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THE STRUCTURE OF THE MULTIPLICATIVE GROUP
OF RESIDUE CLASSES MODULO »"*!
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§j1. Introduction

Let k& be an algebraic number field of finite degree and p be a prime
ideal of k, lying above a rational prime p. We denote by G(p»**') the
multiplicative group of residue classes modulo p¥*' (N = 0) which are
relatively prime to p. The structure of G(p¥*!) is well-known, when
N = 0, or k is the rational number field Q. If k is a quadratic number
field, then the direct decomposition of G(p"*!) is determined by A. Ranum
[6] and F.H-Koch [4] who gives a basis of a group of principal units
in the local quadratic number field according to H. Hasse [2]. In [5,
Theorem 6.2], W. Narkiewicz obtains necessary and sufficient conditions
so that G(p¥*!) is cyclic, in connection with a group of units in the p-
adic completion of k.

The structure of G(p¥*') is confirmed by that of the p-Sylow sub-
group and the p-rank of G(p¥*') is given by T. Takenouchi [8]. If an
algebraic number field k£ contains a primitive p-th root of unity, the
p-rank is also given by H. Hasse [3, Teil I,, §15].

In the present paper we shall establish the direct decomposition of
Gp¥*Y) for each N which gives another proof of T. Takenouchi’s results

[8].

§2. Notation and an outline of the investigation

Let e and f be the ramification index and the degree of p over Q,

respectively. Put e, = [ ], where [x] is the maximal integer < z.

p—1
We denote by Z(m) a cyclic group of order m.

Let Hy,, be the (N + 1)-th unit group of the p-adic completion %,
of k, that is,
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Hy,, = {nek,|p= 1mod p~*'} (N=0,1,---).

H, is called a group of principal units of k,, Then one verifies easily
that

G(p¥™) = Z(p’ — 1) x H,/H, ., (direct) ,

whence H,/H,, is isomorphic to the p-Sylow subgroup of G(p"*').

Let by(v) be a number of elements of a basis of H,/H,, , whose
orders are exactly p*(v =1). Then H,/Hy,, is expressed as direct prod-
uct:

Hi/Hy.u =[] (E@) X - X Zp) .

b (v)-ti

For our purpose it will suffice to establish a basis of H,/H,,, for each
N = 0.

For any multiplicative group G we denote by G?* a subgroup of G
generated by ¢? where ¢ G and v = 1. We define the p-rank R, of
G("*) by

pRN — (G(pN+l): G(pN+1)p) .

R, will be given by Theorem 1 in §3.
We let = be a prime element of %, fixed once for all. Put

(1) —p = en®,

where ¢ is a unit of k,. Moreover, we let {w;},<;<; be a system of rep-
resentatives in k, for a basis of the residue class field modulo p over
the prime field.

Let Z, be the ring of p-adic integers. Then H, is a multiplicative
Z ,-group and its system of generators over Z, is given by H. Hasse [2].

THEOREM A (H. Hasse [2]). Suppose that k, does not contain ao
primitive p-th root of wunity. Put

’l::].,---,f )

s = 1 + o’
1<s=<pe/®—1),5%0 modp

Then {7} is a Z,-basis of H,.

Let ¢, be a primitive p“th root of unity for each g = 0. Then we
have
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THEOREM B (H. Hasse [2]). Suppose that k, contains ¢, (v = 1), but
does not contain §,,,. Let 2 and e, be integers such that

e = p(pMe, ,
where ¢ is Euler’s function and e, is prime to p. Put
(2 =1,.-, J
Nis = 1 + wins s
1<s=e+ exzpe/(p—l),sEOmodp)

7y = 1 + oprete
where w,, -+ -, 0, satisfy the following conditions:
o — ew? = O0mod p, o — ' x0modp L1 <)
and o, is @ unit of k, for which a congruence
X? — X = wymod p

has no solution X in k,.
Then {n;5, 74} is a system of generators of H, over Z,.

We note that 1 = 4.

Now we sketch a plan to determine a basis of H,/Hy,,. Let pe + ¢,
SN<(r+ e+ e and t =1. Then we see by Lemma 7 in §5 that if
U= 0, bte+N(V + t) = bzv(”); if 14 = 1, bte+N(ﬂ) =1+ bzv(/l — t): bze+1v(/l + t)
=by() — 1 and b,y + t) = by(v), where v p and v + ¢ 5 p.  Hence
it is enough to compute b,() for 0 < N < (¢ + De + e,.

We assume that %, contains {, (¢x = 0) but does not contain ¢,,,.

First suppose that x = 0. Let 5,Hy,, be cosets of Hy,, in H,
where 7;, are principal units defined by Theorem A. From Theorem A
a system of canonical generators for H,/H,,, is given by

(2) {ﬂisHNH} ’

where 1 <1< f,1 <s<min(N,pe/(p — 1)) and s == 0modp. Let gyQ)
be a number of generators of (2) such that 77 = 1 mod p**'. In §5 we
shall prove

(3) gy + z Wgy®) — gyl — 1)) = NS

(see (17) in §5), hence (2) is a basis of H,/Hy,,. Then by(v) are given
as follows:
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(4) {bN(l) =gy,

by®) =gy —gxv —1) @ =2).

Furthermore, we shall compute orders p*®:“» of 7, modulo p~*!, using
Corollary 8 in §5. Then we can determine a basis of Hy,, for each
N (see Proposition 11 in §5). Since a basis of H, is given by Theorem
A, the direct decomposition of H,/Hy,, is easily obtained.

Secondly we assume gz = 1. Put

S={G9I1<i<fi1<Ss<e+e=pe,

(5) s % 0mod p, (3, 8) = (1, ¢)} .

The number of elements of S is equal to (ef — 1). If 2=y, then g,
=, and {794 Nisha,mes 18 @ Z,-basis of H\([2, p. 232]). If 2> p, then we
observe by [2, p. 231] that

(6) Tt =Conlt T1 7l
(2,8)ES

where B, and j;, are p-adic integers. Let H, be a multiplicative Z,-
group generated by {94, 7is}u,sese Then by [2, p. 230] we have a direct
decomposition of Hy,:

7) Hy, =<y X . S)ﬂes {Nisy (direct) ,

where (5> stands for a cyclic group generated by 7.

Let 7eHy, 1 7isHy,o be cosets of Hy,, in H, and p*™*®, p»@:9) pe
their orders in H,/Hy,,, respectively. From Theorem B we have a sys-
tem of canonical generators for H,/Hy,, as follows:

(8)) neHyn}, H1SN<e+e,
(8,) {W*HNHr 7]isHN+l} ’ ife+e =N ’

where 1<i<f,1<s<min(N,e + ¢) and s 0modp. Let gy() be a
number of generators defined by (8) or (8, such that % = 1mod p¥*!,
7% = 1mod p¥*!. Then (8, or (8, is a basis of H,/H,,, if and only if
the equality (8) holds. It will be proved by (17) in §5 that (i) (8) is a
basis of H,/Hy,,, (ii) (8, is a basis of H,/Hy,, if and only if v(N:1,¢)
= A. If the equality (8) holds, then b,(v) are given by (4).

If N>e+e and vy(N:1,e) 3 2, then it will be possible to deter-
mine a basis of Hy,, (see Proposition 11 in §5) and we observe that
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H,,, is a subgroup of H,. Hence we can find a relation between 7,,
e, and 7, modulo p¥*' (see (18) in §6) which is induced by (6). Let
Z be the ring of rational integers. Let M be a free Z-module generated
by 7y, Tre, and 7, (@, 8)eS). Let v+: M — H,/Hy,, be a homomorphism
defined by y(7,) = s mod p¥*', ¥ (Fie,) = 716, mod p¥ Tt and (7)) = 7, mod py¥ L,
Then we shall have a system of canonical generators for Ker+. Hence
the direct decomposition of H,/Hy,, = M /Kery will be obtained using
elementary divisors of a certain matrix (see (9) of Theorem 3) whose
entries are p*@¥%9, p*™* and p-components of exponents appearing in
the relation (18) in §6.

§3. Theorems

We shall prove the following assertions:

THEOREM 1 (cf. [3] and [8]). The p-rank Ry of G(p¥*') is given by

(N~[%])f, FO<N<e+e,

ef, if Nze+e and k,5¢,,
ef +1, if Nze+e and k,9¢, .

RN=

THEOREM 2. Suppose that k, does not contain ;. Let 0 < N < e + e,.
Then it follows that for each t = 0

G(ptet ¥+ = Z(p! — 1) X fjl (ZL(prL) X oo X Z(putt))

b (v)-times

X (Z(p*) X -++ X Z(p*)

“~— (RBte+n—Eny)-times —

where R,,.y, Ry are p-ranks of G(pt*¥+h), G(p"*'), respectively, and

00 = ([ ] =2 o] + [])r

THEOREM 3. Suppose that k, contains {,(x = 1) but does not con-
tain {,.,. Let 2 and e, be as in Theorem B. Then the direct decom-
position of G(p¥*Y) is expressed as follows:

(I) In the case where 1 < N <e + e,

G = Z(p' — 1) X [] Z@) X -+ X Z@))

= —— Hy(v)-times ——

where by() are equal to those of Theorem 2.
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(II) In the case where e + e, <N < (p+ 1)e + e, and v(N:1,e)
=2,

G = Z(p/ — 1) X fjx (pr") X oo X ng"));

by (v)-ti

by(w) are given as follows:

Let a be a rational integer (1=<a <y such that ae + e <N
<(a + De + e,
For v<a—1,b,0)=0.

FWu:aJﬂ@:(M+De—N+[
For v=za +1,

by() = ([N— (@ +9d— l)e] _2[N —(a + 06— l)e]

pv—a‘5 pv—a—J-(-l

+ A=l =)+ v,

N — ae

)7 + prt@.

where
1, ifv=212= 1,
2, ifa=21=yp, .fv o+
8x(a) = ) By =3—-1, ifv=2+a,
1, ifax2i, .
0, otherwise (v = a + 1)
and

5= 0, if N=ae+ e,
T, ifae+e, <N<(a+ e+ e,.

(III) In the case where e + e, <N < (u+ e + e, and v (N:1,e)
> 2, there exists a rational integer a (1 < a < y) such that ae + ¢, < N
<(a + e + e. Let p*: be p-components of p;p* where p;; are p-adic
integers defined by (6). Put

a;; = min {p(N : 4, 8), a;; for (i,8)eS,

where S s given by (5). If N =ae+e and (e+ e)/p ' <s
<(e+e)/p~° then v(N:i,8) =v=a; tf ae+ <N <(a+ De + ¢
and (N —ae)/p*<s< (N —ae)/p!, then y(N:7,8) =v=a. Let
P, P, - - -, p°s be elementary divisors of the following (ef + 2) X (ef + 1)-
matric
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rpa

pv(N:I,e+el—l)
pu(l\’:i,s)
( 9 ) O py(zv:l,eo)

pv(N=f,eo)

pv(N:f,l)

pepererant o pee st pen (D 8) € S

It then follows that
GO = Z(p/ — 1) X Z(®*) X Z(p™) X -+ X Z(p*) .

(IV) In the case where pe + e, < N < (¢ + 1)e + e, we let G(p~*Y)
be of type (p’ — 1,p*, 4, - .-, p%) which is determined by (II) and (III).
Then G(p**¥*Y) is of type (p/ — 1,p*, p@+t, ... plr*t) for each t = 0.

Remarks. Under the hypothesis of Theorem 3 (i) if 2=y and N
>e+ e, then v(N:1,e) = 1 (cf. [2, p. 216]); (ii) if N = ae + ¢,, then
ASv(N:l,e) <21+ a—1; (iii) if ae + e, <N < (& + 1)e + e,, then 2
<v(N:1,e) <2+ a (cf. proof of Corollary 10 of §5); (iv) if N = pe + ey,
then Hy,, is a subgroup of a free part of H,.

COROLLARY 4. If p is an unramified prime ideal of k, lying above
a rational prime p, then we have

Z(p! — 1) X Z(pM) X --- X Z(p"M), ifp=3,
: M g

1

G(pV+Y) = Sz(zf — 1) X Z@2) X Z2V Y X Z@2Y) x --- X Z(2Y),

e (f —1)-time g ————r

§4. Proof of Theorem 1
It follows from (1) that

LEMMA 5 (cf. [2, p. 220] and [3, Teil 1,, §15]). Let y be an integer
of k,. Then
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1 + 7Pa® mod p»s+t , ifl1ss<e/lp—-1),
A+ 7792 = {1 + (4 — ep)x? mod pPs+? if s=e/(p—-1),
1 — eyn®*emod potet?, if ifs>e/op—1).

Now we shall prove Theorem 1. First we note that &, contains a
primitive p-th root of unity if and only if ¢ = Omod (p — 1) and a con-
gruence

(%) X? — eX = Omod p

has a solution X = Omod p in %, (cf. [2, p. 215]).
According to H. Hasse [3], we shall use the following notation:

a: a number of k, prime to p.

r: an integer of k,.

70: an integer of %, such that 7, = 0 mod p.

7t a principal unit of £k,

us: an integer of k, such that g, = «? mod p* (s = 1).
as: an integer of k, such that a? = 1 mod p*.

7s: an integer of k, such that

(10) a? =1 4 ya® mod pstt.

Each of these notations stands for a general element of a group, but
will sometimes be used to stand for the group itself. The p-rank R,
of G(p¥*') is then given by

an pEY = (G(PV*) : GOPY)P) = (a: py 1)

= (a: #1)({11 : I«lz) s (/«‘N : ,uN+1)

and we have
(12) (st o) = (279 1=s=N).
It will be verified that
(a) (a:,ul) =1 ’
1, if1<s<e+e and s=0modp,
) (#s:,usﬂ) = .
pt, if1<s<e4 e and s=x=0modp,
1, if e=0mod(®» — 1) and k,5¢,,

(C) (ﬂe+e1 . #e+e;+1) =3P, if kpa &
p’, if exOmod(p —1),

(d) (ts: ptse) =1, ifs>e+e.
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Proof of (@). Since (a:p) = (e:aPy) is a power of p and «/y; is a
cyclic group of order (p/ — 1),(x: p) = 1.

Proof of (b), (¢c) and (d). Since af = 1modp and the order of G(p)
is equal to p/ — 1 which is prime to p, a«;, = 1modyp. If «, =1, then
by (10) we see that 7, = Omod p. Let a«, > 1. We can put

a, =1 + g,

where § = 1 and ¢, is a unit of k,. Then it follows from Lemma 5

1 + &z mod p»*' , ifl1<ss<e/lp-—-1,
a? = {1 + (2 — ee)n?* mod pP+! | if s=e/-1,
1 — et mod PFret! if3>e/p-—-1).

If 1<s<e+ e and s=0modp, then by (10) 7, modulo p contains
(e + 7o) modulo p. Hence (y:7,) =1, because of (y:7) < (G:ef + 7o) = 1.

Suppose that 1 <s <e + ¢, and sz 0mod p. Then from the above
congruences and (10) we can conclude that

rs=0modyp, if1<s<e/(p—1) and s <ps,
ePr? = 0 mod p»**!, a contradiction , if s > ps
7s= Omodp, ifsze/(p—-1.

Hence we have (y:7,) = (y:7,) = »/ which shows (b) by (12).
Let s = e + ¢,. Using the above congruences and (10) we see that

(ePz?* = 0 mod p?**!, a contradiction , iflss<e/p—-1,
7, = & — ee,mod p , ifs=e/p—-1,
7, = O0modp, ifs>e/p—-1.

If k,2¢, then y/70 = (G — ¢7) + 74 /70y Where y; are solutions of X? —
eX =0modyp, and (7:7)/(r:7) =p. Hence :7) =G:G? —ep) + 70 =
p. If e=0mod(p — 1) and k,3,, then 7, = & — e, 2 Omod p and(y : 7,)
=1 If ex0mod(p — 1), then (y:7,) = (y:7) = p/. Therefore (c¢) is
obtained by (12).

Agssume that s > ¢ 4+ ¢,. Then we have by Lemma 5

A+ y7°79)? = 1 — eyn® mod p**! .

Hence by (10) y, modulo p contains (—er + ) modulo p and (7:7,)
= (y:(—er + 1)) = 1, thereby proving (d). By (11) and (12) we have
Theorem 1.
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For instance, we compute By when N > ¢ + ¢, and e = 0 mod (p — 1).
Put e=(@@—-De, +7r,1<r<p—2. Then by (11),(a),(b),(c) and (d)
we have

R1v=(e+e1—1—[e~i;—‘1—1-])f+f

=<e+el-—1—[el—i-r;;l])f-l-f:@.ﬁ

§5. Preliminaries to the proof of Theorem 2 and Theorem 3

In order to prove Theorem 2 and Theorem 3 we need some results
which we obtain in this section. Throughout this section we assume
that k, contains ¢, (» = 0) but does not contain ¢,,,.

The following proposition is well-known :

PRrROPOSITION 6 (cf. [2, §15] and [5, Chap. V]). If N =e, then Hy,,
18 a free Z,-group and Hy,, = H,,x,, by n— 5 (pe Hy,)).

LEMMA 7. Suppose that N = e, and Hy,, is a subgroup of a Z,-free
part Hy of H,. Let H,/Hy,, be of type (p*,p*, ---,p°*). Then we can
take s, = p and H,/H,,, 5. s of type (p*, p***t, - .-, p**Y) for each t = 0.

Remark. In Lemma 7 we allow that s;, =0 (0 <7 < ef).

Proof. We have an expression of H, as direct product (cf. [2, p. 222]):
HI = <C,u> X ITOI H

where <(,> is a cyclic group generated by ¢, and H,, is of rank ef. By
the hypothesis of the Lemma 7 we have

H /Hy, =<> X Hy/Hy,, (direct).

Hence there exists a Z,-basis {5, - -+, 7.} of Hy, such that {p", - .., p&e}
is a Z,-basis of Hy,,. It then follows from Proposition 6 that {n?"*,
cee, Bt is a Z,-basis of H,,y,,. Thus the Lemma 7 is proved by
induction. q.e.d.

If x=0 and N = ¢, then we observe by Lemma 7 that b, y( + %)
= by(v) for each £ > 0. Hence all G(p?*!) are determined by factor groups
H,/H, ---,H,/H,,,. If p=1 and N = pe + e,, then Hy,, is a subgroup
of H = {y**|pe H,}. Hence Hy,, is a subgroup of a free part of H,.
In this case for each ¢ =1 it follows that b, ,v() =1+ by(pe —¥),
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Diean(pp +8) = by(w) — 1 and b,y + t) = by(v), where v % p and v + ¢
% p. Hence all G(p¥*’) are determined by factor groups H,/H,, ---,
H,/H,,...

In order to compute g,y(),v(N:%,8) and v(IN: x) defined in §2 we
need the following corollary to Lemma 5 (cf. [7] and [9, Corollary 1.2]):

COROLLARY 8. Let 7 be an element of k, such that » = 1mod p* and
7= 1mod p**!(s = 1). Let r be the least non-negative integer such that
ps=el/(p—1). Then

7’ = 1mod p*»*, »? = 1mod p’**'  for v =0,1,.-+,¢
and
7?" = 1 mod p*Pr+e-oe forv=rt.

More precisely we have the following congruences by (1):

(1 + yr)?
1 + y?°z°?" mod pP*+! , if eJp—1)<psand 1<v-c,
1 4 7P"p = 2P mod psPrreToert if e/fp—D<psand 1<y,
1 + ¢?z°?” mod p*»**! ifelp—1)=psand 1<v<1,

1 + (rpf"'l — Erpf)pv—r—ln.eﬂ?l mOd p(p—r)e+e;+1 s
if e/p—1)=psand 0 <y,
1 + yp*z® mod pre*stt if e/(p —1)<s,

where y is an integer of k,.

LEMMA 9. Let 7, be principal units defined by Theorem A or
Theorem B(L<i<f,1<s<pe/(p—1),sx0modp). Let 1<N<2¢+e,.
Then we have for v =1

7% 3% 1 mod p¥+!

if and only if indices i and s satisfy the following conditions:

(i) 1£sEN/p’,, when 1< N<e+ e

(ii) 1<s=(e+e)/p’, but if p=1 and v = 2, then (1,8 x (1, ¢y,
when N = e + e;;

(i) 1gssWN—-9/pLdutifv=2and 2=v(N:1,e), then (,9)
x1,e), when e + e, <N <2e + e and p=1.

Proof. Let r be the least non-negative integer such that

https://doi.org/10.1017/5S0027763000018316 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018316

52 NORIKATA NAKAGOSHI

pls<el/lp—1) Zps.

Let 1 N<e+e. If1<Ls<N/p, then v <, otherwise it follows
that p’s = p's-p* "= pe/(p —1) = e + ¢, > N. Hence we see by Corollary
8 that 72 & 1mod p¥*!. If N/p* <s, then by Corollary 8 we have 7%
= 1mod p~¥*i.

Let N=e+e. If 1<s<N/p' and pls <e/(p —1) < p's, then
v<t. Henceby Corollary 8 we have 7%, = 1 mod p**'. If e = Omod (p — 1),
we put e = o(pey, (€, p) = 1. If 1<s< N/p* and p's = ¢/(p — 1), then
v<7+ 1. In this case s =¢, and r =1 — 1, because of s 0Omodp. If
t=21—1, then by Corollary 8 we have 7% = »%, = 1mod p¥*'. If
r 4+ 1 = 2, then we observe by Corollary 8 that

v

A

v
%=l =1+ (0¥ — ew? rt*er mod perett .

If 4 =0, then 7% %= 1mod pe***!, because of ! — ew? ™ 2 O mod p (cf.
(*) of §4). If p =1, then by Theorem B we have

7750 = 1 mod pe+e1+1 , 77?:0 2 1 mod pe+e1+1 for i e 1.

Suppose that (¢ + e)/p* <s=<e+ e =N. If 0<y <<, then by Corollary
8 we get 77 = 1modp?*'. If p's>e/(@ —1) and 0 <z <y, then %
= 1modp?*l. If ps=e/(p —1), then s=¢ and z=21—1. By the
inequality (e + e)/p* < s =¢,= ¢/p*"!, it follows v > 2. Hence 77,
= 1 mod p~~.

Let e+ ¢, <N <2 +e¢ and assume p=>1. If 1<s< (N ~—e)/p,
then vy < r + 1, otherwise p*'s = p's-p " '=pe/(p—1) =e+ ¢, >N —e.
If e/(p —1)<ps and s < (N — e)/p’"!, then by Corollary 8 we have
7% % 1mod p¥*t. If e/(p — 1) = p's and v £ 7, then 72 = 1 mod p¥*!. If
e/ —1) =psand yv=1r+1, then s=¢, and r=21— 1. In this case
we see by Theorem B that 7%, = 1modp?*' for ¢ 5 1. On the other
hand we have for i =1

» _ [T+ of'me? mod per! ifvg£2-1,
e = 1 + ((Dfl . ea)g)x_l)py~17re+el mod p(»—z+1)e+e1+1 R if v > 2,
where o? —ew?  =O0modyp. If v <21—1, then %2 = 1modp¥*, and

¢ < (N —¢/p. If v> 2, then #f; = 1 mod p**! and ¢, > (N — ¢)/p*.
If v =2, it may happen that 77 = 1mod p¥*!, namely 2= v(N:1,e,).
Hence 72 = 1 mod p¥*!, where 1 i< f,1<s< (N —e)/p*, s = 0mod p,
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but if v=2 and 2= v(N:1,¢), then (4,8) % (1,¢). Finally, suppose
N—-e¢/p*<s=Ze+e, where ¢ + ¢, <N < 2¢ + ¢,. It then follows
that v >z + 1. If e/(p — 1) <p's, then %2 = 1 modp"*!, because sp°
+w—1e>e +2e>N,if t<v—2;p0°+ @ —1e=sp'+e>N, if
r=y—1. If ¢/(p —1)=p's, then s=¢, and r =1 —1. By the in-
equality (N —e)/p* ' <s=¢,=¢/p""' we have v > 21 and then 7%,
=1mod p¥*. If s> e/(p — 1) and (N — e)/p*~* <s, then 7% = 1 mod p¥*'.

Thus Lemma 9 is proved. q.e.d.

COROLLARY 10. Suppose p=1. Let 5, and 75, be principal units
of Theorem B. Let ace+ e, < N<(a+De+e and 1 <a=p Then
we have

7% % 1mod p¥*!, %2 % 1mod p¥' forv=<ae-—1,
7% = 1mod p¥*!, 22 = 1mod p¥*! forvz=za,

if and only if indices i and s satisfy the following conditions:
For v<a -1, 1<s<e+e,.

FO”' v g a, 1 g S g (N —_ (a _I_ o — 1)6)/pv‘a«5+1,
but if v(N:1l,e) Sv <21+ a—1, then (i.8) x (1, ¢y,
where

5 — o, if N=uae+ e,
1, if ae + e, < N<(a+ 1e + e, .

Proof. Let N =ae + e,. It is obvious by Proposition 6 that
B!, = Hy,,. Since we have 7, = 1 mod p**! (1 <s<e+ ¢) and 7,
% 1 mod p**a*Y, 9% 2% 1mod p¥*! and 7% % 1mod p¥*! for v < e — 1. Let
(,8) % (1,e) andv = a¢. By Lemma 9 we find that 7% = 1 mod p*=** for
1 <s=(e+ e)/p. Hence it follows that 72" = 1 mod p¥*' for 1 < s
< (e + e)/p’. Moreover, since H?;." , = H,.,, we see that 7% = 1 mod p¥*!
for 1 <s<(e + e)/p2'. Let (4,8) = (1,¢). Then e, = e/p*!
< (e + e)/p "' = ¢/p*~® if and only if v< 14+ a — 1. By Corollary 8
we have 7% = 1modp°**! and hence #7."°' = 1mod p¥*!, that is, 2
<uN:1l,e) 214+ a—1.

Since 7, = 1mod p**e, », 2 1 mod p¢***!, we have 5% = 1 mod p@*Pete,
7% = 1mod p@+vetett for v = 0,1, .- -.

Let ae + e, <N <(a + 1)e + ¢,. It then follows from Proposition 6
that H% ", ... = Hy,,. Hence by the same arguments as above we have
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the latter half of Corollary 10. We note that 2 <v(V:1,e) < 1 + a.
q.e.d.
From Lemma 9 and Corollary 10, the numbers g,(v), exponents
v(N:4,8) and v (N : #) defined in §2 are given as follows:
If1sN<e+e,orif p=0and N =e + ¢, then

(13) gﬂ»=<N—[%J~[g]+[£%Df, vz,

and
14) y(N:1i,8) =v for N/p» <s £ N/p?,

where 1 <i<f,1 <8< N and s % 0 mod p.
Huzlandae+ e, N<(@+ De+e(l=ZaLyp, then

Iv() =0, forv<a—1,
N —(a + 06— 1e
o= (o= [22] - | |
15) 9w 1 P proa-itl
+ [N il 52— l)e])f + gy, forvza,
pv—a‘ﬁ'i-
where
Iu() = 2, ifovWN:L,ep£v=24+a—-1,
I = 1, otherwise ,
and

v(N:x%x)=ua, ASv(N:l,e) <i4+a-—-1+94,
(16) yv(N:7,8) =v for (N — (a 4 6 — 1)e)/p*~2**1
<s=WN —(a+d—De)p=?,

where 1 <1<f,1<s<e+e,sx0modp, (1,s) x(1,¢) and ¢ is given
by Corollary 10. We note that if 2=y, or N =¢ + ¢, then v(N:1,¢)
= A

It then follows from (13) and (15) that

M@+§MWFWW—W

an Nf, ifl1<N<e+e,
={Nf+v(N:1,e) — 2, ifae+ e, <N<(a+ De+ ¢
and 1 e p.
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Thus (2) or (8) is a basis of H,/H,,, and (8,) is a basis of H ,/H,,, if
and only if v(N:1,¢) = A.
Now we establish a basis of Hy,,.

PrROPOSITION 11. (A). Suppose that p=0. It then follows that
for each t 20 and 1< N < e+ ¢

H¢e+N+l = n n <77:£(N:i")+t> X ) n <7ﬁ;> (di?"ect) .
1gisf 1£ssN 1sisf N<sspe/(p—-1)
s£E0modp $x=0mod p

where 7;, are principal units of Theorem A and v(N:1,8) are given by
(14).
B). Suppose pz=1. Letae+e = N<(a+De+e and 1< a=<p.
Then it follows that for each t = 0
Hiowor = ™5 X L G005 (direct)

»8)ES

where 74,9 are principal units of Theorem B, v(N:1,8) are given by
(16) and S is the set defined by (5).

Proof. We first notice that by Theorem A or (7) multiplicative
expressions described as above are surely direct products.
(A). Suppose that p=0and 1 <N <e + e¢. Put
Hya= [ JT 7 x 1 [l <pep  (direct).

1Si£f 185N 15isf N<sspe/(p-1)
$5%0 modlp s=0mod p

Then H),, is a subgroup of Hy,,. It is proved that Hj,, = Hy,,.
Indeed,
(Hl: HJ,V+1) =S H . pv(N:i,s) ;

1Sisf 1ss%
pust

$3=0mod p

from (13) and (17) we have

2, OS;SN v(N:17,8) = gyl) + i wWgy(®) — gyl — 1)) = Nf .
T 77 sx0modp v=2

Hence we have (H,: HY,)) = p"/ = (H,: Hy,,), as was to be shown.

If e N<Le+ e, then we observe by Proposition 6 that HZ,,
= H,,,y,, for each ¢ = 0. Therefore, we have the direct decomposition
of Hipoyire

(B). Suppose p=1. Letae+ e, < N<(a+1e+eandl<a=<p
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Put
Hjy o= ED> X ] p™™”y  (direct) .
(1,8)€S

Then H%,, is a subgroup of H,,, and H,. We contend H},, = Hy,,.
Indeed, since we have (H,: H,) = p* by [2, p. 231],
(H,:Hy,) = (H,:Hy)(Hy: Hy,y) = plpa(‘ ﬂ prHs .

»$)ES

it follows from (15),(16) and (17) that
> uN:1,8)

(i,s)ES

= algs@ — D+ 3 ulgn® — D — gy — D — D}

v=a-+

+ v (N:1,e){(gn((N: 1, 6)) — 2) — (950N :1,€) — 1) — 1}
+ 3 Mone) —2) — (g5l — D — 2)

v=v(N:1,eq) +

= agy(a) + ijlv(gN(») — gy — 1) —a — u(N:1,e)

v=a+

=Nf—Q+a).

Hence we get (H,: Hy,)) = p¥ = (H,: Hy,)), as desired.
Finally it is clear that H,,,,,, = H%,, for each £ = 0 by Proposition
6. Thus we have the direct decomposition of H,,,y,.;- 4g.e.d.

§6. Proof of Theorem 2 and Theorem 3

From Theorem A, Proposition 11, (4) and (13) we have Theorem 2.

Now we shall prove Theorem 3. Suppose that k, contains ¢, (¢ = 1),
but does not contain ¢,...

(I). In the case where 1 < N < ¢ + ¢, it is verified by (17) that
(8) is a basis of H,/Hy,,. Hence the direct decomposition of G(p**?)
is obtained by (4), (13) and (14).

(II). In the case where ¢ + ¢, < N < (¢ + De + ¢, and v(N:1,¢)
= 12, we know by (17) that (8, is a basis of H,/Hy,,. Hence the direct
decomposition of G(p¥*') is obtained by (4), (15) and (16).

(ITII). In the case where e + e, <N <{z+ De + ¢ and »(N:1,¢e)
> 1, we see by Proposition 11 and (7) that z,,7:(@ s)eS) are inde-
pendent modulo p¥*, the}\t is, % [1 7 = lmod p¥* if and only if
z, = 0mod p® anil z;, = 0 mod p“”ét;i)efi)r all (4,s) e S.

From the relation (6) we have a congruence
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A(pv(N:1,e0) — A~ ol
(18) Py (¥i1,e0) =3-1) T %% = 1mod pV+! .
(1,8)€S
V(Nii,8) 2+l

Since (H,: Hy,) = p* and Hy,, is a subgroup of H,,p* is the least posi-
tive integer such that 7% = 5 mod p¥** for some z,e€ H,. Hence the
structure of H,/Hy,, having a system of canonical generators (8,) is
determined by (18) only. We put

‘B*pl‘ = ﬁ:kpaé ’ (‘B:k) p) =1 )
Bisp* = Bip*+, (B,p)=1  for (3,8)eS.
It is then clear that instead of (8,)

w(N:1,e0)—-2-1 7 7
{n%es Hy s 0 H y 1 955 H y i}amyes

is also a system of canonical generators for H,/Hy.,.
Let M, a free Z-module, and +: M — H,/H,,, be as defined in §2.
Put

a;, = min {u(N : 4, 8), aj, for (i,8)e S .

Then from Proposition 11 and by (18) a system of canonical generators
for Ker+r is given by

{p“ﬁ*,p”‘”'l’“’ﬁleo, DYy D e, + (;esp““ﬁis} )
1,8

where (4,s) € S. Then the rank of Ker+ is equal to (ef + 1) because
the rank of H,/Hy,, is equal to (ef + 1) from Theorem 1. The direct
decomposition of H,/Hy,, = M/Ker - is determined by elementary divi-
sors of the matrix (9) of Theorem 3. Thus (III) of Theorem 3 is
proved.

Finally, (IV) of Theorem 3 is trivially obtained from Lemma 7.
Thus Theorem 3 is completely proved.

§7. Proof of Corollary 4

Let p be an unramified prime ideal of %k, lying above a rational
prime p. Assume that p is odd. Then by Theorem 2 we observe that
b(1) =f and b,(») =0 for v=2. Let p=2. Then e=9¢ =1 and
2= p=1. Therefore, we have by (I) and (II) of Theorem 3

b =f, b)) =0 for v>2,
b )=2, b, =f—-1, b)) =0 for v = 3.
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Thus Corollary 4 is obtained from Theorem 2 and Theorem 3.

§8. Supplement to Theorem 3

We assume that k, contains {,(# = 1) but does not contain ¢,,,.
Suppose that 2> p=>1 and ace+ e, = N<(e+De+e (I1a=<p. In
this section we shall prove that if one of exponents v (N:1,s) satisfies
a certain condition, then the direct decomposition of H,/H,,, is induced
by that of H,/Hy_,,;.

If 2> p =1, then a Z,-basis of H, is given as follows (cf. [2, p. 232-
233]). Let H, be the free Z,-group of H, defined by (7). By (6) we
observe that #, “C;' does not belong to HI = {s8|y € H,}. There exists
Bis, Such that B, is prime to p. If B, is prime to p, we may take
Bisso = B« Hence 7,,,, can be written in the form

19) Tioso = Cir T gieenley "

(2,8) % (Z0,80)
where S’ = S U {x}, @, is a rational integer, prime to »p 1 < a, < p¥), oy,
are p-adic integers and «,., is a p-adic integer, prime to p (cf. [2, II in
p. 209]). We then have a Z,free part H, of H, expressed as direct
product:

Hy= T <nd X <pey  (direct) .

(i,5) €S’
(%,8) 3 (¢0,50)

From Proposition 6 we find that H%_,,, = Hy,,, where ae + ¢, <N
<(a+ e+ e and 1 <a < p. Therefore by Proposition 11 we have

Hy o= {570 X (Hes@f;””»“v (direct) .

It then follows from (19) that H,_,,, is a subgroup of H, if and only
if y(N:4,8)—1=p We note that v(N: %) =alx + 1 (see (16)). If
V(N : 4y, 8) = o + 1, one see also that

H/Hy o0, =&> X Hy/Hy_,,,  (direct) .

The direct decomposition of G(p¥-¢*') is obtained from (I) ~ (III) of
Theorem 3 and by Lemma 7, say of type (p/ — 1, p#, pci, ..., p%). Then

GV is of type (p/ — 1,p*, pi*, ..., p4*Y) by Lemma 7.
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§9. Examples

(i). Let p» be an odd prime and ¢, be a primitive p-th root of
unity. Put &k = Q) and p = (1 — ). Then we have an expression of
G(p¥*Y) as direct product for each ¢t = 0:

G(pN-H)
(Z(p — 1) X Z(p) X -+ X Z(®), if 1<N<p,

\———N-times——

Z(p — 1) X Z(p) X Z(p™") X --- X Z(p'™),

p-tim

if N=@—-Dt+p,
Z(p — DX Z(p) X Z@**9) X -+ X Zp™) X Z(p™") ,

p—1)-tim

fN=@-Dt+p+1,
Z(p — 1) X Z(p) X Zp'*H) X -+ X ZP") X Z@*Y) X Z(p*),

p—2)-tim

I

EN=@-Dt+p»+2,

..............

Z(p — 1), X Z(p) X Z(p"") X Z([p*) X -+ X Z(p**Y),
h p—2)-ti ,

L EHN=@-Dt+2p—2.

(ii). Let d be a square free rational integer such that d = 2 mod 4.
Put ¥ = Q(Wd) and let p be a prime ideal of k, lying above 2. Then
e=¢=2,1=2and g=1. By (I) of Theorem 3 we have

G =22, GO)=22), GO)=2Z((2) X Z(2).

By [4] we see that for N=e¢ + e, =4,v(4:1,1) =2 = 21> p. Hence for
each t = 0 we obtain by (II) and (IV) of Theorem 3

G(p22+5) ~ Z(z) X Z(21+t) X Z(22+£) .

Furthermore, it is shown in [4] that —»}, = p;mod p’. It then follows
that for N=5(e+¢, < N<2 +6¢€),v(5:1,1)=3>2 and v(5:1,3)
=2=2>p Hence from the arguments of §8 we see that H, is a
subgroup of the free part of H,. From the result of §8 and by Theo-
rem 1 the direct decomposition of G(§°) is induced by that of G(p*), that
is, expressed as follows:

GO) = Z(2) X Z(2) X Z(2) .

Therefore, we see by (IV) of Theorem 3 that for each t = 0

https://doi.org/10.1017/5S0027763000018316 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018316

60 NORIKATA NAKAGOSHI

G(pui-ﬁ) E Z(2) X Z(2l+¢) X Z(23+t) .
For N = 5 the matrix (9) of Theorem 3 is equal to

(2 0 0)
lo 2t ol
{0 0 23{°
l2 2 2

It is then clear that

(100 0)f2 0 0)1 0 0
|—1 0 0 1llo 2 ollo 1 —2J
o001 olloo 2llo o 1=
l211—2H2222

————
S O O N
S O N o
SN oo
——

which shows the direct decomposition of H,/H,, too.
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