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COMMUTATIVE ENDOMORPHISM RINGS 

J. ZELMANOWITZ 

Introduction. The problem of classifying the torsion-free abelian groups 
with commutative endomorphism rings appears as Fuchs' problems in 
[4, Problems 46 and 47]. They are far from solved, and the obstacles to a 
solution appear formidable (see [4; 5]). It is, however, easy to see that the 
only dualizable abelian group with a commutative endomorphism ring is the 
infinite cyclic group. (An jR-module Miscalled dualizable if HomR(M, R) 9e 0.) 
Motivated by this, we study the class of prime rings R which possess a 
dualizable module M with a commutative endomorphism ring. A charac­
terization of such rings is obtained in § 6, which as wTould be expected, places 
stringent restrictions on the ring and the module. 

1. Throughout we will write homomorphisms of modules on the side 
opposite to the scalar action. Rings will not be assumed to contain identity 
elements unless otherwise indicated. 

Given a left i^-module M, we will let M* = HomR(M, R) and M** = 
Homfl(Af*, R). There is a natural i^-homomorphism 8M: M—* M** defined 
for m G M, f G M* via [(m)ôM](f) = mf. K(M) will denote the kernel of 
ôM; clearly K(M) = H KM* ker/ . If K(M) = 0, then M is called a torsionless 
left i^-module. More generally, we will consider modules for which K (M) 9e M; 
or, equivalently, M* 9e 0. It will be convenient, and descriptive, to call such 
a module dualizable. We note that K(M) is a fully invariant submodule of M 
and that M/K(M) is torsionless. 

We now introduce a notation which will prove very convenient. While it 
is by no means new (it appeared in [1]), its use here stems from some recent 
lectures of S. A. Amitsur. For M a, left i^-module there is an i?-i?-bimodule 
homomorphism ( , ): M®EM* -+R, where E = E(M) = Homfi(Af, M), 
defined for m G M, f G M* by (m,f) = (m)f. There is also an E-E-bimodule 
homomorphism [ , ]: M* (x)fl M —-> E defined via w[/ , n] = (m, f)n for 
m, n G M,f(z M*. One then has [/, m\g = f(m, g) for any m £ M,f, g £ M*; 
and note also that (M,f) = 0, / G M*, implies t h a t / = 0. We set F (M) = 
[M*, M] = image of [, ] in E(M), a two-sided ideal of E(M). 

2. In this section we show that the only dualizable abelian group with a 
commutative ring of endomorphisms is the infinite cyclic group. The next 
lemma provides the main step. 
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LEMMA 2.1. An R-module M = Mi 0 M2 has a commutative endomorphism 
ring if and only if each Mt does and HomR(M\, M f) — 0 for i ^ j . 

Proof. First observe that if Homfî (M, M) is commutative, then every 
endomorphic image of M is fully invariant; for given a, fi (j HomR(M, M), 
Mafi = Mpa C Ma. Let wt be the natural projection of M onto Af *, i = 1,2. 
Then HomB(Mu Mt) ~ TT* HomB(ikf, M)iru and so HomB(AffJ Af*) is com­
mutative. Also for i ?* j and tp (E Homfi(Af*, Af;), <p can be extended to an 
endomorphism of M by defining <p to be zero on M j . This violates the fully 
invariant property of Mu unless cp = 0. 

The proof of the converse is straightforward, and is left to the reader. 

THEOREM 2.2. For a dualizable module M over a Dedekind domain R, E(M) 
is commutative if and only if M is isomorphic to an ideal of R. 

Proof. Assume that E(M) is commutative with M* ^ 0. Taking 0 9e / G M* 
we have an exact sequence 

o-»is:->M-£/-*o 
with K = kerf and / = Mf. Since R is Dedekind, M ^I®K. By the 
previous lemma, Hom(7, X) = 0. Since I © I ^ R 0 P [2, p. 150], it 
follows that K ^ Homfi(i^, X) ^ (into) Hom«(I ® / , X ) ^ Horn* (J, K) 0 
Homft(7, X) = 0. Thus K = 0 and AI ^ I. The endomorphism ring of an 
ideal is certainly commutative. 

COROLLARY 2.3. 77^ 0^/3; dualizable abelian group with a commutative 
endomorphism ring is the infinite cyclic group. 

3. Recall that a ring R is semiprime if it has no nilpotent left or right ideals; 
equivalently if every left (right) ideal has zero intersection with its left (right) 
annihilator. R is prime if the left (right) annihilator of a left (right) ideal 
is zero. 

In the bracket notation, for a left i^-module M to be torsionless means that 
m = 0 whenever (m, M*) = 0. We will often use the following observation. 

LEMMA 3.1. Let M be a torsionless left module over a semiprime ring R. 
Then for any m £ M, [M*, m] = 0 implies that m = 0. 

Proof. [M*, m] = 0 implies that 0 = (M,[M*,m]M*) = (M, M* (m, M*)) = 
(M, M*) (m, M*). Hence (m, M*) C (M, M*) H rightann(M, M*) = 0. Since 
M is torsionless, m = 0. 

Now suppose that M is any left module over a semiprime ring R. Then for 
/ 6 M*, [/, M] = 0 implies that 0 = (M, [/, ikf]7kf*) = (M,f(M, M*)) = 
(M,f) (M, M*), so that (ikf,/) C (M, M*) H left ann(M, M*) = 0. Thus 

/ = 0. From this it follows that M* 9* 0 if and only if F(M) 9* 0. 
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Henceforth, M will always denote a left i?-module. We will say that a ring S 
is a right (left) order in an overring T if for every 0 9* / G T, 

tsns^o (str\s9*0). 
PROPOSITION 3.2. 7/ R is semiprime (prime) and M is torsionless, then 
(1) E(M) is semiprime (prime), and 
(2) F(M) is a left and right order in E(M). 

Proof. (1) is [6, Proposition 1.2(i)]. To prove (2), let 0 ^ a G E(M). Since 
F(M) is a two-sided ideal in E(M), it suffices to show that 0 9* F(M)a and 
0 ^ aF(M) . If 0 = F(M)a = [M*f M]a = [M*, Ma], then 

0 = (M, [M*, Ma]M*) = (M, M*(Ma, M*)) = (M, M*)(Ma, M*), 

and so (Ma, M*) = 0, from which it follows that Ma = 0 contradicting 
a 9* 0. A similar computation establishes that aF(M) 9* 0. 

The next theorem establishes the fact that in the setting of torsionless 
modules commutativity of F(M) implies commutativity of E(M). We will 
later extend this to a larger class of modules (Corollary 5.2). 

THEOREM 3.3. If R is semiprime and M is torsionless, then E(M) is com­
mutative if F(M) is. 

The proof follows from the following elementary observation, together with 
the previous proposition. 

LEMMA 3.4. Suppose that R is a prime (semiprime) ring and L is a non-zero 
left ideal of R (which is a left order in R). Then R is commutative if L is. 

Proof. Assume that L is commutative. First observe that left ann(L) = 0. 
(For, left ann(L) H L = 0 and L is a left order in R.) Next let r G R, x G L 
be given. Then for any y 6 L, (rx — xr)y = r(xy) — x(ry) = r(yx) — 
(ry)x = 0 since ry G L. Since y G L was arbitrary, rx — xr G leftann(L) = 0. 
Hence L is contained in the centre of R. 

Next, suppose that r, s £ R, and let x G L. Then (rs — sr)x = r(sx) — 
s(rx) = (sx)r — s(xr) = 0 since sx G L. Hence rs — sr G leftann(L) = 0. 
r and 5 being arbitrary, the proof is complete. 

COROLLARY 3.5. If R is a ring without zero divisors and L is a non-zero 
commutative left ideal, then R is commutative. 

4. Our aim in this section is to show that if M is a torsionless module 
with F(M) commutative, then i f is a uniform module. We recall that a 
module is uniform if any two non-zero submodules have non-zero intersection. 
The next lemma provides a crucial step. 

LEMMA 4.1. Suppose that R is a semiprime ring and that F(M) is commutative. 
Then given m,n G M with (m, M*) (n, M*) 9* 0, it follows that Rm C\ Rn 9e 0; 
more precisely, (M, M*)(m, M*)n = (M, M*)(n, M*)m 9* 0. 
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Proof. Since F(M) is commutative, [M*, m][M*t n] = [M*, n][M*, m\. 
Hence M[M*9 m][M*, n] = M[M*, n][M*, m] from which one obtains 
(M, M*)(w, Af*)« = (M, M*)(w, M*)w. If this were zero, then 

(M, M*)(w, M*)(w, M*) = 0 

whence (m, M*)(», M*) C (M, Af*) H right ann(If, ikf*) = 0, and so we 
would have (w, M*)(«, M*) = 0. Therefore (w, Jkf*)(w, M*) ^ 0 implies 
that 0 ^ (M, M*) (m, M*)n = (M, M*) (», M*)m ^ Rn C\ Rm. 

PROPOSITION 4.2. Suppose that R is a prime ring and F(M) is commutative. 
Then M/K (M) is a uniform torsionless module {which is non-zero if and only if 
M is dualizable). 

Proof. We have only to show that M/K(M) is uniform. Thus suppose that 
m,n G M \K(M). We must prove that Rm C\ Rn Çt K(M). By our choice 
of m and w, (w, M*) and («, ikf*) are non-zero right ideals. Since R is a prime 
ring, (m, M*)(n, M*) ^ 0. By Lemma 4.1, 

0 9* (M, M*) (m, M*)w QRmH Rn. 

If Rmr\RnQK(M), then (Af, Jkf*)(w, M*)(w, Af*) = 0 from which it 
follows that (m, M*)(n, M*) = 0, a contradiction. Therefore 

RmC\Rn £ K(M). 

We remark that the lemma is valid for M a module over a semiprime ring 
provided that (w, M*)(w, M*) ^ 0 for all m, w Ç M\K{M). For this was 
just the point at which the proof required primeness of R. 

COROLLARY 4.3. Suppose that R is a prime ring and M is a torsionless module 
with F(M) commutative. Then M is uniform. 

5. By Proposition 4.2 the existence of a dualizable module M over a prime 
ring for which F(M) is commutative implies the existence of a uniform 
torsionless module. In this section we show that the endomorphism ring of 
this uniform module is also commutative. 

For any i?-module M it is easy to see that one has an exact sequence 

0 -> Hom(M, K(M)) -> E(Af) ->E(M/K(M)). 

This follows directly from the fact that K(M) is a fully invariant submodule 
of M, so that endomorphisms of M induce endomorphisms of M/K(M) in a 
natural manner. In general the map E(M) —* E(M/K(M)) is not surjective. 
For F(M), however, the corresponding map is indeed surjective. 

LEMMA 5.1. The restriction of the above sequence to F(M) yields an exact 
sequence 

0 -> F(M, K(M)) -> F(M) -> F(M/K(M)) -> 0, 

where F(M, K(M)) = Hom(M, K(M)) H F (M). 
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Proof. We show how to lift a homomorphism in F(M/K(M)). Say 

2[ f„w, ] 6 F(M/K(M)), 

where / , € (Af/i£(M))*, «< = m, + K(M) G M/K(M). 
Then letting TT be the natural homomorphism of M onto M/K(M), 

ft = TT/Z G M*. We leave it to the reader to check that 2[/7:, w J is mapped 
onto 2[fu thi]. 

This lemma provides generalizations of Proposition 3.2 and Theorem 3.3* 
Note that a non-zero module M with Horn (My K(M)) = 0 is dualizable. 

COROLLARY 5.2. Suppose that R is a semiprime {prime) ring and M is an 
R-module with HomB(M, K(M)) = 0. Then 

(i) E(M) is semiprime (prime), 
(ii) F(M) is a left and right order in E(M), 

(iii) E(M) is commutative if F(M) is. 

Proof. By Proposition 3.2, F(M/K(M)) is a right and left order in 
E(M/K(M)). From the exact sequences above, HomR(M, K(M)) = 0 
implies that 

F(M/K(M)) A F CM) QE(M)-^ E(M/K(M)), 

where the map vis a monomorphism and JJL is an isomorphism (n = v~l with 
restricted domain). The corollary follows from this together with the fact that 
F(M/K(M)) is itself a semiprime (prime) ring. 

PROPOSITION 5.3. / / R is a prime ring and M a module with F(M) non-zero 
and commutative, then M/K(M) is a uniform torsionless module whose endo-
morphism ring is a commutative integral domain. 

Proof. By Proposition 4.2, M/K(M) is a non-zero uniform torsionless 
module. Lemma 5.1 assures us that F(M/K(M)) is commutative. Thus by 
the results in § 3, E(M/K(M)) is a commutative prime ring, hence an integral 
domain. 

6. For brevity we call a ring R which possesses a module M for which F(M) 
is non-zero and commutative a (left) CT-ring. In this section we investigate 
the structure of prime CT-rings. 

THEOREM 6.1. A prime CT-ring possesses a uniform left ideal whose endo-
morphism ring is a commutative integral domain. 

Proof. By Proposition 5.3, R has a uniform torsionless module U whose 
endomorphism ring S is a commutative integral domain. We show that U is 
isomorphic to a left ideal of R. 

Let / be any non-zero element of £/*, and set V = kerf. If 7 ^ 0 , then 
[/, V] is a non-zero subset of S. For [/, V] = 0 implies 0 = U[f} V] = 
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(U,f)V = (Uf) V; but F is a faithful i^-module, and so Uf = 0 contradicting 
/ ^ 0. Next, U[f, VY = (£/,/) ( 7 , / ) F = (Uf) (Vf) 7 = 0 , and so [/, F]2 = 0. 
Since 5 is a domain, [/, V] = 0, a contradiction. We conclude that F = 0, 
and hence t h a t / is an isomorphism of U onto a left ideal of R. 

COROLLARY 6.2. The CT-rings without zero divisors are commutative integral 
domains. 

Proof. Let R be a CT-ring without zero divisors, U the left ideal of R given 
by Theorem 6.1. Since right multiplication by distinct elements of U gives 
distinct i^-endomorphisms of U, we can regard Uas a subring of HomR(U, U). 
Thus U is commutative. By Lemma 3.5 so is R. 

Remark. The proof of Theorem 6.1 shows in fact that over a prime ring a 
uniform torsionless module with a commutative endomorphism ring is 
isomorphic to a left ideal. 

In view of Corollary 4.3, it then follows that over a prime CT-ring, the 
torsionless modules with commutative endomorphism rings are isomorphic to 
(uniform) left ideals. 

THEOREM 6.3. A prime ring R is a CT-ring if and only if it is a right order 
in a ring of column-finite matrices over a commutative field. 

Proof. Suppose that R is a prime CT-ring, and let U be a uniform left ideal 
with S = E(U) a commutative integral domain. First note that U is a 
torsionless right «S-module. For given 0 9e u £ [/, [£/*, u] 9e- 0 by Lemma 3.1, 
and so there exists / £ U* with [/, u] 9e 0. Define <p: Us —> S s via <p(x) = 
[/, x] for any x 6 U. Since <p is a homomorphism of right 5-modules and 
cp(u) 9e- 0, Us is torsionless. 

Let K be the quotient field of 5, T = Horns (Z7s, £/s)» 

2£x = H o m z ( [ / ( x ) s I , [ / ® S Z ) ; 

thus i£\ is the ring of column-finite X X X matrices over K acting as left 
operators on U®sK, and X is the dimension of [ / ( x j ^ Z a s a K- vector space. 
Using the fact that Us is torsionless, one proceeds through an elementary 
argument (see [6, the proof of Theorem 2.2(ii) as well as Lemma 1.1]) to show 
that T is a right order in K\. 

Since U is a faithful left i^-module, we can assume that R = Rl C T under 
the identification r <-> rl = left multiplication by r £ R. We now show that R 
is a right order in T. Given 0 9e- r 6 T, then for any u9 v Ç [/, (TU1)V = 
r(m>) = (rw)tf = (r^)fy since r is an S-homomorphism and TU G t/. Thus 
n£* — (rzi)* annihilates U. But [/ is a faithful left T-module, and so TU1 = 
(TU)1 £ Ul. Thus £/z is a left ideal in the prime ring T, and 

O ^ T Î / ' C ^ H ru1 QRlr\ TRK 

This shows that R is a right order in T. 
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It remains to prove that R is a right order in K^. Let ZKx(K\) denote the 
right singular ideal of K\. (We refer the reader to [3] for the definition and 
basic properties of the singular submodule.) Since K\ is a regular ring, 
ZKx(K\) = 0. In this situation the relationship of "right order" becomes 
transitive [3, Lemma 11.2(3)]. Thus R is a right order in K\. 

Conversely, suppose that R is a prime ring which is a right order in K\ 
with K a commutative field. Let ZB{K\) and ZR(R) denote the singular 
submodule of K\ as a right i^-module and the right singular ideal of R, 
respectively. Since R is a right order in K\ and ZKx(K\) = 0, it follows that 
ZR(R) = 0. Since ZR(KX)C\R = ZR(R), ZR(KX) = 0. Finally, given any 
K G K\, set (R:K) = {r G i?| /cr G i?} ; (i^:/c) is an essential right ideal of R. 

Let e = eu G i£x be the idempotent element which has 1 in the ( I m ­
position, 0 elsewhere. We claim that Re is a torsionless left i^-module. (For 
the remainder of this proof, Re is the J?-module generated by e and con­
taining e.) For given O ^ f l g f Re, set I — (R:ae) Pi (R:e); I is an essential 
right ideal of R. Since ZR(K\) = 0, 0 ^ aeb for some b G / . Thus the function 
given by re >—> reb defines an i?-homomorphism from Re to R which is non­
zero on ae. 

By Proposition 3.2 it follows that E(Re) — HomR(Re, Re) is a prime ring. 
Set J — (R:e). Since R is semiprime, eJ 9e 0 implies that (eJ)2 ^ 0; in 
particular, eJe ^ 0. Note that right multiplications by distinct elements 
of eJe give distinct elements of E(Re). (For if a,b G J and re(eae) = re(ebe) 
for every r G R, then i?e(a — b)e = 0. Then ^ ( a — b)eJ — 0, and since R 
is prime and e(a — b)eJ C (e/)2 C J?, we have e(a — b)eJ = 0. Since 
ZR(K\) = 0, 6(a — b)e = 0.) Hence we may regard eJe as a subring of E(Re). 

Finally, given any <p G E(Re), and any a £ J, re £ Re, we have re((eae)<p) = 
(reae)<p = rea(e<p) = reaÇs^e) for some ŝ e G ife. Hence (eae)<p = e{as(p)e G e/tf, 
proving that e/e is a non-zero right ideal in E(Re). Since e/e C &Z£xe ̂  X, 
£/e is commutative. But then by Lemma 3.4 for prime rings, E(Re) is com­
mutative. Thus R is a CT-ring. 

There are right orders of matrix rings which are CT-rings but not prime. 
For example, the ring R of 2 X 2 lower triangular matrices over a field F is 
certainly a right (and left) order in the full ring of 2 X 2 matrices over F. 
And R certainly has a left ideal with a commutative endomorphism ring 
(isomorphic to F, in fact). But R is not even semiprime. Our final result 
covers such examples. 

THEOREM 6.4. Let T be a ring of matrices over afield K, and R a subring of T. 
If {e*A 1 = M» v = M (A an ordinal number) is a set of matrix units for T with 
en G R, then R is a left and a right CT-ring. 

Proof. The proof is almost trivial. For if en G R, then Ren C R; thus 
R(l — en) Q R, and hence R = Ren@R(l — en). Under these circum­
stances, 

E(Ren) = HomB(Ren, Ren) £É enRen Q enTeu = K. 
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Thus R is a left CT-ring. The same argument can be applied to enR to show 
that R is a right CT-ring. 

Added in proof. 

We conclude this paper with a statement on left-right symmetry. 

THEOREM 6.5. A prime left CT-ring is a right CT-ring. 

Proof, Let R be a prime left CT-ring, U a uniform left ideal of R with a 
commutative endomorphism ring 5. Consider U* = HomR(U, R), and S-R-
bimodule which is torsionless as a right i£-module. 

First note that U* is a faithful left 5-module; for if a Ç 5 and all* = 0, 
then 0 = [aU*, U] = a[U*, U] so that a = 0. Next set T = Hom«(E/*, [/*); 
we can regard [[/*, U] as a subring of 7\ Let r Ç T,f£ U*, u £ U. Then for 
any g G t/*, ( r [ />] )g = r([/,tt]g) = r(f(u,g)) = {rf)(u,g) = [r/, w]g since 
(w, g) Ç i^. Thus, [[/*, C/] is a left ideal of T. T is prime by Proposition 3.2; 
and Lemma 3.4 then ensures that T is commutative. 

Remark. Since a prime CT-ring has been seen to have zero singular ideal 
and uniform left ideals, it is actually "densely" embedded in a full ring of 
linear transformations (see, for example, S. Amitsur, Rings of quotients and 
Morita contexts, not yet published). 
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