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IMPROVEMENT ON THE BOUNDS OF PERMUTATION GROUPS
WITH BOUNDED MOVEMENT

MEHDI ALAEIYAN

Let G be a permutation group on a set fi with no fixed points in fl and let m
be a positive integer. Then we define the movement of G as, m := move(G)
:= supr{|F9 \T\ | <7 6 G}. Let p be a prime, p ^ 5. If G is not a 2-group and
p is the least odd prime dividing \G\, then we show that n := |fi| < 4m — p + 3.

Moreover, if we suppose that the permutation group induced by G on each orbit
is not a 2-group then we improve the last bound of n and for an infinite family of
groups the bound is attained.

1. INTRODUCTION

Let G be a permutation group on a set fi with no fixed points in Q, and let m be
a positive integer. If for each subset F of Q the size |F9 \ F| is bounded, for g 6 G, we
define the movement of F as move(F) = max |F9 \ F|. If move(F) ^ m for all F C fi, then

G is said to have bounded movement and the movement of G is defined as the maximum
of move(F) over all subsets F, that is,

m := move(G) := sup{|F9 \ F | | F C Q,g e G}

This notion was introduced in [4]. By [4, Theorem 1], if G has movement m, then fl
is finite. Moreover both the number of G-orbits in fi and the length of each G-orbit are
bounded above by linear functions of m. In particular, it was proved that each G-orbit
has length at most 3m and n := |Q| ^ 5m — 2. In [1] it was shown that n = 5m — 2 if and
only if n — 3 and G is transitive. But in [3], this bound was refined further and it was
shown that n ^ (9m - 3)/2. Moreover, if n = (9m — 3)/2 then either n = 3 and G - S3
or G is an elementary Abelian 3-group and all its orbits have length 3. Now suppose that
G is not a 2-group, and let p (^ 5) be the least odd prime dividing the \G\. Then by [4,
Lemma 2,2], n ^ (9m — 3)/2. In this paper we aim to improve the bound for any group
with above conditions as follows:

THEOREM 1 . 1 . Let p be a prime, p ^ 5, let m be a positive integer, and let G be
a permutation group on a set fi with movement m such that G has no Gxed points in Q.
IfG is not a 2-group and p is the least odd prime dividing \G\, then n := |fi| ^ 4m — p+3.

Received 24th July, 2002

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 SA2.00+0.00.

249

https://doi.org/10.1017/S0004972700033712 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033712


250 M. Alaeiyan [2]

We do not know whether the bound in Theorem 1.1 is attained. But according to
hypothesis in Theorem 1.1, and with the assumption that G is not a 2-group on each
orbit, then we have the following result such that the bound is attained for an infinite
family of groups. We denote by P « K a semi-direct product K.P with normal subgroup
K.

THEOREM 1 . 2 . Let G be a permutation group on a set fi with movement m such
that G has no fixed points in Cl. IfG is not a 2-group on any orbit, and p ^ 5 is the least
odd prime dividing \G\, then the following hold:

1. n := \Q\ ^ (p/p - l)([(2mp/p- 1)J - l ) (for x G R, [x\ denotes the

integer part ofx);

2. moreover, if |Q| = (p/p— 1)([(2mp/p — 1)J — 1J then either n — p, m

— (P — l)/2> a°d G '^ -̂ 2»o ix Zp where a0 — max{a | 2° divides p - l } ,
that is, 2a° is the 2-part of(p - 1), or for some positive integer d, G = Z%,
m = pd~1(p - l ) /2 and all its orbits have length p.

2. EXAMPLES AND PRELIMINARIES

Let 1 / g e G and suppose that g in its disjoint cycle representation has t nontrivial
cycles of lengths li,...,lt say. We might represent g as

g = (aia2...all)(blb2:.bl2)...(zlz2...zlt).

Let r(g) denote a subset of fi consisting of [k/2\ points from the ith cycle, for
each i, chosen in such a way that r ( ^ ) s D T(g) = 0. For example, we could choose
T(g) = {a2, a 4 , . . . , 62, b4,..., z2, zA,...}. Note that T(g) is not uniquely determined as it
depends on the way each cycle is written. For any set T(g) of this kind we say that V(g)
consists of every second point of every cycle of g. From the definition of r(^) we see that

The next lemma shows that this quantity is an upper bound for |F 9 \ r | for an arbi-
trary subset F of fi.

LEMMA 2 . 1 ([2, Lemma 2.1].) Let G be a permutation group on a set fi and
t

suppose that T C Cl. Then for each g G G, \T9\T\ < 5IU>/2J where h is the length
i=l

of the ith cycle of g and t is the number of nontrivial cycles of g in its disjoint cycle
representation. This upper bound is attained for F = F(g) defined above.

Now we shall show that there certainly is an infinite family of groups for which
equality in Theorem 1.2(1) holds, for any prime p.
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E X A M P L E 2.2. Let d be a positive integer, let G :- Zd, let t : - (pd - l ) / ( p - l ) ,
and let Hlt...,Ht be an enumeration of the subgroups of index p in G. Define Q, to
be the coset space of Hi in G and f2 — f2i U . . . U Qt- If 9 £ G — {1}, then g lies
in (pd~l - l ) / ( p - l ) o f the groups i/j and therefore acts on Q as a permutation with
(p/p - l){pd~l - 1) fixed points and p d ~ l orbits of length p. It follows from Lemma 2.1
that move(G) = m = p1*"1^ - l ) /2 . Thus [(2mp/p - 1)J = pd and

Now we have the following lemma which is a classification of all transitive permuta-
tion groups G of degree p where p is the least odd prime dividing \G\.

LEMMA 2 . 3 . Let G be a transitive permutation group on a set Q of size p, where
p ^ 5 is the least odd prime dividing \G\. Then G = Z2* x Zp, where a ^ 0, and
2 * | ( P - 1 ) .

PROOF: Let G be a transitive permutation group on a set fi of size p. Then G is
isomorphic to a transitive subgroup of Sp and so p is the largest prime divisor of \G\.
Since p is also the least odd prime dividing \G\, we have \G\ = p.2a for some a ^ 0. By
Burnside's "pq theorem" (see [6, Theorem 2,10,17]) G is soluble, and hence by a theorem
of Galois [6, Theorem 3.6.1], G is isomorphic to a subgroup of the group AGL(l,p) of
affine transformations of a finite field consisting of p elements. Thus G = Z2a K ZP as
asserted. D

COROLLARY 2 . 4 . Let G be a permutation group on a set fi, and suppose that
A is a G-orbit of length p in Q where p is the least odd prime dividing \G\. Then the
induced permutation group GA is G = Z-p x Zp where 0 ^ a ^ oo, and 2°° is the 2-part
o f ( p - l ) .

3. THE MAXIMUM DEGREE OF BOUNDED MOVEMENT GROUPS

Suppose that G ^ Sym(£l) and that G is not a 2-group and move(G) = m, and
such that p ^ 5 is the least odd prime dividing the \G\. In this section we find an upper
bound for \Cl\ that is a linear function of m.

To prove the main theorems, we introduce the following notation.

rp := number of G-orbits of length p on which G acts as Zp\

r'p(a) :— number of G-orbits of length p on which G acts as G = Z2" K ZP

with 1 ^ a ^ a0; and set r'p := 53 r'p(a)>
a=l

$ := union of G-orbits of lengths 26, where 1 ^ 6 ^ log2p; and u is the
number of orbits in $ .

s :— number of G-orbits of length > p.
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The orbits are labelled accordingly. Thus fii, ...,flrp are those of length p on which
G acts as Zp\ Clrp+i,..., O.rp+r' are those of length p on which G acts as G = Z2» K Z P for
some a ^ 1; f2rp+rj+i,..., firj>+^+o are those of length 2b where 1 < b ^ log2p; e£ cetera.
Define t :— rp + r'p + u + s, ti := rp + r'p + u, and 10 = rp + r'p. So t is the total number
of G-orbits.

For 1 < i ^ t0 define Kt to be the kernel of the action of G on fij and for g 6 G
define k(g) to be the number of i in that range for which g is not in Ki. For g € G and
a G-invariant set A we denote by fixA(<?) — {a £ A \ a9 — a} and suppA(<?) = {a £ A |
a 9 7̂  a } the set of fixed points of g in A and the support of g in A, respectively (so that
|fixA(g)| + |suppA(</)| = |A|), and define oddA(p) := the number non-trivial cycles of g
in A that have odd length.

t
LEMMA 3 . 1 . With the above notation, let A := | J Q.{ and let g £G. Then

t=ti+i

P - l t , _ * . 1. - . . - . . , m .
2

PROOF: For each i such that 1 ^ i < tQ and g is not in Ki, since |Qj| = p then gn< is
a p-cycle or a 2-element with one fixed point and we may choose a subset Ti of (p — l ) /2
points of Cli such that T? D Fj — 0. Let Fo be the set of chosen points from all the I\ for
1 ^ i ^ t0, and so by definition F^ n Fo = 0.

For each of the non-trivial cycles (&i...62i) and (aia2...a*) of g in $ and A respectively,
adjoin the points 61,63, ...,62/-i and also ai,a3, ...,0*/ to Fo, where k' is odd and k-2 ^ k'
^ k — 1. Let F be the resulting set. It has been constructed so that F 9 n F = 0. Therefore
|F| ^ m. Since

i ( | supp A ( 5 ) | -

we have the stated inequality.

To prove Theorem 1.1 we first prove the following lemma.

LEMMA 3 . 2 :

wiere for a — 0 the number r'p(a) is rp.

PROOF: Suppose that 1 ^ i < t0. Then the group induced by G on fi* is G = Z2«KZP

for some a > 0, such that 2° | (p — 1), and since \G : Ki\ = 2ap, there are

\G\- \K{\ = ( 2 » p - 1 ) | ^ |

elements g which act nontrivially on JV It follows that

g&G a=0
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where r'p(0) := rp.

For t0 + 1 ^ i ^ t\, the group induced by G on Qi is a 2-group. The union of these
sets fit is $, and since by Burnside's Lemma [5, Theorem 3.26] the average number of
fixed points of elements of G in $ is the number u of G-orbits in $, we have

2^9

Similarly,

9€G l l

and since odd^(^) ^ (l/p)|suppA(^)|, we have

E Kls u p p*( 5 ) l - o d d A ( 5 ) )
G

g€G

Thus adding the inequality of lemma 3.1 over all g G G, we obtain

where the strict inequality recognises the fact the inequality of Lemma 3.1 is strict for
the identity element of |G|. This completes the proof of Lemma 3.2. D

Now

Also we have | $ | ^ 2u, and so
\9\-u_ |$|

2 ^ 4
Thus the inequality in Lemma 3.2 implies that

m > —

0=0

Since G is not a 2-group, so we have either J2 r'P(a) > 0 or s > 0. If some r' (a) > 0,
0=0

then
n p — 2 p - l

m> l + ^~~¥^-
But we note that since p J? 5, for each a ^ 0,

p - 2 p - l > P ~ 2 p - l
4 2a + 1p " 4 2p
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Hence,
n p — 2 p - l _ n p2 — Ap + 2
A A 1p A Ap

On the other hand if s > 0, then |A| ^ (p + \)s ^ p + 1. Thus,

n , A , / P - 2 \ p - l
+ \ A \ ( ) r s

4 ' ' \ Ap J 2p
n /(p + l ) (p-2) p - l
A \ Ap 2p
n p2-3p

So in either case we must have,

n . r p 2 - 4p + 2 p2 - 3pi n
4

+ min\ / / \ = - + - -/- .
4 L 4p 4p J 4 4p

Hence,
p 2 -4p + 2 A t 2

n < Am = Am — p + 4 .
4p P

That is, n < Am — p + 4 and son ^ Am ~ p + 3. Hence the proof of Theorem 1.1 is
complete. D

4. THE PROOF OF THEOREM 1.2

In this section with the notation defined in Section 3 we refine the upper bound
Am — p + 3 for n and obtain an upper bound that is attained for an infinite family of
groups. For this purpose suppose that G is not a 2-group on any orbit, that is u — 0.
Then we have the following lemma.

LEMMA 4 . 1 . With the above notation,

2p2m

PROOF: Since G is not a 2-group on any orbit, u = 0 and so |$ | = 0 the inequality
of Lemma 3.2, yields

m >

Since n = prp + pr'p + |A|, we have

2p2m p v ^ 2"p - 1 . . . p

p - l
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Hence,

and we have the stated inequality.

Now define 77:— 2p2m — (p - l)2n. Clearly 77 is an integer and from Lemma 3.3 we
have that

v-^ 2° - 1
0 ^ p(p - 1) 2_, —2~T~rp(a) + (P ~ 1)IAI ~ (P ~ 1)P-S < *?•

a

If 77 > p(p —1), then part 1 of Theorem 1.2 follows. To prove the theorem we suppose
that 77 ^ p{p — 1) and seek to discover what configurations may occur.

From the inequality

0 ^ pip — 1) / ^*o(^) ~̂~ ( P — -̂) A l — ( P — ^-)P'S ^ "n ^ P ( P —
a

we obtain,
0 ^ P 1 2 ^ ^ r p ( a ) + (IAl - (P - ^P-5) < P-

a

First we show that s = 0. Since if s ^ 0, then by [4, Lemma 2]

2mp
p- n^ p _ i

Hence,

and then we have

which contradicts our assumption. Hence s = 0, and so |A| = 0 and

0 ^ p £ ^-^r» < v/ip -1) ^ p-

This inequality implies that r'p < 1. If rp = 0 and r'p ^ 0, then n = p = 2 m p / ( p - 1 ) .
Following [2] and Lemma 2.3, the last equality holds if and only if m = (p — l ) / 2 and
G = Z2«« Zp, where a > 1, and 2° | (p - 1).

Moreover, suppose that r'p = 0. Then n = p.rp and by Example 2.2 G is an elemen-
tary Abelian p-group.

Now we consider the case that rp > 0, and r'p > 0, that is r'p = 1. Define Ex

:= (J fij, the union of the orbits of length p on which G acts as Zp, and E2, the unique

of the orbit of length p on which G acts as G = Z2° K Z P , where a ^ 1 and 2° | (p - 1).
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Let mi := move(GEl), and m2 := move(GE2) = (p - l ) /2 . By Example 2.2 each
non-identity element of GE l have the same movement m\, so by considering of the each
p-element of GEa it follows easily that m — mi + m2. Denning n\ :— \T.\\, and n2

:= | £ 2 | = p = 2mp/(p — 1). We have from Example 2.2 that

and so

p (12mxp | \ |2T7i2p| p f |2mip | / \ p 12m2p |
n = m + n2 ^ 1 - 1 1 + < 1 — 1 I H .

p - l \ L p - U / L p - l J p—l\lp — lJ ) p— l L p - U

Hence,

p - l \ L p - l J )

What this has shown is that, if 77 := 2p2m — (p — l)2n, that is, n ^ ([(2mp/p - 1)J

— l ) / ( p — 1), then either rp = 0 or r'p — 0 and we have the situation posed in above. In
this cases

_ 1 2mp 1 _ p (\ 2rop | \
Tt — I I — I I I — 1 I .

Thus the result now follows and the proof of Theorem 1.2 is complete. D
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