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Summary

Mapping of quantitative trait loci (QTLs) underlying variation in quantitative traits continues to be a powerful
tool in genetic study of plants and other organisms. Whole genome average interval mapping (WGAIM), a
mixed model QTL mapping approach using all intervals or markers simultaneously, has been demonstrated to
outperform composite interval mapping, a common approach for QTL analysis. However, the advent of high-
throughput high-dimensional marker platforms provides a challenge. To overcome this, a dimension reduction
technique is proposed for WGAIM for efficient analysis of a large number of markers. This approach results in
reduced computing time as it is dependent on the number of genetic lines (or individuals) rather than the number
of intervals (or markers). The approach allows for the full set of potential QTL effects to be recovered. A
proposed random effects version of WGAIM aims to reduce bias in the estimated size of QTL effects. Lastly, the
two-stage outlier procedure used in WGAIM is replaced by a single stage approach to reduce possible bias in the
selection of putative QTL in both WGAIM and the random effects version. Simulation is used to demonstrate
the efficiency of the dimension reduction approach as well as demonstrate that while the approaches are very
similar, the random WGAIM performs better than the original and modified fixed WGAIM by reducing bias
and in terms of mean square error of prediction of estimated QTL effects. Finally, an analysis of a doubled
haploid population is used to illustrate the three approaches.

1. Introduction

High-throughput high-dimensional marker platforms
are now available for many species. The Affymetrix
Genome-Wide Human SNP Array 6.0 (http://www.
affymetrix.com) has been available for some time
and has almost 1 million SNPs in a 1.8 million
marker array. New generation sequencing techniques
(Varshney et al., 2009) promise an explosion of data
that will be challenging for association studies, quan-
titative trait locus (QTL) analysis and genomic pre-
diction. There is a need to provide statistical methods
that handle high-dimensional data. The focus of this
paper is QTL analysis in plants, however, the methods
presented could be applied to any species.

Estimated sizes of QTLs are often used by re-
searchers to further their understanding of the impact

of individual QTL. However, it has been understood
for some time that QTL analysis leads to biased esti-
mates of putative QTL effect sizes. Beavis (1994,
1998) discusses the inflated effects that result from
QTL analyses, Xu (2003) provides a theoretical justi-
fication, while Melchinger et al. (1998) also conclude
that sizes are inflated. Developing methods that re-
duce bias is desirable.

There are many methods available for the analysis
of QTL; it is not possible to review all themethods so a
selection of key papers are discussed. Initial methods
of analysis used individual markers (Weller, 1986) and
interval mapping using mixture models (Lander &
Botstein, 1989). Haley &Knott (1992) andMartinez &
Curnow (1992) introduced the regression approach for
interval mapping. The bias in simple interval mapping
led to composite interval mapping (CIM; Zeng, 1994;
Jansen, 1994) in which co-factors are used to control
for other QTLs when searching for a single QTL. This,
however, requires the selection of co-factors. Interval
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mapping and CIM usually involve fitting models at
regular intervals along the genome and permutation
for determining genome-wide thresholds for signifi-
cance which can be very time-consuming. To over-
come this latter problem, Piepho (2001) presents a fast
approximatemethod for determining the threshold for
both interval mapping and CIM. Multiple interval
mapping (MIM; Kao et al., 1999) was introduced to
try and improve detection of QTL by allowing mul-
tiple rather than single QTL to be fitted at the same
time. This approach requires some knowledge of how
many QTLs are present and there are model selection
issues. The aim of CIM and MIM is to allow for mul-
tiple QTLs in the analysis because the presence of
other QTL impacts on the estimation of each QTL.

Bayesian methods have been used extensively in
QTL analysis, in particular for mapping multiple
QTLs (Satagopan et al., 1996; Heath, 1997; Sillanpää
& Arjas, 1998, 1999; Xu, 2003; Yi, 2004; Wang et al.,
2005); for an excellent review, see Yi & Shriner
(2008). Che & Xu (2010) present a fast method for
determining thresholds in a Markov chain Monte
Carlo approach. There are methods (Xu, 2003;
Yi et al., 2003) that incorporate all the markers
simultaneously, thereby removing the need to select
co-factors or the specific number of QTLs in MIM.

Verbyla et al. (2007) presented a non-Bayesian
whole genome average interval mapping (WGAIM)
approach for QTL analysis of a single trait in a single
trial in which all the intervals on a linkage map are
used simultaneously. While this adds some com-
plexity, it overcomes the need for repeated genome
scans and a threshold for QTL detection is readily
available. In addition, because mixed models are used
for analysis, non-genetic effects, such as terms for ex-
perimental design, are easily included. WGAIM uses
forward selection hence the number of analyses are
greatly reduced. A simple random effects working
model is used in which all the intervals are allowed to
contain a possible QTL and a likelihood ratio test of
significance of the random effects working model
is conducted to decide if selection of a putative QTL is
warranted. If selection is warranted, a two-stage out-
lier procedure (firstly linkage groups then intervals
within a selected linkage group) is used to select the
most likely putative QTL, that is then moved to the
fixed effects part of the model. The approach shown
by Verbyla et al. (2007) was much more powerful than
CIM, although there is a small increase in selecting
false positives. The approach has been implemented
in the R environment (R Development Core Team,
2012) in the package wgaim; see Taylor & Verbyla
(2011). Note that although the original formulation
of WGAIM used intervals, the wgaim package also
allows analysis using markers rather than intervals.

While WGAIM performs well, there are aspects of
the approach that require refinement. Since WGAIM

uses all the intervals (or markers) simultaneously,
an efficient method of analysis is required when
the number of intervals (or markers) is very large,
typically much larger than the number of observa-
tions on the trait of interest. The (selection) bias of
WGAIM was not examined by Verbyla et al. (2007).
The outlier procedure uses two stages and this can
influence the results. This paper addresses the high-
dimensional problem, the issue of bias and the outlier
procedure. The high-dimensionality question is ad-
dressed by reformulating the random effects model
for QTL sizes in WGAIM in such a way that the size
of a random term is equal to the number of lines
with marker data when the number of markers is
greater than the number of lines. The question of
selection bias is addressed by assigning each putative
QTL to a random effect, rather than moving them
to the fixed effects component of the model, in the
forward selection process. Thus, the resulting model
has multiple random components, a separate compo-
nent for each putative QTL and one component for
non-QTL. This procedure is called RWGAIM in
this paper. The other modification of WGAIM is the
reduction of the outlier procedure from two stages,
linkage groups then intervals, to a one-stage pro-
cedure based only on intervals. This is applicable to
WGAIM, yielding a method called WGAIMI, and to
RWGAIM.

The paper is organized as follows. Firstly, the
WGAIM approach is outlined. The extension that
allows for more markers than genetic lines on a trait is
presented. Then a modification of WGAIM is de-
scribed in which each putative QTL is placed in a
random effect rather than a fixed effect as they are
selected. Thirdly, an intuitive argument is used to
justify using a single stage outlier procedure for
selection of putative QTL. Three simulations are
conducted to examine the three aspects. In the first,
the number of markers was varied for a fixed number
of lines to compare timings using a conventional and
the dimension reduction approach for analysis. This
simulation involves low to moderate numbers of
markers to facilitate the comparison. The second
simulation considers genuine high-dimensional situa-
tions, with both population sizes and marker numbers
varying. Lastly, a simulation study using the setup
along the lines of Verbyla et al. (2007) is used to
assess the impact of using random effects for the QTL
selected and the single stage outlier procedure
using WGAIM, WGAIMI and RWGAIM. Detection
of QTL, false positive rates and importantly the
estimated sizes of QTL are summarized. A wheat-
doubled haploid population is used to conduct a
QTL analysis using WGAIM, WGAIMI and
RWGAIM to provide a further comparison of results
across the methods. The paper finishes with a brief
discussion.
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2. Methods

The general scheme and differences between the
WGAIM, WGAIMI and RWGAIM approaches are
outlined in Fig. 1 and are detailed below. Equation
numbers in Fig. 1 refer to those in the text.

(i) WGAIM

Verbyla et al. (2007) used mixed models as the basis
for QTL analysis because the experiments to be ana-
lysed involved design effects and possibly other non-
genetic effects that should be accounted for in the
analysis. The models fitted to the data are of the form

y=Xt+Z0u0+Zgug+e, (1)

where the vector y (nr1) consists of trait data. The
components of (1) reflect the nature of the study.
Thus, X (nrt) and Z0 (nrb) are known design
matrices for fixed and random effects, respectively,
that arise from the design of the study and non-
genetic sources of variation (Smith et al., 2005, 2006),
t is the vector of fixed effects parameters, and u0 is a
vector of random effects. The vector of residual effects
is denoted by e and this term and u0 are assumed
independent, mean zero with variance–covariance
matrices R and G0, respectively. The forms for R and
G0 will reflect the nature of the analysis.

If there are ng lines of interest, the vector of genetic
effects, ug, is ngr1. The design matrix Zg in (1) assigns
the appropriate genetic effect to each observation and
thus consists of zeros and ones.

The WGAIM approach requires a baseline model
to be fitted. This means specifying the genetic effects
ug. The standard model is the so-called infinitesimal
model or polygenic model for which

ug =up, (2)

where up � N(0, s2
pIng ) ; if pedigree information is

available, more complex models can be fitted (Oakey
et al., 2006).

The next step in WGAIM is to include the interval
(or marker) regression. This is called the working
model in Verbyla et al. (2007). Firstly, note if there are
c linkage groups (or chromosomes) with linkage
group k having rk markers, hence we assume

ug= g
c

k=1

g
rkx1

j=1
qkjakj+up, (3)

where qkj is a vector of scores for a potential QTL in
interval j of linkage group k ; akj is the corresponding
size of the QTL. The QTL scores reflect the two
possible genotypes, AA and BB for doubled haploid
and recombinant inbred lines, and AB and BB
for back-cross populations; the scores are 1 and x1
for the two genotypes. As qkj is unknown, by using the
regression approach (Haley & Knott, 1992; Martinez
& Curnow, 1992), it is replaced by its conditional ex-
pectation given flanking markers mkj and mk,j+1. The
expression is given in Verbyla et al. (2007) and in-
volves hk ;j,j+1, the recombination frequency between
markers j and j+1 on linkage group k, and hkj, the
recombination fraction between marker j and the

Fit model 1 – base
No QTL effects – polygenic

model only (1) and (2)

Fit model 2 – interval + QTL(s)
QTL(S), intervals and polygenic effect 
included in the model (1) and (7) or (8)

Fit model 1 – base + QTL(s)
Move newly identified QTL into the:
– Fixed effects (WGAIM & WGAIMI)
– Random effects (RWGAIM)
QTL(s) and polygenic effect modelled
(1) and (6)

Identify putative QTL

1. Outlier model at level of linkage group –
identify linkage group containing putative
QTL. (4)

2. Outlier model at level of the intervals – 
identify interval containing putative QTL. (5)

WGAIM – steps 1 and 2
RWGAIM & WGAIMI – step 2 only

Alternative outlier model (AOM)
Approach steps:

Fit model 2 – interval
All intervals and polygenic

effect fitted (1) and (3)

Test for QTL
Residual likelihood ratio test-
test the null Hypothesis that 
there is no (more) QTL by
comparing model 1 and model 2

Reject null
hypothesis

No Yes

Fig. 1. Scheme for WGAIM, WGAIMI and RWGAIM. Difference between the approaches is indicated in italics and the
equations in the text corresponding to each step are indicated in brackets where relevant.
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possible QTL in that interval. Verbyla et al. (2007)
further average out the location by assuming the
distance from the marker j to the QTL is uniformly
distributed on the interval, thereby eliminating hkj.
This results in the model

ug= g
c

k=1

g
rkx1

j=1
(mkj+mk, j+1) ykj akj+up,

=MEa+up,

(4)

whereykj=hk ; j, j+1/2dk ; j, j+1(1xhk ; j, j+1) and dk ; j, j+1

is Haldane’s distance between markers j and j+1 on
linkage group k. Note that ME is a known matrix
of pseudo-markers spanning the whole genome. To
complete the working model, it is assumed that
ayN(0,sa

2Irxc) where r=gc

k=1rk. This is a very sim-
ple model and aims to provide a mechanism for de-
termining if a putative QTL can be selected.

The WGAIM process starts by fitting (1) with (2)
and (1) with (4) and conducting a residual likelihood
ratio test of the hypothesis H0 : sa

2=0. Under H0, the
statistic has a distribution that is a mixture of chi-
squared distributions, namely 0.5x0

2+0.5x1
2 (Stram &

Lee, 1994). If the hypothesis is rejected, this suggests
that there is at least one putative QTL.

To select the most likely interval for the putative
QTL, an outlier detection approach is used. Verbyla
et al. (2007) use the alternative outlier model (AOM).
In the original formulation, the process occurred in
two steps. Firstly, an outlier model was proposed at
the level of the linkage group. Thus, the model pro-
posed was

ug=ME (a+Dkdk)+up,

where Dk is an (rxc)r(rkx1) matrix with a one
in position corresponding to each interval j on
linkage group k and zero elsewhere. It is assumed
dk � N(0, s2

a, kIrkx1). The idea behind this formulation
is that if a putative QTL exists on linkage group k, the
size of the effects of the putative QTL will be inflated
by dk through an increase in variance. Although it
appears that many models have to be fitted, in fact a
procedure based on a score statistic for the hypothesis
H0 : sa,k

2 =0 was used by Verbyla et al. (2007), and this
only relies on the fit of (1) with (4). The selection of
the linkage group that contains the putative QTL is
based on the outlier statistics given by

t2k=
grkx1

j=1 ~aa2
kj

grkx1
j=1 var( ~aakj )

, (5)

where ~aakj is the best linear unbiased predictor (BLUP)
of the size akj of a QTL in interval j on linkage group
k, and var( ~aakj ) is its variance. The linkage group
with the largest statistic tk

2 is selected as containing the
putative QTL. Once the linkage group is selected, the

interval on that linkage group most likely to contain a
putative QTL is selected. This involves a similar
AOM, for intervals on linkage group k, namely

ug=ME(a+dkjdkj)+up,

where dkj is a vector with a one in position corre-
sponding to interval j on linkage group k and
dkj � N(0, s2

a, kj). A score statistic for the hypothesis
H0:s

2
a, kj=0 is used again and the outlier statistic is

t2kj=
~aa2
kj

var( ~aakj )
: (6)

The interval with the largest tkj
2 is selected as contain-

ing the putative QTL. This QTL interval is moved to
the fixed effects. The forward selection continues with
(2) and (4) replaced by

ug=mE, 1a1+up, (7)

ug=mE, 1a1+ME,x1ax1+up, (8)

where mE,1 is the vector of pseudo-marker scores
for the first putative QTL and a1 is the size of that
QTL. ME,x1 is the matrix of scores for those pseudo-
markers that have not been selected as putative QTL
and ax1 is the vector of effect sizes for those pseudo-
markers.

The process is repeated. Thus both (1) with (7) and
(1) with (8) are fitted and the likelihood ratio test for
H0 : sa

2=0 is carried out again. If H0 is rejected, an-
other putative QTL is selected using the approach
based on the AOM. After s such selections the work-
ing model (4) has become

ug= g
s

l=1

mE, lal+ME,xsaxs+up, (9)

so that we have two terms involving the pseudo-
marker effects. The first term involves the putative
QTL; al is the size of the lth QTL and mE,l are the
corresponding pseudo-marker scores for the interval
defining l. The second term contains the interval that
has not been selected so that axs is the vector of sizes
of QTL that may yet be chosen (most of them will not
be selected) with corresponding scores ME,xs. After
all putative QTL have been selected, the QTL are
summarized by listing the putative QTL, the size
of QTL found, and a P-value indicating the level of
significance for each putative interval.

(ii) High-dimensional analysis

Amajor issue concerns the possible high dimension of
ME in (4) or ofME,xs in (9) at stage s of selection. For
ease of presentation, we consider the first step
of selection. The matrix ME is of size ngrrxc, and
rxc may be very large, larger than ng. If ng>rxc
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there is no need to invoke dimension reduction.
If ng<rxc, it is possible to carry out efficient
computations not in dimension rxc, but in dimension
ng which may be much smaller, and subsequently
recover the rxc effects necessary for selection.

Our approach is similar to that proposed by
Stranden & Garrick (2009) in the context of genomic
selection. For generality, suppose that ayN(0,sa

2Ga).
In WGAIM, Ga=Irxc. Taylor et al. (2012) consider
an alternative approach based on penalized like-
lihoods and in that case at stage k of the iterative
process involved, Ga=Wk where Wk is a diagonal
matrix of known weights. In these cases, Ga is a
known matrix and the results of this section will hold
for any method in which this is the case or can be
constructed to be so. Note that while WGAIM
involved pseudo-markers for intervals, these can be
replaced by marker scores (and would be in the
genomic prediction situation).

Thus, suppose for the moment that no putative
QTLs have been selected (s=0 in the discussion
above). The variance model for the random effects
MEa is of the form

s2
aMEGaM

T
E, (10)

which is of size ngrng. The matrix MEGaME
T is

known. Then, we can re-formulate the working mixed
model (4) as follows. Let

ZE=(MEGaM
T
E)

1=2

denote the matrix square root ; this can be found by
using the singular value decomposition (Golub & van
Loan, 1996). If we define an ngr1 vector a* as

a* � N(0, s2
aIng ),

the working model term for interval effects MEa can
be replaced by

ZEa*

and the same variance model (10) is obtained. Thus,
we can estimate ng effects rather than rxc.

Most importantly for QTL analysis, however, the
rxc effects can be recovered. Note firstly that the
BLUP for a* is given by

~aa*=s2
a(MEGaM

T
E)

1=2ZT
gPy,

where P=Hx1xHx1X(XTHx1X)x1XTHx1 and
H=R+ZoGoZo

T+sg
2ZgZg

T+sa
2ZgMEGaME

TZg
T. The

BLUP of a is given by

~aa=s2
aGaM

T
EZ

T
gPy,

so that we can write

~aa=GaM
T
E(MEGaM

T
E)

x1=2~aa*, (11)

thereby recovering the estimated size of potential
QTLs in each interval from an analysis using the
modified model.

To calculate the outlier statistics given by (5) and
(6), we need the variance of ~aa. This can be found using

var(~aa)=GaM
T
E(MEGaM

T
E)

x1=2 var(~aa*)

r(MEGaM
T
E)

x1=2MEGa

(12)

and so the variance matrix of the BLUPs of a* is re-
quired, that is var(~aa*), again a lower-dimensional
calculation after fitting the reduced dimensional
model. Only the diagonal elements of var(~aa) are re-
quired together with (11) to calculate the outlier
statistics (5) and (6). The full matrix need not be
calculated in practice.

(iii) Random WGAIM

The details presented in Verbyla et al. (2007) differ in
only one aspect for a random version of WGAIM
(RWGAIM). In WGAIM (Verbyla et al. 2007) the
unselected effects are random effects (the working
model in that paper) such that in (9), axsyN(0, sa

2I)
and the selected effects as are fixed effects. The pro-
posal for RWGAIM, is to assume al � N(0, s2

al), so
that the sizes are random effects, have their own
variance (resulting in a random regression on the
pseudo-marker scores mE,l) and all have a different
variance to the unselected effects. This makes sense as
putative QTL effects exhibit variation from zero be-
cause they are QTL. Thus, putative QTL are assumed
to come from their own distribution and non-QTL
come from another distribution. The distributions
differ in their variances and not their means. This
approach has the flavour of hierarchical models
proposed by Griffin & Brown (2010) and others in
high-dimensional variable selection.

(iv) QTL selection using interval statistics only

In Verbyla et al. (2007) and as outlined above, the
selection of a QTL takes place in two stages, with
both stages using outlier statistics. In the first stage,
an outlier statistic was calculated for each linkage
group using (5), and the linkage group with the largest
statistic was selected as containing a putative QTL. In
the second stage, the interval with the largest outlier
statistic on the selected linkage group was selected as
containing the putative QTL using (6). This process
works effectively in many situations. However, the
size of the linkage group has an impact on the size of
the outlier statistic in the first stage. This can be seen
from (5). On small linkage groups, the size of effects
relative to their variance will be larger than for large
linkage groups. This is because while there will
generally be a small number of large sizes where a
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putative QTL is present, the variances will generally
be of comparable size across the whole linkage group.
Thus, using the outlier statistic for linkage groups fa-
vours the selection of small linkage groups at the first
stage. This problem is overcome if selection is based
only on the outlier statistics for the intervals, that is
(6), and the first stage is omitted. This is the approach
adopted in WGAIMI and RWGAIM.

(v) Significance of QTL

Once all putative QTLs have been selected, they each
constitute a random effect term. The size of the QTL
effect is then a BLUP. It is no longer appropriate
to test the hypothesis that the effect is zero in order to
assess the significance of the putative QTL. Tests of
hypotheses pertain to unknown parameters, and ran-
dom effects involve distributions of effects.

To provide a measure of the strength of a QTL, the
conditional distribution of the true (random) QTL
effect al say, given the data are used. That is, under
the normality assumptions for a linear mixed model,

aljy2 � N( ~aal , s
2
PEV, l),

where y2 is the component of the data free of fixed
effects (Verbyla, 1990). The mean of this conditional
distribution is the BLUP of al, that is the estimated
size of the QTL ~aal, and the variance is the prediction
error variance (PEV) of al. Thus, the proper assess-
ment of the impact of the QTL involves determining
how far ~aal is from zero relative to the variation as
measured by sPEV,l. Clearly, distributions for which
the mean is far from zero relative to the variation in-
dicate a strong QTL effect, whereas distributions for
which the mean is close to zero will indicate a weaker
QTL.

To quantify this measure of strength of each puta-
tive QTL, it is possible to calculate a probability
somewhat like a P-value, for which values close to 0
indicate that the QTL is strong. Consider the statistic

X2
l=

alx ~aal
sPEV, l

� �2

,

which has a chi-squared distribution on 1 degree of
freedom. Zero on the original scale is c2l= ~aa2

l =s
2
PEV, l

on the chi-squared scale and so

Pr(X2
l>c2l )

provides a measure of the strength of the putative
QTL through how far ~aal is from zero relative to sPEV,l.
In RWGAIM, this probability can be used to indicate
the strength of the putative QTL.

Note also that while LOD scores are not necessary
for WGAIM or RWGAIM (because the multiple
testing problem is largely avoided), a LOD score for

RWGAIM is given by

LODl=
1

2
log10 ec

2
l

� �
:

Lastly, the percentage of genetic variance ac-
counted for by each putative QTL is of interest. This
can be determined approximately for both WGAIM
and RWGAIM as follows.

The genetic effects are specified by (9) ; once all
putative QTL have been found s is the number of
QTLs. If ql is the vector of QTL scores (x1 or 1) for
QTL l, to facilitate an expression for the variance, we
use a combination of (3) and (9) namely,

ug= g
s

l=1

qlal+ME,xsaxs+up: (13)

Consider a single line i. The variance of the genetic
effect for line i, ugi, is then given by

var ugi
� �

= gs

l=1a
2
l+gg

lllk
(1x2hllk)alalk

( )

+s2
am

T
Ei,xsmEi,xs+s2

p,

where we have allowed for linked QTL, hllk is the re-
combination fraction for QTL l and lk, and mT

Ei,xs is
the ith row of ME,xs. Thus, each line has its own
(different) variance. To obtain an approximate
measure of the total genetic variance, we define an
‘average’ line effect, ug*, by averaging the multiplier of
sa

2 over lines. Thus, if

mE,xss=
gng

i=1m
T
Ei,xsmEi,xs

ng
,

the variance of the ‘average ’ line effect is taken as

var u*g

� �
= g

s

l=1

a2
l+gg

lllk
(1x2hllk)alalk+s2

almE,xss+s2
p:

(14)

Equation (14) specifies the approximate total genetic
variance. A difficulty with using (14) to find percent-
age of variance is that the individual contributions of
QTL can add up to more than 100% because of the
covariance of linked QTL in repulsion. Given that the
calculation is not precise, the covariances are ignored
in the calculation so that

var u*g

� �
= g

s

l=1

a2
l+s2

almE,xss+s2
p (15)

is used for the total variance. Using (15), the per-
centage variance attributed to the lth QTL is then

PVl=100
a2
l

var u*g

� � : (16)
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To calculate these values, al and other unknown
parameters are replaced in (15) and (16) by their
estimates from either the WGAIM or RWGAIM ap-
proach.

(vi) Computation

Both the high-dimensional approach and the
RWGAIM approach have been implemented in the R
environment (R Development Core Team, 2012) in
the package wgaim (Taylor et al., 2011) which is
available on CRAN (http://cran.r-project.
org). This package requires the asreml (Butler et al.,
2011) and qtl (Broman et al., 2003, 2012) packages
in R. In particular, it is the power of asreml that
allows the complex models to be fitted. The wgaim
package includes diagnostic plots and linkage map
plots that allow the QTL to be displayed.

3. Materials

(i) Simulation studies

Three simulation studies were conducted.

(a) Comparison of conventional and dimension
reduction analysis

To demonstrate the impact of the dimension
reduction approach, a small simulation study was
carried out. The population size was ng=200 lines
with two replicates. The phenotypic data were gener-
ated using the model (i=1, 2, …, ng, k=1, 2)

yik=m+gnq
l=1 qilal+upi+eik, (17)

where the mean m was 10, the polygenic effects upi are
assumed N(0, 0.5) and eik were assumed independent
and identically distributed N(0, 1). There were nq=5
QTLs, with qil in (17) having a simulated allelic value
(x1 or 1) for line i for QTL l. The size of this QTL is
al and this is 0.5 for all QTLs. Thus, the mean line
heritability (allowing for the two replicates) is ap-
proximately 0.85. The aim of having such a high
heritability was to ensure that all 5 QTL would be
detected to enable the timings to be compared.

The genetic data consisted of 10 linkage groups
with the number of markers per linkage group varying
from 21 to 101 in steps of ten markers ; this allows the
impact to be gauged from the case where the number
of lines is close to the number of markers (210) to the
case where the number of markers (1010) greatly ex-
ceeds the number of lines. Each linkage group was
250 cM long so that the density of markers changed
from 12.5 cM intervals to 2.5 cM intervals. The five
QTL were placed in the middle of each of five
linkage groups. The bi-allelic marker scores were
generated for each of the 200 lines for each scenario

and the linkage map was then estimated as it would be
in practice.

Two methods of analysis were carried out using
RWGAIM using the one-stage outlier approach. One
involved using the dimension reduction approach,
while the other used the original method that involves
using all the intervals explicitly. The aim was to pro-
vide a comparison of the time taken for each scenario
using each of the methods.

(b) High-dimensional simulation study

To examine the effectiveness of the dimension re-
duction approach in genuinely high-dimensional
situations, a second simulation was conducted. Using
the same model as the first simulation, data were
generated for population sizes 500, 1000 and 2000
lines in combination with 10 010, 20 010 and 50 010
markers (10 linkage groups with 101, 201 and 501
markers respectively) with QTLs at markers in the
middle of 5 of the 10 linkage groups. As given above
the linkage groups were 250 cm in length so that the
density of the markers changed from 2.5 to 0.5 cM.
The analysis of the generated data used markers ra-
ther than intervals. The computer processor timings
of the analysis for each simulation from the nine
combinations (population size by marker number)
were determined.

(c) Power, false discovery rate and bias

The third simulation is similar to that conducted
by Verbyla et al. (2007). The aim is to investigate
three methods of QTL analysis, namely the original
WGAIM approach using the two-stage outlier
procedure, WGAIM using a one-stage outlier pro-
cedure (WGAIMI) and RWGAIM using a one-stage
outlier procedure. These methods are expected to give
similar results for QTL analysis apart from two key
areas, short linkage groups and bias in estimated
QTL sizes.

Nine linkage groups were simulated. On all linkage
groups the markers were spaced at 10 cM. Linkage
groups 5 and 9 had only two markers while the re-
maining linkage groups had 11 markers. Seven QTL
(nq=7) were placed at the midpoints of C1.4 (linkage
group 1, interval 4), C1.8, C2.4, C2.8, C3.6, C4.4 and
C5.1 as in Verbyla et al. (2007). C1.4 and C1.8 were in
repulsion while C2.4 and C2.8 were in coupling; these
QTL are 40 cM apart. Population sizes were 100, 200
and 400 lines each with two replicates.

Introducing two very short linkage groups was
aimed at investigating the impact of the two-stage
outlier procedure using linkage groups and the inter-
vals as opposed to using a single-stage outlier pro-
cedure based on the intervals. This highlights the
impact in an extreme situation.
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Five hundred (500) simulations were carried out for
each population size using (17) with al=0.378, apart
from C1.8 for which al=x0.378. The polygenic effect
had variance 0.5 and the residual variance was 1. The
mean line heritability (allowing for the two replicates)
is therefore 0.5.

For each population size, the three methods of
analysis were carried out for each simulated dataset.
Three sets of summaries were calculated for each
method of QTL selection for each set of 500 simula-
tions, namely

1. the proportion of correct detection of each QTL,
including proportions for the QTL in coupling and
repulsion,

2. the proportion of false positives, both linked (on
the same chromosome as actual QTL) and un-
linked (on chromosomes not containing QTL), and

3. means of estimated sizes of QTL effects for simu-
lations where the QTL was selected. Empirical
mean square error of prediction of the estimates
were also found using all 500 simulations (not just
those simulations where a true QTL was found).

As in Verbyla et al. (2007), a QTL was considered
detected, if the correct interval or intervals on either
side were selected.

(ii) Salinity trial

To illustrate the use of the random version of
WGAIM, we analysed data from the experiment
presented in Genc et al. (2010). The aim of the ex-
periment was to examine QTL for various traits under
a salinity treatment and a non-saline environment in a
hydroponic experiment.

A doubled-haploid bread wheat population
(BerkutrKrichauff) was grown in supported hydro-
ponics to identify QTLs associated with salinity tol-
erance traits. The experiment consisted of two runs in
a growth cabinet. In each run, there were four trolleys
on each side of the growth cabinet (blocks), each
controlling two tubs. Each tub consisted of 9 rows
and 5 columns with 3 positions being allocated to the
input and output of the supported hydroponics and
hence not having a line assigned. In each replication,
the 152 DH lines were randomly allocated across two
trolleys (and hence four tubs) with the two parents
(Berkut and Krichauff) and two other standard lines
(Baart and Kharchia) being also randomly allocated
to each tub; thus, there were four replicates of each of
the DH lines. Some traits were only measured on the
saline treatment including shoot magnesium concen-
tration (in parts per million per kg of dry matter)
which is the trait analysed in this paper. Saline con-
ditions tend to decrease magnesium concentration
and searching for QTL that mitigate this effect is of
interest. We only consider the first run because

analysing two runs potentially involves a multi-
environment QTL analysis which is beyond the scope
of this paper.

Genotyping using 216 SSR markers was carried
out using standard PCR conditions and subsequent
gel electrophoretic separation on 8% polyacrylamide
gels. In addition to the 216 SSRs and Vrn genes, 311
DArT markers were scored by Triticarte Pty. Ltd
(http://www.triticarte.com.au). The linkage map was
constructed using Map Manager QTX version
QTXb20 (Manly et al., 2001). Marker order was
verified using RECORD (Van Os et al., 2005).
Segregation ratios of two genotype classes (Berkut
allele and Krichauff allele) at each locus were tested
and markers deviating significantly from the expected
ratio of 1 : 1 were excluded from QTL analysis.
Re-estimation of genetic distance was performed
using the Lander & Green (1987) algorithm in the R
(R Development Core Team, 2012) package qtl
(Broman et al., 2012). Coincident markers were
removed resulting in 379 distinct markers on 23 link-
age groups for QTL analysis. The total length of the
map was 3770 cM with an average spacing of 10.6 cM
between the markers.

4. Results

(i) Simulation study: comparison of two methods
of analysis

The simulations were conducted on a 64 Bit PC using
Windows 7, with an Intel1 CoreTM i7-2860QM CPU
at 2.50 GHz, with 16 Gb RAM at 2.39 GHz. The two
methods of analysis are identical apart from dimen-
sion reduction and hence both methods resulted in the
same five putative QTL as they should.

Figure 2 presents the CPU time required for each
analysis from 210 to 1010 markers for the two meth-
ods of analysis. The dimension reduction approach
resulted in times represented by the solid line, while
the original method using all the markers explicitly

Number of markers
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g 
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e 
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in
)

Fig. 2. Computation time (in minutes) for analysis using
the dimension reduction approach (solid line) and the
approach using markers explicitly (broken line) for
numbers of markers from 210 to 1010.
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resulted in the timings given by the broken line. The
dimension reduction approach resulted in times that
remained generally constant despite an increasing
number of markers compared with the original ap-
proach where times increased exponentially. These
trends for the two approaches would be expected to
continue should the number of markers increase
causing the original formulation to quickly become
prohibitive, while the dimension reduction approach
is expected to be able to deal with considerably large
datasets.

(ii) Simulation study: high-dimensional analysis

The dimension reduction approach was used for high-
dimensional situations (10 010, 20 010 and 50 010
markers) for 500, 1000 and 2000 lines. In all the cases,
2000 lines were used in generation of marker data.
Then, a random sample of lines was taken to obtain
the data for 500 and 1000 lines for the simulations.
Table 1 details the results in terms of the actual
number of non-redundant markers and the computer
processor time used in the analyses. The markers will
be redundant because of very low recombination
fractions and limited number of lines. Thus, for 500
lines, it was very difficult to retain large numbers of
markers, with improvement as the number of lines
increased. Note that with five QTLs, there are six
steps in the forward selection process. Hence the time
required per step can be calculated. This provides a
base time line to gauge how long an analysis with a
particular number of QTLs is likely to take. This is
included in Table 1.

Firstly, note that for population sizes 500 and
1000 the analyses for the simulated data for all
marker sizes were conducted using markers rather
than intervals on the 64 bit PC outlined in the
previous simulation. For population size 2000, the
simulations were run on a high-performance com-

puter requesting 16 Gb of memory. Only a single node
was used.

For population size 500, the number of redundant
markers restricted the size of the problem that could
be investigated. The number of non-redundant mar-
kers increases with population size and subsequently
the processor time goes up by a factor of 9-fold for
each step as we move from 500 to 1000 to 2000. Thus,
for 2000 lines and approximately 30 000 markers, the
analysis took about 6 h.

The conclusion from this simulation study is that
QTL analysis can be performed even for very high-
dimensional data, possibly using high-performance
computing facilities. The limitations are memory and
storage usage in the R environment and the ability of
the asreml software to handle such large dense data-
sets. These aspects increase the required time for
analysis of very high dimensions.

(iii) Simulation study: power, false discovery rate
and bias

The results of the simulations with seven QTLs as
described above are presented in Tables 2–6. Each
aspect is now discussed in turn.

Table 2 presents the proportion of simulations in
which each QTL was successfully found using the
original WGAIM (applying the two-stage outlier
procedure), WGAIMI (applying the one-stage outlier
procedure) and RWGAIM (applying the one-stage
outlier procedure). The results are very similar for all
three methods although WGAIM finds marginally
more QTLs in total for all population sizes. This is
mainly because original WGAIM tends to find the
QTL at C5.1 more often than the other methods; this
is a linkage group with only one interval. The
WGAIM approach also tends to find more of the
QTL in repulsion (C1.4 and C1.8) than the other two
methods but less QTLs in coupling (C2.4 and C2.8)

Table 1. High-dimensional simulations for varying population sizes and
number of markers. Non-redundant markers varied with population size. Both
the processor time and processor time per step of the forward selection
process are presented

Population
size

Number of
markers

Non-coincident
markers Time (min)

Time per
step (min)

500 10 010 7263 4.29 0.71
20 010 9311 4.22 0.70
50 010 11 176 4.78 0.80

1000 10 010 9142 37.01 6.18
20 010 14 185 38.50 6.41
50 010 19 841 40.03 6.67

2000 10 010 9947 338.87 56.48
20 010 18 316 345.11 57.52
50 010 31 491 363.91 60.65
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than RWGAIM. Apart from C5.1, however, it is
RWGAIM that finds more QTLs although the differ-
ences are small. All three methods perform very well.
Approximate standard errors can be found using the
standard results for binomial proportion and are in-
dicated in all the tables. These standard errors provide
an idea of the scale of differences between methods.
For example, the difference between the three methods
for the QTL at C5.1 is clearly highly significant.

Two-way tables for the proportions of QTLs
detected for the two QTLs in repulsion are given
in Table 3. Results for WGAIM, WGAIMI and
RWGAIM are generally very similar, though the
WGAIM method detects both QTLs more often than
the other methods for all population sizes. For the
two QTLs in coupling, the corresponding results
are given in Table 4. Although the detection rates
compared with repulsion were lower, RWGAIM

shows a small improvement over WGAIM and
WGAIMI in detecting both QTLs.

Table 5 gives the proportion of false positives for
the three methods. False positives can be linked
(on the same chromosome as true QTL, C1–C4, false
positives cannot be attributed to C5 because it has
only one interval) or unlinked (on chromosomes
where no QTL exist, C6–C9). The rates of false posi-
tives are the number found across all 500 simulations
divided by 500. For linkage group C9 which has one
interval, the WGAIM method leads to false positives
at a much larger rate than WGAIMI and RWGAIM.
This reflects the problem of favouring short linkage
groups when using WGAIM with a two-stage outlier
procedure. This increase in false positives also leads
to a decrease in false positives on the other linkage
groups that do not contain QTLs (in comparison with
WGAIMI and RWGAIM). The rates of linked false

Table 3. Two way tables for the QTL in repulsion (C1.4 and C1.8) with
proportions of the 500 simulations for each population size for the
combinations of non-detected D and detected D QTL. C1.4 is on the left and
C1.8 on the top of each 2r2 table. The standard error for a proportion can
be based on binomial distribution, that is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂(1xp̂)=500

p
. For p̂=0�1 (and

hence p̂=0�9) the standard error is 0.013, for p̂=0�3 the standard error is
0.020 and for p̂=0�5 the standard error is 0.022

Method

Population size

100 200 400

D D D D D D

WGAIM D 0.390 0.194 0.010 0.028 0.010 0.014
D 0.098 0.318 0.040 0.922 0.016 0.960

WGAIMI D 0.424 0.208 0.014 0.030 0.014 0.014
D 0.102 0.266 0.052 0.904 0.016 0.956

RWGAIM D 0.430 0.218 0.014 0.034 0.014 0.024
D 0.096 0.256 0.056 0.896 0.014 0.948

Table 2. Proportion of 500 simulations in which the QTL was detected for WGAIM, WGAIMI and random
WGAIM (RWGAIM) analyses. The standard error for a proportion can be based on binomial distribution, that isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂(1xp̂)=500
p

. For p̂=0�1 (and hence p̂=0�9), the standard error is 0.013, for p̂=0:3 the standard error is 0.020
and for p̂=0:5 the standard error is 0.022

Population Method C1.4 C1.8 C2.4 C2.8 C3.6 C4.4 C5.1 Total

100 WGAIM 0.416 0.512 0.710 0.410 0.704 0.520 0.948 4.220
WGAIMI 0.368 0.474 0.680 0.420 0.756 0.604 0.730 4.032
RWGAIM 0.352 0.474 0.676 0.482 0.768 0.624 0.742 4.118

200 WGAIM 0.962 0.950 0.734 0.626 0.750 0.804 0.996 5.822
WGAIMI 0.956 0.934 0.740 0.630 0.792 0.832 0.908 5.792
RWGAIM 0.952 0.930 0.736 0.640 0.788 0.822 0.904 5.772

400 WGAIM 0.976 0.974 0.942 0.942 0.984 1.000 1.000 6.818
WGAIMI 0.972 0.970 0.934 0.944 0.982 1.000 1.000 6.802
RWGAIM 0.962 0.972 0.934 0.954 0.986 1.000 1.000 6.808
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positives are similar for WGAIM and WGAIMI, but
are reduced for the RWGAIM method. Lastly, note
that RWGAIM shows reduced rates of false positives
overall when compared with WGAIM and WGAIMI
for all population sizes.

As a final comment we note that the results of the
simulations for QTLs in repulsion and coupling of the
two-way tables might be expected to be symmetric.
Furthermore, for single QTL, we might expect similar
proportions of detection if position is taken into
account (for example C3.6 and C4.4). This is not evi-
dent from the results and it is not immediately clear
why this is the case. It can only be conjectured that
the possible cause might be the forward selection
process.

One aspect of WGAIM that was not examined
by Verbyla et al. (2007) was bias in the estimated
QTL effect sizes. This was examined in the current
simulation study and the results are given in
Table 6. The estimated sizes of effects were aver-
aged over the simulations in which the effects were
detected. Firstly, both WGAIM and WGAIMI
show similar bias, and both show higher bias (all
true QTL sizes are ¡0.378) than RWGAIM. Thus,
RWGAIM reduces the bias particularly for the
smaller population sizes, though bias still persists.
The bias at population size 200 is smaller for
RWGAIM while all methods exhibit little bias at
population size 400. Empirical standard errors are
provided to provide an indication of significance

Table 5. Proportion of false QTLs in 500 simulations detected for the three methods of analysis. Both linked
(putative QTLs are on chromosomes with QTL, C1–C4, C5 has only one interval and cannot lead to false
positives) and unlinked (putative QTLs are on chromosomes without QTLs, C6–C9) are presented. The standard
error for a proportion can be based on binomial distribution, that is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂(1xp̂)=500

p
. For p̂=0�1 (and hence

p̂=0�9) the standard error is 0.013, for p̂=0�3 the standard error is 0.020 and for p̂=0�5 the standard error is
0.022

Population Method C1 C2 C3 C4 C6 C7 C8 C9

Total

Linked Unlinked

100 WGAIM 0.238 0.232 0.154 0.124 0.048 0.076 0.042 0.136 0.748 0.302
WGAIMI 0.242 0.192 0.166 0.166 0.084 0.146 0.074 0.020 0.766 0.324
RWGAIM 0.198 0.194 0.156 0.118 0.062 0.118 0.060 0.014 0.666 0.254

200 WGAIM 0.080 0.130 0.112 0.122 0.018 0.024 0.016 0.124 0.444 0.182
WGAIMI 0.072 0.110 0.124 0.122 0.054 0.038 0.030 0.010 0.428 0.132
RWGAIM 0.034 0.102 0.118 0.112 0.052 0.036 0.026 0.008 0.366 0.122

400 WGAIM 0.030 0.054 0.052 0.016 0.016 0.008 0.006 0.040 0.152 0.070
WGAIMI 0.032 0.048 0.044 0.014 0.012 0.014 0.008 0.004 0.138 0.038
RWGAIM 0.024 0.036 0.038 0.014 0.012 0.014 0.008 0.004 0.112 0.038

Table 4. Two way tables for the QTL in coupling (C2.4 and C2.8) with
proportions of 500 simulations for each population size for the combinations
of non-detected D and detected D QTL. C2.4 is on the left and C2.8 on the
top of each 2r2 table. The standard error for a proportion can be based on
binomial distribution, that is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂(1xp̂)=500

p
. For p̂=0�1 (and hence p̂=0�9)

the standard error is 0.013, for p̂=0�3 the standard error is 0.020 and for
p̂=0�5 the standard error is 0.022

Method

Population size

100 200 400

D D D D D D

WGAIM D 0.080 0.210 0.054 0.212 0.010 0.048
D 0.510 0.200 0.320 0.414 0.048 0.894

WGAIMI D 0.090 0.230 0.046 0.214 0.012 0.054
D 0.490 0.190 0.324 0.416 0.044 0.890

RWGAIM D 0.078 0.246 0.048 0.216 0.012 0.054
D 0.440 0.236 0.312 0.424 0.034 0.900
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between methods for each of the QTL for each
population size.

The empirical mean square error of prediction
(MSEP) for each QTL (indexed by l) and each popu-
lation size was found using

MSEPl=
g500

s=1(alx âsl )
2

500
,

where al is the true size of the QTL and âsl is the esti-
mated size in simulation s. These are given in Table 6;
note that in this calculation all simulations were used
so that if a true QTL was not detected, its estimated
size was zero. The MSEPs are almost always smaller
for RWGAIM suggesting this method is better than
both WGAIM and WGAIMI in terms of estimation
(or prediction) of putative QTL effect sizes. Notice
that the mean effect sizes for C5.1 across the three
methods are similar for the three population sizes,
but that the MSEPs is smaller for WGAIM for popu-
lation sizes 100 and 200 where this method detects
more of this true QTL than the other two methods.

(iv) Salinity trial analysis

Magnesium concentration was divided by 100 to
facilitate presentation of the results. The analysis be-
gins with consideration of the experimental design.

The experiment involves a nested blocking structure
in which the factor Tubs (2 levels) are nested in
Trolley (2 levels) which is nested in the factor Side
(2 levels) of the growth cabinet. Thus, without marker
data, the initial model is given symbolically by

conc=Type+id+Side+Side:Trolley

+Side:Trolley:Tub+e,

where conc is the magnesium concentration, the
factor Type distinguishes doubled haploid lines from
other lines that do not have marker information, id is
the genotype factor for lines in the experiment, and
Side, Trolley and Tub are factors each with two
levels that describe the physical layout (blocking) of
the experiment. Terms like Side.Trolley indicate
nesting of Trolley in Side. All but Type are ran-
dom effects. The residual error e was modelled to take
into account possible correlation between tubs that
were controlled by a single trolley.

In the course of modelling the data, row and col-
umn effects in some Tubs were observed and included
in the model. This model is called the baseline model.
Table 7 provides estimated variance components for
the baseline model, and the final WGAIM, WGAIMI
and RWGAIMmodels. For the baseline model, it was
found that only Tubs in Trolley 1 on Side 1 were
substantially correlated at the residual level ; the other

Table 6. Mean estimated size of QTL effects (true size is 0.378 for all but C1.8 which has a size of x0.378)
with empirical standard error (SE ) and mean square error of prediction (MSEP) for each method across 500
simulations for each population size

Method Interval

Population size

100 200 400

Size SE MSEP Size SE MSEP Size SE MSEP

WGAIM C1.4 0.508 0.0093 0.0897 0.441 0.0062 0.0283 0.392 0.0036 0.0101
C1.8 x0.461 0.0085 0.0925 x0.455 0.0058 0.0270 x0.396 0.0033 0.0089
C2.4 0.515 0.0082 0.0948 0.444 0.0071 0.0659 0.377 0.0035 0.0137
C2.8 0.556 0.0080 0.0803 0.443 0.0053 0.0488 0.379 0.0040 0.0155
C3.6 0.491 0.0052 0.0580 0.385 0.0037 0.0396 0.390 0.0028 0.0062
C4.4 0.509 0.0088 0.0879 0.390 0.0035 0.0321 0.372 0.0023 0.0028
C5.1 0.391 0.0055 0.0193 0.347 0.0035 0.0076 0.407 0.0024 0.0038

WGAIMI C1.4 0.518 0.0117 0.0997 0.435 0.0064 0.0304 0.389 0.0034 0.0098
C1.8 x0.465 0.0106 0.1006 x0.459 0.0072 0.0363 x0.395 0.0034 0.0096
C2.4 0.538 0.0083 0.0961 0.440 0.0073 0.0658 0.377 0.0035 0.0134
C2.8 0.558 0.0078 0.0825 0.445 0.0054 0.0483 0.379 0.0039 0.0159
C3.6 0.482 0.0079 0.0609 0.379 0.0054 0.0383 0.391 0.0028 0.0064
C4.4 0.496 0.0102 0.0838 0.387 0.0042 0.0300 0.372 0.0023 0.0027
C5.1 0.430 0.0049 0.0468 0.361 0.0033 0.0180 0.407 0.0024 0.0038

RWGAIM C1.4 0.452 0.0071 0.0833 0.410 0.0047 0.0204 0.369 0.0033 0.0092
C1.8 x0.419 0.0079 0.0970 x0.441 0.0042 0.0184 x0.376 0.0031 0.0098
C2.4 0.503 0.0076 0.0883 0.412 0.0061 0.0599 0.369 0.0033 0.0116
C2.8 0.512 0.0070 0.0696 0.425 0.0054 0.0473 0.378 0.0033 0.0143
C3.6 0.450 0.0054 0.0456 0.362 0.0037 0.0348 0.380 0.0027 0.0055
C4.4 0.451 0.0060 0.0641 0.361 0.0035 0.0300 0.363 0.0023 0.0030
C5.1 0.398 0.0052 0.0445 0.341 0.0035 0.0199 0.400 0.0025 0.0036
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trolleys were then fitted with only separate error
variance for the two Tubs. Notice that there is a sys-
tematic effect observed in terms of error variance. In
all trolleys, Tub 1 has a higher estimated variance
than Tub 2. Modelling this is therefore potentially
important in QTL analysis.

The analysis of magnesium concentration was car-
ried out using WGAIM, WGAIMI and RWGAIM.
The three methods resulted in 9, 8 and 8 putative
QTLs respectively. The results are given in Table 8.
Six QTLs were essentially the same or in closely
linked intervals for WGAIM and RWGAIM, while
WGAIMI and RWGAIM had seven putative QTLs
in common. The sizes of effects under RWGAIM are
generally smaller than those of the other two meth-
ods. The percentage of the total genetic variance at-
tributed to each QTL is given in Table 8, using (16),
while LOD scores for each QTL are also provided.

The approach based on WGAIM resulted in the
selection of three putative QTLs that were on smaller

linkage groups. In fact the linkage group 1D1 has two
markers. This reflects the issue raised regarding
WGAIM, namely the tendency to favour small link-
age groups in selection of putative QTLs. These three
putative QTLs were not found using the WGAIMI or
RWGAIM approach. On the other hand, putative
QTLs were found on 5D and 6B using RWGAIM (4A
and 6B using WGAIMI) that were not found using
WGAIM.

The estimated variance components for the final
WGAIM, WGAIMI and RWGAIM models are
given in Table 7 and show the similarity of the three
approaches. The reduction in the id variance com-
ponent is similar in all methods. Using the percen-
tages in Table 7, approximately 67, 72 and 67% of the
genetic variance was explained by the putative QTL
for each of the three methods. Large individual con-
tributions come from the Vrn genes and the second
interval on 3A. These effects are also reflected in the
variance components for QTL that are estimated in

Table 7. Estimated variance components for the baseline model and the final WGAIM, WGAIMI and RWGAIM
models. ints refers to the model term MExs.axs qtl followed by a linkage group refers to the QTL random effect
using RWGAIM

Term

Model

Baseline WGAIM WGAIMI RWGAIM

ints — 0.0004 0.0002 0.0003
qtl : 3A(1) — — — 0.09
qtl : 3A(2) — — — 0.38
qtl : 3D — — — 0.11
qtl : 4B — — — 0.15
qtl : 5A — — — 0.35
qtl : 5B — — — 0.44
qtl : 5D — — — 0.09
qtl : 6B — — — 0.12
id 2.08 0.72 0.72 0.73
Side 0.43 0.44 0.40 0.41
Side.Trolley 0.37 0.37 0.41 0.40
Side.Trolley.Tub 0 0 0 0
Side 1 Trolley 1 Tub 2 Row 0.98 0.76 0.80 0.74
Side 1 Trolley 2 Tub 2 Row 0.37 0.37 0.44 0.46
Side 1 Trolley 1 Tub 1 Column 0.05 0.08 0.18 0.12
Side 1 Trolley 2 Tub 1 Column 0.23 0.22 0.18 0.25
Side 1 Trolley 2 Tub 2 Column 0.54 0.59 0.51 0.44
Side 2 Trolley 1 Tub 1 Column 0.38 0.41 0.34 0.33
Side 2 Trolley 1 Tub 2 Column 0.28 0.29 0.39 0.36
Side 2 Trolley 2 Tub 2 Column 0.50 0.41 0.35 0.37
Side 1 Trolley 1 correlation 0.62 0.56 0.73 0.69
Side 1 Trolley 1 Tub 1 variance 0.89 0.45 0.68 0.58
Side 1 Trolley 1 Tub 2 variance 0.35 0.22 0.23 0.24
Side 1 Trolley 2 correlation 0 0 0 0
Side 1 Trolley 2 Tub 1 variance 1.02 1.09 1.10 1.04
Side 1 Trolley 2 Tub 2 variance 0.34 0.40 0.44 0.34
Side 2 Trolley 1 correlation 0 0 0 0
Side 2 Trolley 1 Tub 1 variance 1.27 1.75 1.37 1.51
Side 2 Trolley 1 Tub 2 variance 0.69 0.62 0.64 0.70
Side 2 Trolley 2 correlation 0 0 0 0
Side 2 Trolley 2 Tub 1 variance 1.46 1.53 1.44 1.54
Side 2 Trolley 2 Tub 2 variance 0.38 0.57 0.58 0.56
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the RWGAIM method; see the values in the column
labelled RWGAIM in Table 7.

5. Discussion

The need for methods that allow high-dimensional
analysis is becoming more apparent and the approach
presented in this paper provides a way to do so in
QTL analysis and could potentially be extended for
use in Genomic Selection (Meuwissen et al., 2001).
The effective dimension is reduced to the number of
genetic lines in the data that have marker infor-
mation. This dimension reduction allows faster model
fitting and the marker or interval effects can be
recovered. Thus, QTL selection can proceed in an
efficient manner. In addition, the approach of this
paper can accommodate non-genetic sources of
variation.

Bias of the sizes of putative QTLs is always a
problem. By placing putative QTLs in a random
effects term, the bias can be reduced because of
shrinkage of effects towards zero (Robinson, 1991).
While this does not fully remove the bias due to
selection, it does reduce the impact for small to mod-
erate population sizes. For large populations, bias in
estimated effects using WGAIM appears to be small.
The simulation study showed the improvement in bias

using RWGAIM. Apart from bias, the two methods
performed similarly in the simulation study but
did differ in their putative QTLs in the example.
Experience suggests that RWGAIM may be more
robust in terms of LOD scores for putative QTLs and
has reduced mean square error of prediction.

The original WGAIM approach used two stages of
outlier statistics for selection of putative QTLs. The
simulation study showed that using WGAIM, false
positive rates for short linkage groups are likely to be
higher. On the other hand, if genuine QTL exist
for such linkage groups, their detection is enhanced
by using WGAIM. Thus, there is a trade-off when
using WGAIM and the recommendation is to use
RWGAIM with a single stage outlier procedure based
only on the intervals on the linkage map. This bal-
ances finding QTLs with better false positive rates.

The methods of this paper are available in software
that includes the power of mixed model analysis,
allowing inclusion of effects that pertain to the design
of the study and to other non-genetic sources of
variation that may need to be included in the analysis.
Markers rather than intervals can be used in the
analysis if that is desirable. In this case the matrix ME

is replaced by M in the derivations.
In conclusion, this paper presents an approach

for QTL analysis with a large number of markers,

Table 8. Putative QTL found using WGAIM, WGAIMI and RWGAIM

Method
Linkage
group

Marker Marker

Size
P-value
or Prob % var LODLeft dist(cM) Right dist(cM)

WGAIM 1D1 wPt-4647 0 wmc147 3.89 0.221 0.016 1.9 1.25
2A wPt-5647 11.02 gwm071 63.44 0.427 0.001 7.1 2.32
3A gwm732a 2.18 barc1121 8.95 x0.292 0.004 3.3 1.80
3A wmc343 97.33 cfa2262 101.48 0.539 0.000 11.3 5.92
3B wPt-2757 7.15 wPt-7015 78.87 0.351 0.016 4.8 1.27
3D cfd223 43.91 cfd152 61.76 0.346 0.001 4.6 2.33
4B gwm495 51.74 gwm149 55.21 0.411 0.000 6.5 2.99
5A wPt-1370 235.31 Vrn1A 239.06 0.605 0.000 14.2 8.82
5B wmc289 82.60 VrnBR3/R4 91.16 x0.588 0.000 13.4 6.03

WGAIMI 3A barc1121 8.95 wPt-2866 16.77 x0.394 0.000 5.6 3.20
3A gwm002 80.59 gwm005 83.91 0.713 0.000 18.3 10.98
4A wPt-4660 55.56 wmc468 56.94 x0.308 0.001 3.4 2.42
4B wPt-1505 55.87 gwm251 55.87 0.403 0.000 5.9 3.78
5A wPt-1370 235.31 Vrn1A 239.06 0.641 0.000 14.8 10.76
5B wmc289 82.60 VrnBR3/R4 91.16 x0.650 0.000 15.2 8.56
5D cfd19a 84.61 gwm292a 99.29 x0.308 0.002 3.4 2.14
6B wPt-3118 65.32 wPt-4858 87.02 x0.392 0.000 5.5 2.65

RWGAIM 3A gwm732a 2.18 barc1121 8.95 x0.287 0.002 3.3 2.02
3A gwm002 80.59 gwm005 83.91 0.607 0.000 14.9 8.44
3D wPt-4237 19.05 cfd223 43.91 0.321 0.002 4.2 1.99
4B wPt-1505 55.87 gwm251 55.87 0.372 0.000 5.6 3.18
5A wPt-1370 235.31 Vrn1A 239.06 0.588 0.000 14.0 9.16
5B wmc289 82.60 VrnBR3/R4 91.16 x0.658 0.000 17.5 8.60
5D cfd19a 84.61 gwm292a 99.29 x0.287 0.002 3.3 1.99
6B cfd001a 89.02 wPt-5333 89.63 x0.339 0.001 4.6 2.57
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provides an approach with reduced bias and reduced
mean square error of prediction, and places all inter-
vals on the linkage map on the same footing for
selection of putative QTLs.
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Sillanpää, M. J. & Arjas, E. (1999). Bayesian mapping of
multiple quantitative trait loci from incomplete outbred
offspring data. Genetics 151, 1605–1619.

Smith, A., Cullis, B. & Thompson, R. (2005). The analysis
of crop cultivar breeding and evaluation trials : an over-
view of current mixed model approaches. Journal of
Agricultral Science (Cambridge) 143, 449–462.

Smith, A. B., Lim, P. & Cullis, B. R. (2006). The design and
analysis of multi-phase quality trait experiments. Journal
of Agicultural Science (Cambridge) 144, 393–409.

Stram, D. O. & Lee, J. W. (1994). Variance components
testing in the longitudinal mixed effects model. Biometrics
50, 1171–1177.

Stranden, I. & Garrick, D. J. (2009). Derivation of equiva-
lent computing algorithms for genomic predictions and
reliabilities of animal merit. Journal of Dairy Science 92,
2971–2975.

Taylor, J. D. & Verbyla, A. P. (2011). R package wgaim:
QTL analysis in bi-parental populations using linear
mixed models. Journal of Statistical Software 40, 1–18.

Taylor, J. D., Diffey, S., Verbyla, A. P. & Cullis, B. R.
(2011). wgaim: Whole Genome Average Interval Mapping
for QTL detection using mixed models. R package version
1.1. http://cran.r-project.org/web/packages/wgaim/index.
html.

Taylor, J. D., Verbyla, A. P., Cavanagh, C. C. & Newberry,
M. (2012). Variable selection in linear mixed models using
an extended class of penalities. Australian and New
Zealand Journal of Statistics in press.

High-dimensional random effects QTL analysis 305

https://doi.org/10.1017/S0016672312000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672312000493


Van Os, H., Stam, P., Visser, R. & Van Eck, H. J. (2005).
RECORD: a novel method for ordering loci on a genetic
linkage map. Theoretical and Applied Genetics 112, 30–40.

Varshney, R. K., Nayak, S. N., May, G. D. & Jackson,
S. A. (2009). Next generation sequencing technologies
and their implications for crop genetics and breeding.
Trends in Biotechnology 27, 522–530.

Verbyla, A. P. (1990). A conditional derivation of residual
maximum likelihood. Australian Journal of Statistics 32,
227–230.

Verbyla, A. P., Cullis, B. R. & Thompson, R. (2007).
The analysis of QTL by simultaneous use of the full link-
age map. Theoretical and Applied Genetics 116, 95–111.

Wang, H., Zhang, Y., Li, X., Masinde, G. L., Mohan, S.,
Baylink, D. J. & Xu, S. (2005). Bayesian shrinkage esti-
mation of quantitative trait loci parameters. Genetics 170,
465–480.

Weller, J. I. (1986). Maximum likelihood techniques
for the mapping and analysis of quantitative trait
loci with the aid of genetic markers. Biometrics 42,
627–640.

Xu, S. (2003). Theoretical basis of the Beavis effect. Genetics
165, 2259–2268.

Yi, N. (2004). A unified Markov chain Monte Carlo
framework for mapping multiple quantitative trait loci.
Genetics 167, 967–975.

Yi, N. & Shriner, D. (2008). Advances in Bayesian multiple
QTL mapping in experimental designs. Heredity 100,
240–252.

Yi, N., George, V. & Allison, D. B. (2003). Stochastic
search variable selection for identifying multiple quanti-
tative trait loci. Genetics 164, 1129–1138.

Zeng, Z.-B. (1994). Precision mapping of quantitative trait
loci. Genetics 136, 1457–1468.

A. P. Verbyla et al. 306

https://doi.org/10.1017/S0016672312000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672312000493

