence stresses which are attenuated
by dissipation ε, redistributed within its various components by the fluctuating pressure
and augmented by the production terms (themselves a product of turbulent fluctuations
with the velocity gradient ∂Ux/∂r). We note that the dissipation term of the Reynolds
shear stress can be either positive or negative, but its value is expected to be negligible
away from solid boundaries (Pope 2000). We also note that the production term of the
radial Reynolds stress component, u2

r , is negligible in the far wake.
The above simplified representation may be used to shed some light on the flow

evolution. The starting point can be thought to be the ‘bluffness’ of the tested body. If it is
bluff enough, it will cause a mean recirculation in its wake: wakes like that exhibit large
negative convective velocities, and can be thus thought to be prone to absolute instabilities,
i.e. vortex shedding (see discussion in § 2.2.2). Indeed, among the plates tested, C, F and
PC exhibit an (absolute) vortex shedding instability (see § 3.1.1) and recirculation (see
figure 15a). On the other hand, the PF plate lacks a recirculation region, and thus any
perturbations are convected downstream by the average flow, rather than staying put. In
that case, the instabilities are convective in nature (see § 2.2.2).

If vortex shedding emerges (absolute instability), it will cause an increase of turbulent
fluctuations by an order of magnitude (see for instance figure 5), amplifying in that way
the production of Reynolds stresses in the near wake (as production of Reynolds stresses
is proportional to the magnitude of these stresses). Reynolds stresses will thus increase,
and by extension, their dissipation. This intuitive result is verified using our PIV and
HWA data in figures 13 and 14(a), where, at the near wake, the plates with the larger
vortex shedding intensities (e.g. C and F), exhibit larger maximum turbulence kinetic
energies K, Reynolds shear stresses and production/dissipation terms of the streamwise
velocity variance. Using our PIV data, the turbulence kinetic energy is estimated as
K = 0.5(u2

x + u2
r )/U2∞ (it was checked that a different estimation K = 0.5(u2

x + 2u2
r )/U2∞

does not alter the trends) and the production term of the streamwise Reynolds stresses, u2
x ,

as Π = 2uxur∂Ux/∂r + 2u2
x∂Ux/∂x. The dissipation rate is calculated from the HWA data

as ε = 15ν
∫

k2
wE11 dkw. E11 is the one-dimensional energy spectrum and ν the kinematic

viscosity.
Intense vortex shedding in the near wake will therefore generate high Reynolds shear

stresses (as also seen in figure 5). In turn, the Reynolds shear stresses will generate
strong streamwise velocity gradients ∂Ux/∂x through the average momentum equation
(i.e. through the mixing of the wake with the outer flow). Considering a slowly expanding
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Figure 14. (a) Maximum dissipation rate of the HWA profiles measured for each plate, at four downstream
distances and (b) (Umax − Umin)/δ over downstream distance at the four PIV windows tested. The solid lines
are power-law fits.
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Figure 15. Average streamwise velocity distribution at (a) x/D = 1.5 and (b) x/D = 55. The colours are as
in figure 14. The PF plate (green line) has the largest velocity deficit in the far wake, even though it initially
exhibits the smallest deficit. Note the spike in the green curve in figure 15, due to the stitching of the two PIV
windows.

wake (i.e. ∂δ/∂x ≈ 0), and approximating ∂Ux/∂r ≈ (U∞ − Ux)/δ, we obtain

1
δ
∂Ux/∂x = −1

δ
∂(U∞ − Ux)/∂x ≈ − ∂

∂x
(∂Ux/∂r). (3.2)

A strong gradient ∂Ux/∂x will thus lead to a strongly negative ∂/∂x(∂Ux/∂r), i.e. a fast
wake recovery for the plates with intense vortex shedding. This is verified in figure 14(b),
where the wakes with larger shedding end up having the smallest velocity deficit in the
far wake (largest recovery), despite starting from larger velocity deficits in the near wake.
The velocity deficit difference is illustrated in figure 15, which compares the normalised
streamwise velocity distribution at x/D = 1.5 (near wake) and x/D = 55 (far wake) for
the C, F and PF plates.

Finally, the fast wake recovery of the plates with vortex shedding, will lead to the abrupt
attenuation of the production term (as the production term scales with the mean velocity
gradient). This is verified in figure 13(c), where the plates with higher vortex shedding
(and quicker wake recovery) exhibit a faster decay of their production term, compared
with the plates with weaker shedding. Given that high-shedding plates also exhibit higher
initial dissipation rates, the above result suggests a faster decay of turbulence for the
high-shedding plates in the far wake. This is validated in figure 13(a,b), for the C and
F plates, when compared with the PF plate.
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Figure 16. Simplified loop diagram of the recovery of a turbulent wake. Here, Π , ε, T and RS stand for
Reynolds stress production, dissipation, turbulent transport and Reynolds stresses, respectively. Pressure is
assumed to only contribute to Reynolds stress redistribution. Vortex shedding gives an initial amplification of
the Reynolds stresses, speeding up the recovery process.
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Figure 17. Normalised eddy viscosity profiles at (a) x/D ≈ 6 and (b) x/D ≈ 33.

The above simplified process is summarised in figure 16, which illustrates the process
of wake recovery: high vortex shedding (initial, large Reynolds stresses) will accelerate
the steps which lead to recovery. The PF plate wake that lacks vortex shedding and only
develops large coherent structures in the far wake (i.e. secondary vortex street) exhibits
the slowest evolution, retaining the largest momentum deficit and turbulence properties
(i.e. Reynolds stresses, dissipation) of the four tested plates in the far wake, despite its
initial condition being the mildest. A variation of intensity in vortex shedding thus has a
significant effect on the wake’s turbulence properties and on their relation with the mean
flow. This can be further seen by plotting the distribution of the normalised eddy viscosity
(see figure 17), calculated as νt = −uxur/(∂Ux/∂r) for the different plates. It can be seen
that an increase in shedding intensity leads to an increase in the eddy viscosity of the flow.

4. Summary and conclusions

This work presents an experimental study of the influence of vortex shedding intensity
on the near and far wake of bluff bodies. Four plates were tested using high-speed planar
PIV and HWA, and their flow fields were analysed using a combination of SPOD, linear
stability analysis of the mean flow and inspection of their turbulence statistics. Variation
of the vortex shedding intensity, and its elimination, was achieved by modifying standard
flat plates via the separate/combined effects of porosity, and multiscale perimeter.

Vortex shedding is found to be intimately connected to the mean-flow field. In particular,
the vortex shedding Strouhal number of our tested plates, when the mean velocity
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gradient was used in the normalisation, exhibited the value that was postulated by Roshko
(1955) to be universal for vortex shedding. This implies a strong connection between
mean flow and turbulent fluctuations induced by the presence of coherent structures.
According to the hypothesis of Bevilaqua & Lykoudis (1978), this connection is also
responsible for the emergence of self-preservation in turbulent wakes, contrary to the
hypothesis of Townsend (1956, 1970, 1976) that self-preservation is the effect of a loss
of memory of initial conditions. Our results are in favour of the arguments in Bevilaqua
& Lykoudis (1978), as we have found that the onset of self-preservation is accelerated
when vortex shedding vortices (which carry the memory of initial conditions) are present.
Our results also suggest that if vortex shedding is suppressed, self-preservation appears
when other large-scale structures (in our case, the secondary vortex street) have had time
to form, giving further credibility to the hypothesis of Bevilaqua & Lykoudis (1978). The
presence/absence of vortex shedding enhances/depletes the large-scale intermittency at
the edges of the wake, but also the small-scale intermittency at the centreline of the wake.
The latter result is particularly compelling, as it implies that the degree of small-scale
intermittency is directly controlled by large-scale structures. Finally, we have studied
the evolution of the wake statistics by using theoretical arguments and our experimental
results and have found that the presence of strong shed vortices accelerates the growth of
Reynolds stresses and the recovery of the wake, bringing it to a well-mixed state sooner
than otherwise. By contrast, the wake of the porous–fractal plate, which is the one that
lacks vortex shedding, retains relatively high values of velocity deficits and Reynolds
stresses for long streamwise distances, even if its initial condition is that of a relatively
mild/weak wake. Future work should focus on uncovering the physical mechanisms that
link large-scale coherent structures, self-preservation and small-scale intermittency.
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Appendix A. Axial symmetry in the near wake of fractal plates

We test the axisymmetry of the near wake of the F and PF plates by conducting planar
PIV measurements in two planes with a relative angle of 45◦, as shown in figure 18(a)
(note that F45 and PF45 refer to measurements conducted at the 45◦ angle plane for the F
and PF plates, respectively). We first investigate the sensitivity of the coherent structures
to the angle of measurement. Figure 18(b) shows that the eigenvalues of the first SPOD
mode of the radial velocity are very similar for the different angles. A slight difference
can be observed in the PF45 case, which exhibits the highest peak at St = 0.49, instead
of the St = 0.29 of the PF case (however, we note that the differences in the magnitude
of the eigenvalues are very small between the PF and PF45 cases). Figure 19 shows
the eigenmode shapes corresponding to the highest eigenvalues of figure 18(b). The F45
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Figure 18. (a) The two planes for which PIV was acquired, with 45◦ between them. (b) Eigenvalue of the
first SPOD mode for the radial velocity component, normalised with the sum of the eigenvalues for all modes,
evaluated at each St for the F and PF plates, at two angles.
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Figure 19. Shape of the first SPOD mode of the peak frequency of each curve of figure 18(b) for the F and PF
plates.

case suggests an outward displacement of the vortex structure, compared with the one
corresponding in the F case – this is likely because the F45 plane is behind an ‘extrusion’
of the fractal plate (see figure 18a). The most dominant mode of the PF plate exhibits
larger shear-layer structures, compared with the PF45 case, as its corresponding Strouhal
number is much lower.

Figures 20 and 21 compare the mean streamwise velocities and Reynolds shear stresses
of the fractal plates. While there is very little variation in the mean velocity between the
two angles of measurement, some differences can be observed in the Reynolds stresses: the
F45 and PF45 plates exhibit more extensive shear layers compared with their zero-angle
counterparts, as they are behind the ‘extrusion’ of the fractal. However, their maximum
values remain approximately the same.

Appendix B. Comparison of self-similar profiles for the various plates

In figure 22 we plot the curves of figure 8, but for each of the plates at the location 55D
downstream, where all profiles are self-similar. To enable a better comparison between
plates, we removed the stitching error of the PIV windows, by performing a ‘crude’
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Figure 20. Normalised mean streamwise velocity (Ux/U∞) for the F and PF plates at two angles of
measurement (see figure 18a for the plane angle).
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Figure 21. Normalised Reynolds shear stresses (uxur/U2∞) for the F and PF plates at two angles of
measurement (see figure 18a for the plane angle).
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Figure 22. (a) Normalised velocity deficit and (b) normalised Reynolds shear stresses for various plates, 55D
downstream.

correction where an identical shift of the statistics of the PIV2 window (see figure 1).
We observe that, while the C and F plates have similar profiles (even though some
differences persist), there is an evidently different distribution of both mean velocities and
Reynolds shear stresses of the PF plate, compared with the plates with vortex shedding.
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