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FINITELY EMBEDDED MODULES
OVER GROUP RINGS

by P. F. SMITH
(Received 24th June 1976)

Let R be a ring and X a right R-module (all rings have identities and all modules
are unitary). The intersection of all non-zero submodules of X is denoted by /x(X).
The module X is called monolithic if and only if fi(X) # 0 and in this case n(X) is an
essential simple submodule of X. (Recall that a submodule Y of X is essential if and
only if YHA^O for every non-zero submodule A of X.) It is well known that a
module X is monolithic if and only if there is a simple right /?-module U such that X
is a submodule of the injective hull E(U) of U. If x is a non-zero element of an
arbitrary right .R-module X then by Zorn's Lemma there is a submodule Yx of X
maximal with the property x£ Yx. It can easily be checked that X\YX is monolithic
and D Yx = 0, where the intersection is taken over all non-zero elements x of X.

Vamos (15) defined a right fl-module X to be finitely embedded in case the
injective hull of X is a finite direct sum E(Si)©£(S2)© • • -®E(Sn) of injective
hulls of simple right /?-modules S,, 1 =£ i =£ n. He proved that a right /^-module X is
finitely embedded if and only if its socle is a finitely generated essential submodule,
and he showed that this is equivalent to X having the property that for every
collection of submodules Yk, A G A, of X with flA VA = 0 there exists a finite subset A'
of A such that flA Yk = 0. He also proved that a module X is Artinian if and only if
every homomorphic image of X is finitely embedded.

A ring R is a Hilbert ring if and only if R is right Noetherian and the Jacobson
radical of every homomorphic image of R is nilpotent. A simple homomorphic image
of a ring is called a capital of that ring. A field is called absolute if and only if it is an
algebraic extension of a finite field. A ring R is called a CHACA ring if and only if R
is a commutative Hilbert ring such that every capital of R is an absolute field.

A group G is polycyclic if and only if there is a series

1 = Go < G, < • • • < C- , <Gn = G

in which the factors GJGj-i, 1 =£ i =£ n, are all cyclic. It is well known that a finitely
generated nilpotent group is polycyclic. If 3£ and g) are group classes then a group H
is called an 3E-by-?) group if and only if there is a normal subgroup N of H such that
N lies in X and H/N in g).

Let J be a CHACA ring, G be a polycyclic-by-finite group and X be a finitely
generated monolithic right JG-module. If U = ft(X) then there is a maximal ideal M
of / such that U is finite dimensional over the field JIM by a theorem of Roseblade
(11, Corollary A). It follows by methods of Jategaonkar (6) that for some positive
integer k, X is a finitely generated module over the ring JIMk and in particular X has
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56 P. F. SMITH

finite length. The question arises whether monolithic JG-modules are Artinian and in
this note we prove the following result.

Theorem A. Let J be a commutative Hilbert ring and G be a finitely generated
nilpotent-by-finite group. Let X be a finitely embedded JG-module such that the socle
of X is finitely generated as a J-module. Then X is Artinian.

This result together with Roseblade's theorem mentioned above combine to give
immediately:

Corollary A. Let J be a CHACA ring and G a finitely generated nilpotent-by-finite
group. Then every finitely embedded JG-module is Artinian.

Let K be any field, G be a finitely generated nilpotent-by-finite group and X be a
finitely embedded right KG-module. If K is absolute then X is Artinian by Corollary
A. Also it is not hard to see that if G is Abelian-by-finite then X is Artinian (Corollary
2.2). Otherwise the problem of whether or not X is Artinian reduces to considering
finitely embedded modules over capitals of KH where H is a finitely generated
nilpotent normal subgroup of finite index in G. In §1 we show that if every capital of
KH is Artinian then every finitely embedded KH-module is Artinian and in §2 we
show how this extends to finitely embedded JCG-modules. Unfortunately, this takes
us no further because of the next result.

Theorem B. Let K be a field and G be a finitely generated nilpotent-by-finite group
such that every capital of KG is Artinian. Then either K is absolute or G is
Abelian-by-finite.

Snider (14) proved that if K is a field and G is a polycyclic group such that every
primitive ideal of the group ring KG is a maximal ideal then K is absolute or G is
nilpotent-by-finite. We prove that if / is a ring and G is a group such that every
primitive homomorphic image of the group ring JG is Artinian then every primitive
homomorphic image of JH is Artinian for every normal subgroup H of finite index in
G (Lemma 3.3). But it is well known that if P is a primitive ideal of a ring R and the
ring RIP is Artinian then RIP is simple and hence P is a maximal ideal. Thus
combining these results with Theorem B we can extend Theorem B as follows.

Theorem B'. Let K be a field and G be a polycyclic-by-finite group such that every
primitive homomorphic image of KG is Artinian. Then either K is absolute or G is
Abelian-by-finite.

Now suppose that / is a commutative Artinian ring and G is a finite group. If U is
a simple right /G-module then Rosenberg and Zelinsky (13, Theorem 3) proved that
the injective hull E(U) has finite length, and so in particular is finitely generated. We
shall prove the following result.

Theorem C. Let J be a CHACA ring and G be a polycyclic-by-finite group such
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FINITELY EMBEDDED MODULES OVER GROUP RINGS 57

that either J is not Artinian or G is infinite. Then there does not exist a non-zero finitely
generated injective JG-module which is faithful for J.

I am grateful to the referee for bringing (14) to my attention. There is some overlap
with (14). In particular, Theorem 3.2 is essentially the same as (14, Lemma 1).

1. Poly central rings

Let R be a ring. An ideal / of R is said to have a centralising set of generators if
and only if there is a finite set of elements c,, 1 « i =£ n, of / and a chain

O = / 0 C / , C • • • £ / „ _ , £ / . = /

of ideals /, of R such that 7, is generated by C\, c 2 , . . . , c, and c, + /,_, is a central
element of the ring /?//,•_ i for all 1 =£/ *s n. If every ideal of a ring R has a centralising
set of generators then we call the ring R polycentral.

Let X be a right .R-module, R any ring. If S is a non-empty subset of R then the
annihilator of S in X will be denoted by annx(S); thus annx(S) = {x G X :xS = 0}. If
S = {c} then we shall denote annx(S) simply by annx(c). If T is a non-empty subset
of X then the annihilator of T in R is annR(T) = {r G R : Tr = 0}.

Lemma 1.1. Let R be a ring and X a right R-module which contains an Artinian
submodule Y. Let c be a central element of R such that annx(c) is Artinian. Then
{x G X :xc G Y} is an Artinian submodule of X.

Proof. It is clear that A = {x G X :xc G Y] is a submodule of X. Let A, D A2D
A3D • • • be a descending chain of submodules of A. If B, = At flannx(c) for each
positive integer / then B , D B 2 2 # 3 2 ••• is a descending chain of submodules of
annx(c) and Axc D A2c D A3c D • • • is a descending chain of submodules of Y. Since
annx(c) and V are both Artinian there exists a positive integer n such that Bn =
Bn+l = Bn+2= • • • and Anc = An+lc = An+2c = • • •. It is a simple check to show that
An = An+i = An+2 = • • •. It follows that A is Artinian.

Lemma 1.2. Let R be a ring and X a finitely embedded right R-module which is
not Artinian. Then there exists an Artinian submodule Y of X such that XIY is not
finitely embedded but XIA is finitely embedded for every proper submodule A of Y.

Proof. Let Sf be the collection of submodules C of X such that XIC is not finitely
embedded. Since X is not Artinian it follows by (15, Proposition 2*) that y is
non-empty. Let {SA:AG A} be a chain of submodules in if and S = f\ SA. If S does
not lie in y then XIS is finitely embedded and hence DA (SJS) = 0 implies that
SJS = 0 for some A in A by (15, Proposition 1*), a contradiction. It follows that S
belongs to if. By Zorn's Lemma y has a minimal member Y. If A is a proper
submodule of Y then XlA is finitely embedded by the choice of Y. By (15,
Proposition 3*) it follows that YIA is finitely embedded for every proper submodule A
of Y and hence by (15, Proposition 2*) Y is Artinian.
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Corollary 1.3. Let R be a ring and c be a central element of R. Let X be a
c-torsion right R-module such that annx(c) is Artinian. Then X is Artinian.

Proof. For every non-zero element x of X there exists a positive integer k such
that xck = 0, xck~l9i0, and hence xck'] £annx(c). Thus annx(c) is an essential
submodule of X. Since annx(c) is Artinian it follows that X is finitely embedded by
(15, Lemma 1). If X is not Artinian then there exists an Artinian submodule Y of X
such that XIY is not finitely embedded (Lemma 1.2). By Lemma 1.1 annx/y(c) is
Artinian and thus XIY is finitely embedded by the first part of the proof. This
contradiction gives the result.

Lemma 1.4. Let R be a ring and I an ideal with a centralising set of generators.
Let X be an I-torsion right R-module such that annx(/) is Artinian. Then X is
Artinian.

Proof. Let c,, c2,. . . , cn be a centralising set of generators of /. If n - 1 then the
result follows by Corollary 1.3. If n > 1 let R denote the ring i?/(c,/?), / the ideal
H(CiR) and_y the submodule annx(c,)- Clearly Y is an /-torsion right R-module such
that antiy(J) is Artinian. By induction on n, Y is Artinian and by Corollary 1.3 X is
Artinian.

Let R be a ring and / an ideal of R with a centralising set of generators. By (9, 2.7)
/ has the AR property; that is, for every submodule Y of a Noetherian right
R-module X there exists a positive integer n such that Y C\XI" c YI. It can easily be
checked that if the ring R is right Noetherian then a right R-module X is /-torsion if
and only if annx(/) is an essential submodule of X. If R is any ring and X is a
monolithic right .R-module with U = fi(X) then we shall denote the primitive ideal
annR(f/) by n(X). With these remarks and notation we see that Lemma 1.4 im-
mediately gives the following result.

Theorem 1.5. Let R be a right Noetherian ring and I be an ideal of R such that I
has a centralising set of generators. Let X be a monolithic right R-module such that
I C ir(X) and annx(/) is Artinian. Then X is Artinian.

Let R be a right Noetherian ring and X be a monolithic right R-module such that
P is the primitive ideal ir(X). If the ring RIP is Artinian then annx(P) = fi(X) since
annx(P) is semisimple and monolithic in this case. Thus annx(P) is Artinian if RIP is
Artinian. For example, if R is a commutative Noetherian ring then Theorem 1.5
reduces to the theorem of Matlis (8, Proposition 3) which states that finitely embedded
R-modules are Artinian and the proof is more elementary than that given by Matlis.

Now let K b e a field and G be a finitely generated nilpotent group. If R is the
group ring KG then R is polycentral by (12, Theorem A). Let X be a monolithic right
R-module. If P = ir(X) then P is a maximal ideal of R by (16, Theorem 3) and
annx(P) is a monolithic right R/P-module.
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2. Proof of Theorem A

Let R be a ring and 3E a class of right R-modules. A right J?-module X is called a
poly-J module if and only if there exists a chain

X = X0D *i 3 • • O X,-, D Xn = 0

of submodules X, of X such that the factor module X/_,/X; lies in 3E for each

Lemma 2.1. Lef J be a ring and H a normal subgroup of finite index in a group G.
Let X be a monolithic right JG-module. Then considered as a JH -module X can be
embedded in a finite direct sum of poly-monolithic right JH-modules.

Proof. Let R be the group ring JG and S the group ring JH. Let U be the simple
R-submodule of X. Suppose that G = U'=i xtH for some positive integer t and
elements JC,, 1 *s / «£ t, of G. If u is a non-zero element of U then U = uR = 2J=i UXJS
and hence U is a finitely generated right S-module. Let V be a maximal S-submodule
of U. Then n-=i Vx, is an K-submodule of U and hence n{=i Vx, = 0. This gives a
natural S-monomorphism U-*@'i=l (UlVx,).

Thus there exist a positive integer n and simple right S-submodules [/,-, 1 ss / =£ n,
of [/ such that U = ©•=, [/,. Let us now define a chain X = X0D X, D • • O Xn_, 2 Xn

of S-submodules X, of X by demanding that X, be an S-submodule of X,_i maximal
with respect to the conditions ©"=1+i t/, C X, and t/,nX, = 0, 1 =s / « n. Clearly for
each l=s/=sn the right S-module X,-,/X, is monolithic with ^(X,-,/X,)s [/,-.
Moreover Xn D C/ = 0. It follows that if V = n!=, Xnx, then Y is an R-submodule of X
with y D U = 0 and hence Y = 0. For each 1« i « f, X/Xnx, is a poly-monolithic right
S-module. In addition there is a natural S-monomorphism X-»©' = l (X/Xnx,). This
completes the proof.

Corollary 2.2. Let J be a commutative Noetherian ring and G be a finitely
generated Abelian-by-finite group. Then every finitely embedded JG-module is
Artinian.

Proof. The group G has a finitely generated Abelian normal subgroup A of finite
index. The group ring JA is a commutative Noetherian ring and by (8, Proposition 3)
(or Theorem 1.5) every finitely embedded JA-module is Artinian. The result follows
by Lemma 2.1.

Let / be a ring and H be a normal subgroup of a group G. We shall denote by <DH
the right ideal of the group ring JG generated by the elements 1 - h with h in H. It can
easily be checked that wH is the kernel of the canonical homomorphism of the group
ring JG onto the group ring J(GIH), and thus CJH is a two-sided ideal of JG.

Proof of Theorem A. Without loss of generality we can suppose that X is a
monolithic right JG-module and, by Lemma 2.1, that G is finitely generated and
nilpotent. Let P = TT(X) and Q = P (1J. By (11, Corollary C3) Q is a maximal ideal of
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/. If R is the group ring JG then R is right Noetherian by (4, Theorem 1) and the ideal
QR of R is generated by central elements of R. By Theorem 1.5 we can suppose
without loss of generality that Q = 0. Thus it is sufficient to prove the result when / is
a field.

Let H be the normal subgroup G(1(l + P) of G. A theorem of Mal'cev (7,
Theorem 1) shows that GIH is Abelian-by-finite. Since annx(o>H) is a monolithic
module over the ring JGIotH and since JGIcuH is isomorphic to the group ring J(GIH)
it follows by Corollary 2.2 that annx(<oH) is Artinian. Clearly annx(P)C annx(coH)
and hence annx(P) is Artinian. By (12, Theorem A) P has a centralising set of
generators. Finally by Theorem 1.5 X is Artinian.

3. Primitive images of group rings

Let K be a field and G be a group. We are concerned in this section with primitive
images of the group ring KG. Let us begin by observing that we can easily handle the
situation when K is a large field. Let K be an algebraically closed field such that the
cardinality of the set K is greater than that of the set G. Let P be a primitive ideal of
KG. If the ring KG/P is Artinian then there is a K-division algebra D and a positive
integer n such that KGIP = Dn, the complete ring of n x n matrices with entries in D.
Now dimKD *£ dim^A. *= A\mKKG = \G\ < \K\. Since K is algebraically closed the proof
of (10, Theorem 3) shows that D = K. Thus d\mK(KGIP) is finite. Thus, if G is
polycyclic and every primitive homomorphic image of KG is Artinian then by (5,
Theorem 3.3) G is Abelian-by-finite.

We next extend a result of Zalesskii (16, Theorem 3) which states that if K is a
field and G a finitely generated nilpotent group then every primitive ideal of KG is a
maximal ideal. We need the following lemma.

Lemma 3.1. Let J be a right Noetherian ring and H be a normal subgroup of finite
index in a polycyclic-by-finite group G. Let P D Q be prime ideals of JG. Then
PC\JHZ)Q(MH.

Proof. By (4, Theorem 1) JG is a right Noetherian ring and hence JGIQ is a prime
right Noetherian ring. By (3, Theorem 10) the ideal PIQ contains a regular element
c + O of JGIQ. Since JG is a finitely generated right ///-module and JH is a right
Noetherian ring there exists a least positive integer k such that

S + cS + • • • + ckS + Q = S + cS + • • • + ckS + ck+*S + Q,

where S is the group ring JH. It follows that there exist elements a,, 0 «£ i =£ k, of S
such that ao + cat + • • • + ckak + c*+l belongs to Q. If a0S Q then c{ai + • • • + ck'lak +
ck)EQ and hence a, + • • • + ck~lak + ck £ Q, which contradicts the choice of k. It
follows that ao&Q. However a0GP because c £ P and we conclude that P f l S D
QHS.

Theorem 3.2. Let J be a commutative Hilbert ring and G a finitely generated
nilpotent-by-finite group. Then every primitive ideal of JG is a maximal ideal.
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Proof. By (11, Corollary C3) we can suppose without loss of generality that / is a
field which we shall denote by K. Let P be a primitive ideal of KG and X a simple
right /CG-module such that P = annKC(^)- If H is a normal nilpotent subgroup of
finite index in G then H is finitely generated. Let \G:H\ = n and T =
{ti = 1, t2, • • •, tn} a transversal to the cosets of H in G. By the proof of Lemma 2.1
there exists a maximal right K//-submodule Y of X such that n"=) Yr, = 0 and a
KH-monomorphism X-»©?_, (X/Vf,-). If Q = annKH(X/Y) then PHKHcQ and
n?=, Q'1 C P OX//. Thus P n/CH = n?=, Q'< where of course Q is a primitive ideal of
Ki/. By (16, Theorem 3) Q is a maximal ideal of KH. Now let M be a maximal ideal
of KG such that P C M. Then n?=, <?'• C MDKH and hence Q' C M C\KH for some
f in T. Since Q' is a maximal ideal it follows that Q' = M DKH and hence
P C\KH = M HKH. By Lemma 3.1 we obtain the desired conclusion P = M.

Lemma 3.3. Let J be a ring and G be a group such that every primitive
homomorphic image of JG is Artinian. Let H be a normal subgroup of finite index in
G. Then every primitive image of JH is Artinian.

Proof. Let S denote the ring JH and R the ring JG. Let P be a primitive ideal of
S and M a maximal right ideal of S such that P = anns(S/M). Since MR is a proper
ideal of R it follows that there exists a maximal right ideal M, of R such that
MR C M, and hence M = M, C\S. If Q = a.nnR(RIMi) then Q is a primitive ideal of R
and by hypothesis the ring RIQ is Artinian. Moreover QDScP. There exists a
positive integer n and elements JC,, I « i 5 n, of G such that T = {xu x2, •. •, xn} is a
transversal to the cosets of H in G. Let S = (S + Q)/Q and x, = x,• + Q, 1 =s i =s n. Then
clearly x,S = Sxh 1 =£ i =£ n, and /?/Q = x,S + x2S + • • • + xnS. By (2, Theorem 4) S is
Artinian and hence SI(QnS) is Artinian. We conclude that SIP is Artinian, as
required.

Let S be a simple ring and a an automorphism of S. Let X be an indeterminate
and let R = S[X, X~\ a] denote the ring of polynomials 2i=J or,X' where s=£/ are
integers and a-, £ S , s « i « / , multiplication being given by Xa = a"X, a G S. We shall
require the following fact about R.

Lemma 3.4. // the above ring R contains a proper ideal M such that RIM is
Artinian then S is Artinian.

Proof. Since RIM is Artinian it is clear that M^O. Let M, =
S n ( M + SX + SX2+ • • •). Then M, is a non-zero ideal of S and hence M, contains
the identity 1 of S. That is, there exist elements 07 of S such that 1 +2T=i ovX'e M
and we infer that X~m + 2T=i <r,X'"m e M. Similarly there exist elements a\ of S such
that Xn + 2?=1o-;Xn"1eM Since MDS = 0 it follows by (2, Theorem 4) (see the
proof of Lemma 3.3) that S is Artinian.

If H is a normal subgroup of a group G and / is a ring then an ideal / of the group
ring JH is called G-invariant if and only if I1 = x~'Ix C / for all x in G.
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Corollary 3.5. Let J be a ring and G be a group such that every capital of JG is
Artinian. Let H be a normal subgroup of G such that GIH is infinite cyclic and let P be
a G-invariant maximal ideal of JH. Then the ring JHIP is Artinian.

Proof. Let S be the ring JH and R the ring JG. Then PR is a proper ideal of R
and hence PR C M for some maximal ideal M of R. It follows that P = M (IS. Let
GIH be generated by the coset xH and let a be the automorphism of 5 = SIP induced
by conjugation by x. Then clearly R/PR s S[X, X'\ a] . By Lemma 3.4, S is Artinian.

Lemma 3.6. Let K be a field and G be a finitely generated nilpotent-by-finite group
such that every capital of KG is Artinian. Let Hbea normal subgroup ofG such that GIH
is infinite cyclic. Then every capital of KH is Artinian.

Proof. Let S be the ring KH and R the ring KG. Let P be a maximal ideal of S
and N = {xGG:Px = P}. Then N is a normal subgroup of G and H C N. If H* N
then N has finite index in G and by Theorem 3.2 and Lemma 3.3 every capital of KN
is Artinian. Corollary 3.5 applied to the group N gives SIP is Artinian. Now suppose
that H = N. Let M be a maximal right ideal of S such that P = anns(S/M) and M, a
maximal right ideal of R such that M = M|DS (see the proof of Lemma 3.3). Let
A = RIMX and B = (S + MX)IMX. If Q = annR(^) then Q is a maximal ideal of R by
Theorem 3.2 and the ring RIQ is Artinian by hypothesis.

Let £ |D E2D Ey • • be a descending chain of right ideals of S such that each right
ideal E-, contains P. Then EXR D JE2# 2 £3/? D • • • is a descending chain of right ideals
of R and there exists a positive integer n such that £„/? + Q = En+XR + Q =
En+2R + Q = • • •. Let e G £„. If G/H is generated by the coset Hx then it is clear that
Ea+XR = X°°=-» £„+!*' and hence there exist integers 5 =£ t and elements /,, 5 =s 1 *= /, of
En+i and q of Q such that e = 2 ' = J /,*' + q. Then fee = 2'= J &/,*' for each element b of
B. But by (11, Lemma 3) A=©f=_»Bjc' and it follows that b(e-fo) = O for each
element b of B. Hence e — fo& P and e G En+l. It follows that En = En+X = £n+2 = • • •
and the ring SIP is Artinian, as required.

Lemma 3.7. Let K be a field and G be a polycyclic-by-finite group such that for
every subnormal subgroup H of G every primitive homomorphic image of KH is
Artinian. Then either K is absolute or G is Abelian-by-finite.

Proof. Suppose K is not absolute and G is not Abelian-by-finite. By adapting
Hall's proof of (5, Theorem 3.3) we can suppose without loss of generality that G is
generated by a free Abelian normal subgroup A and an element z. Let X be Hall's
simple right KG-module with basis {vm:m £ Z } (see (5, p. 616)), and note that
vmz = vm+l for all m. If R = KG and P = annR(X) then P is a primitive ideal of R and
we claim that the ring RIP is not Artinian. Consider the chain of left ideals
R(l-z) +P~DR(l-z2) + PoR(\-z4) + PD • •• and suppose that n is a positive
integer such that R(l - z")+ P = R(l -z2n) + P. Then X(l - z") = X(l - z2n). In
particular
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for some integers s =£ t and elements kh s *= i «£ t, of K with fcs, k,^ 0. That is,

i=j i=s

which is impossible. Thus RIP is not Artinian, as required.

Proof of Theorem B. Let K be a field and G be a finitely generated nilpotent-by-
finite group such that every capital of KG is Artinian. If H is a subnormal sub-group
of G then there is a chain H = Ho< H, < • • • < / / „ = G such that each factor HJH,^,
1 =e i *s /I, is either finite or cyclic. By Theorem 3.2 and Lemmas 3.3 and 3.6 every
capital of KH is Artinian. Theorem 3.2 and Lemma 3.7 combine to complete the
proof.

4. Proof of Theorem C

It is a well known fact that if c is a regular element of a ring R and X is an
injective right /?-module then X = Xc.

Suppose that / is a CHACA ring and G is a polycyclic-by-finite group such that
there exists a non-zero finitely generated injective right JG-module X. Our aim is to
prove that ann/(X) contains a finite product of maximal ideals and G is finite. It is
well known that because JG is a right Noetherian ring X is a finite direct sum of
indecomposable injective right JG-modules. Thus without loss of generality we can
suppose that X is indecomposable.

Firstly we prove that X is Artinian. If P is maximal in {ann/G(Y): Y is a non-zero
submodule of X} then P is a prime ideal of JG. Suppose that P is not a primitive ideal
and let S be the prime right Noetherian ring JGIP. If A = annx(P) then A is a finitely
generated injective right S-module. If a is a non-zero element of A then there exists a
maximal right ideal M of S such that anns(d)CM. Let Q be the primitive ideal
anns(S/M) of S. By (6, Theorem 6') there exists an ideal / of S such that I CQ, I has
the AR property and the ring SII is right Artinian. Since / is a non-zero ideal of S it
follows that / contains a regular element by (3, Theorem 10). Thus by the above
remark A = AI. There exists a positive integer n such that aR HAI" C al and hence
a(l - /) = 0 for some element i of /, and this contradicts I C M. Thus P is a primitive
ideal of JG. By (11, Corollary A) JGIP is an Artinian ring and it follows that X has
non-zero socle. Therefore X is monolithic and by (6, Theorem 6') X is Artinian.

Clearly P = ir(X) and by (11, Corollary C3) P n / is a maximal ideal of /. By (9,
2.7) there exists a positive integer m such that (P nj)m C annj(X). Moreover, X has a
composition series and by (11, Corollary A) the set H of all elements g of G such that
X(l - g) = 0 is a normal subgroup of finite index in G. If an element h of H has
infinite order then 1 - h is a regular element of JG and hence X = X(\ - h) = 0. Thus
H is periodic and hence finite. Therefore G is finite and this completes the proof of
Theorem C.

Added in proof:
Corollary A was proved independently for the case when / is the ring of integers by R.

L. Snider (Injective hulls of simple modules over group rings, in Ring Theory edited by S.
K. Jain and K. E. Eldridge (Dekker, 1977), pp. 223-226).
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