RELATIONS BETWEEN FINITE HOMOLOGY AND HOMOTOPY

B. Brown

(received June 21, 1968)

1. Introduction. For a finite abelian group G let $\lambda(G)$ be the least positive integer such that $\lambda(G)G=0$. Let $\bar{\lambda}(G)$ be the least integer such that $\lambda(G)\mid\bar{\lambda}(G)$ ($\lambda(G)$ divides $\bar{\lambda}(G))$ and if $2\mid\lambda(G)$ then $4\mid\bar{\lambda}(G)$. For a finitely generated abelian group G let G_T be the subgroup of G made up of all elements of G of finite order, and let $G_F=G/G_T$. For a simply-connected G-W complex X, let $\psi(\pi X;r)$ be the smallest class of abelian groups containing the groups $\pi_i(X), \quad i=2,\ldots,r$.

We will assume throughout this paper that the topological spaces under discussion have the homotopy type of C-W complexes with only finitely many cells in each dimension. We write $H_*(X)$ (H*(X)) for reduced homology (cohomology) with integer coefficients.

The point of this paper is to prove

THEOREM 1*. Suppose

i)
$$\pi_{i}(X) = 0$$
, $i = 1, ..., k-1$ where $k-1 \ge 1$

ii)
$$\pi_i(X)$$
 is finite for $i = k, ..., n$,

then

$$\prod_{\substack{i=n-k+1}}^{n} \lambda(\pi_{i}(X)) \quad H_{n}(X) \in C(\pi X; n-k).$$

COROLLARY 2.1. If dim X = k and $H_*(X)$ is finite then

$$\lambda(\{X, X\}) \mid \prod_{i=1}^{k} \overline{\lambda}(H_i(X))$$

Canad. Math. Bull. vol. 12, no. 2, 1969

^{*}Hoo [1] proves a slightly different version of this theorem for the special case k = 2.

and

$$\lambda(\{X,X\}) \mid \prod_{i=1}^{k} \lambda(\Sigma_{i}(X)) \qquad [\Sigma_{i}(X) = \{S^{i},X\}].$$

THEOREM 3. If $H^{i}(X) = 0$ for i > n+k and $H_{i}(Y) = 0$ for i < n then

$$\{X,Y\}_{F} = \left(\sum_{i=n}^{n+k} H^{i}(X; H_{i}(Y))\right)_{F}$$

and

$$\lambda(\{X,Y\}_T) \mid \lambda((\sum_{i=n}^{n+k} H^i(X;H_i(Y)))_T) \quad \prod_{i=1}^k \lambda(\Sigma_i(S^0)).$$

2. Some algebraic lemmas. For an element a in an abelian group A, o(a) will mean the order of a.

<u>Definition</u>. For finite abelian groups A and B we will write A < B if and only if for every $a \in A$ there exists $a b \in B$ such that $o(a) \mid o(b)$. (o(a) divides o(b).

The following algebraic lemmas are all trivial.

LEMMA 1. A < B <=> λ (A) | λ (B).

LEMMA 2. $A < 0 \implies A = 0$.

LEMMA 3. If A < B and B is in some class of abelian groups $\mbox{\rlap/c}$, then A $_{\in}$ $\mbox{\rlap/c}$.

LEMMA 4. A < B and B < C \Rightarrow A < C.

LEMMA 5. If A < B then for any integer r, rA < rB.

LEMMA 6. If $A \to B \to C$ is exact $\lambda(B) \mid \lambda(A)\lambda(C)$ and so

- i) $rA = 0 \Rightarrow rB < C$
- ii) $sC = 0 \Rightarrow sB < A$.

LEMMA 7. Suppose $A_i \rightarrow B_i \rightarrow C_i$ is exact i = 1, ..., t;

- $i) \ \underline{if} \ n_i^{} A_i^{} = 0 \quad i = 1, \ldots, t \quad \underline{and} \quad C_i^{} = B_{i+1}^{} \quad \underline{for}$ $i = 1, \ldots, t-1 \quad \underline{then} \quad n_t^{} \ldots n_1^{} B_1^{} < C_t^{};$
- $ii) \quad \text{if} \quad m_i^{C_i} = 0 \quad i = 1, \dots, t \quad \underline{\text{and}} \quad A_i^{} = B_{i+1}^{} \\ i = 1, \dots, t-1 \quad \underline{\text{then}} \quad m_t^{m_{t-1}^{}} \dots m_1^{B_1^{}} < A_t^{} \; .$

LEMMA 8. If R is a finite ring with identity I_R then $\lambda(R) = 0(I_R)$.

LEMMA 9. For a finite abelian group G let I_G be the identity homomorphism. ($I_G \in Hom(G G)$.) Then $\lambda(Hom(G, G)) = 0(I_G) = \lambda(G)$.

LEMMA 10. Suppose that G is an abelian group and that R is a finite ring with identity I_R . If $m:R \times G \rightarrow G$ satisfies

- i) $m(I_{\mathbf{p}}, g) = g$ for all $g \in G$, and
- $ii) \quad m(r_1 + r_2, g) = m(r_1, g) + m(r_2, g) \quad \underline{\text{for all}}$ $r_1, r_2 \in R, g \in G \quad \underline{\text{then}} \quad \lambda(G) \mid \lambda(R).$

LEMMA 11. For finite abelian groups G and H, $\lambda(G) \mid \lambda(G \oplus H)$, and $\overline{\lambda}(G) \mid \overline{\lambda}(G \oplus H)$.

LEMMA 12. G is a finite abelian group. If $p^k \mid \lambda(G)$ and $p^{k+1} \not\models \lambda(G)$ then $G = Z_{p^k} \oplus G^{\dagger}$.

LEMMA 13. G is a finite abelian group. $\lambda(G) \neq \overline{\lambda}(G)$ if and only if $G = G' \oplus Z_2$ $\oplus \ldots \oplus Z_2$, where $\lambda(G')$ is odd.

3. Eilenberg-MacLane spaces and Moore spaces. Let K(G, n) be the Eilenberg-MacLane space of type (G, n) and M(G, n) the Moore space of type (G, n).

PROPOSITION 1. Let G be a finite abelian group and let I_K be the homotopy class of the identity map of K(G,n). Then

$$\lambda ([K(G, n), K(G, n)]) = o(I_K) = \lambda (G).$$

<u>Proof.</u> $[K(G,n), K(G,n)] \sim Hom(G,G)$ and I_K corresponds to I_G , under the isomorphism. Since [K(G,n), K(G,n)] is a ring with identity I_K , $\lambda([K(G,n), K(G,n)]) = o(I_K)$ Lemma 8

=
$$o(I_G) = \lambda(G)$$
 Lemma 9.

PROPOSITION 2. If G is a finite abelian group and X is a C-W complex, then $\lambda(G)H^i(X;G) = \lambda(G)H_i(K(G,n)) = 0$.

<u>Proof.</u> [K(G,n), K(G,n)] acts on both $H^{i}(X;G)$ and $H_{i}(K(G,n))$ as a ring of operators, so the statement follows from Lemma 10 and Proposition 1.

PROPOSITION 3. If p is a prime and $p \neq 2$ then

$$\{M(Z_{pk}^{, n)}, M(Z_{pk}^{, n)}\} = Z_{pk}^{, n}$$

 $\frac{Proof.}{C_f, \text{ has the homotopy type of } M(Z_k^n, n). \text{ Then the cone}} \text{ of } f, \frac{Proof.}{C_f} \text{ has the homotopy type of } M(Z_k^n, n). \text{ The Hurewicz Theorem}} \text{ implies that } \{S^n, C_f\} = Z_k^n.$

The fact that $\{S^{n+1}, C_f\} = 0$ follows from the exact sequence

and the observation that f_* is onto and $(Sf)_*$ is a monomorphism. The sequence

$$\{s^{n}, c_{f}\} \xleftarrow{f^{*}} \{s^{n}, c_{f}\} \longleftarrow \{c_{f}, c_{f}\} \longleftarrow \{s^{n+1}, c_{f}\}$$

$$|| \qquad || \qquad || \qquad || \qquad || \qquad || \qquad || \qquad \qquad ||$$

is exact and f* is the zero homomorphism, since it is multiplication by

 p^k , and so $\{C_f, C_f\} = Z_{p^k}$.

PROPOSITION 4. If $K \ge 2$ then $\{M(Z_2^k, n), M(Z_2^k, n)\} = Z_2^k \oplus Z_2$.

<u>Proof.</u> Let $f: S^n \to S^n$ be a map of degree 2^k . Let $\alpha: S^n \to C_f$ be the inclusion and let $\beta: C_f \to S^{n+1}$ be the inclusion of C_f into the cone of α . Let $h^t: S^{t+1} \to S^t$ be the appropriate suspension of the Hopf map. We have $\{S^n, C_f\} = Z_{2^k}$ (with generator α) and $\{S^{n+1}, C_f\} = Z_{2^k}$ (with generator α).

The sequence $0 \leftarrow \{S^n, C_f\} \xleftarrow{\alpha_*} \{C_f, C_f\} \xleftarrow{\beta_*} \{S^{n+1}, C_f\} \leftarrow 0$ is exact. So $\{C_f, C_f\} = Z_{2^{k+1}} \text{ or } Z_{2^k} \oplus Z_2$.

Assume that $\{C_f, C_f\} = Z_{2^{k+1}}$. Let I be the stable homotopy class of the identity map $C_f \to C_f$. Then I is the multiplicative identity in the ring $\{C_f, C_f\}$ and consequently must be a generator of the cyclic group. Since $\alpha^*(2^k I) = 2^k \alpha = 0$, and $2^k I \neq 0$, we must have $2^k I = \beta^*(\alpha h^n) = \alpha h^n \beta$. We will arrive at a contradiction by showing that this last equation is false.

The sequence $0 \to \{S^{n+2}, S^n\} \xrightarrow{\alpha_*} \{S^{n+2}, C_f\} \xrightarrow{\beta_*} \{S^{n+2}, S^{n+1}\} \to 0$ is exact and $\{S^{n+2}, S^n\} = Z_2$ (with generator $h^n h^{n+1}$); $\{S^{n+2}, S^{n+1}\} = Z_2$ (with generator h^{n+1}). Since β_* is onto, there exists an element $\gamma \in \{S^{n+2}, C_f\}$ such that $\beta_\gamma = h^{n+1}$. Since α_* is a monomorphism $\alpha_k h^n h^{n+1} \not= 0$. So $\alpha_k h^n \beta_\gamma \not= 0$. But γ is an element in a group of order 4 and $k \geq 2$, so $2^k I_\gamma = 2^k \gamma = 0$. Therefore $\alpha_k h^n \beta_\gamma \not= 2^k I$ and this contradiction implies that $\{C_f, C_f\} = Z_2 \xrightarrow{Q} Z_2$. Let $n \geq 4$ and let X be the space in the Postnikov system for $M(Z_2, n)$ made up of the first two non-zero homotopy groups of $M(Z_2, n)$. Then the Postnikov system of X looks like this:

$$K(Z_2, n+1) \stackrel{a}{\rightarrow} X$$

$$\downarrow b$$

$$K(Z_2, n) \stackrel{k}{\rightarrow} K(Z_2, n+2).$$

The Postnikov invariant k is either 0 or Sq^2 . If k = 0, we have $X = K(Z_2, n) \times K(Z_2, n+1)$ and $H^{n+1}(X; Z_2) = Z_2 \oplus Z_2$. But this contradicts $H^{n+1}(X, Z_2) = H^{n+1}(M(Z_2, n); Z_2) = Z_2$. So $k = \operatorname{Sq}^2$. (We begin now not to distinguish, in our symbols, between the following objects: a cohomology operation, a cohomology class, a map, and its homotopy class.

PROPOSITION 5. $[X, X] = Z_4$ and $2I_X = aSq^{1}b$.

Proof. The sequence

$$0 = H^{n-1}(X; Z_2) \to H^{n+1}(X; Z_2) \xrightarrow{a_*} [X, X] \xrightarrow{b_*} H^n(X; Z_2) \xrightarrow{Sq^2} H^{n+2}(X; Z_2)$$

is exact. $H^{n+1}(X;Z_2) = Z_2$ with generator Sq^1b , $H^n(X;Z_2) = Z_2$ with generator b, and $Sq^2b = 0$. So $0 \rightarrow Z_2 \rightarrow [X,X] \rightarrow Z_2 \rightarrow 0$ is exact and $[X,X] = Z_2 \oplus Z_2$ or Z_4 depending on whether or not $2I_X = 0$. If $2I_X \neq 0$ we have $b_*(2I_X) = 0$ and $2I_X \in Ima_*$, that is, $2I_X = aSq^1b$. We will prove that $2I_X \neq 0$ by showing that for some $Y \in H^{n+3}(X;Z_4)$, $2Y \neq 0$.

Let $\phi: K(Z_4, n+3) \to K(Z_2, n+3)$ be the fibre map corresponding to the projection $Z_4 \to Z_2$, and let $\psi: K(Z_2, n+3) \to K(Z_4, n+3)$ be the inclusion of the fibre into the total space. The following computations are straightforward: $H^{n+3}(K(Z_2, n); Z_4) = Z_2 \oplus Z_2$ with generators $\psi Sq^2 Sq^4$ and r, where $\varphi r = Sq^4 Sq^2$; $H^{n+3}(K(Z_2, n+2); Z_4) = Z_2$ with generator t, where $\varphi t = Sq^4$. $\varphi(r-tSq^2) = Sq^4 Sq^2 - Sq^4 Sq^2 = 0$. Therefore $r-tSq^2 = 0$ or $\psi Sq^2 Sq^4$. Whatever the case, we have $tSq^2 \neq \psi Sq^2 Sq^4$.

$$H^{n+3}(K(Z_2, n+2); Z_4) \xrightarrow{(Sq^2)^*} H^{n+3}(K(Z_2, n); Z_4) \xrightarrow{b*} H^{n+3}(X; Z_4)$$

is part of the Serre exact sequence for the fibring $X \xrightarrow{b} K(Z_2, n) \xrightarrow{Sq^2} K(Z_2, n+2)$. For the generator $t \in H^{n+3}(K(Z_2, n+2); Z_4)$, $(Sq^2)*t = tSq^2 * \psi Sq^2 Sq^1$. So, $b*(\psi Sq^2 Sq^1) = \psi Sq^2 Sq^1 b * 0$. Now consider the element $Sq^2 Sq^1 b \in H^{n+3}(X; Z_2)$. $Sq^1(Sq^2 Sq^1 b) = (Sq^1 Sq^2 Sq^1) b = (Sq^2 Sq^2) b = Sq^2(Sq^2 b) = 0$. Therefore for some $\gamma \in H^{n+3}(X; Z_4)$, $\phi \gamma = Sq^2 Sq^1 b$. Then $\psi \phi \gamma = \psi Sq^2 Sq^1 b * 0$. But $\psi \phi$ is twice the identity map $K(Z_4, n+3) \to K(Z_4, n+3)$. So $\psi \phi \gamma = 2\gamma * 0$, and the proof is complete.

<u>Proof.</u> Suppose the statement is false. Then for some θ , $\theta Sq^2 = 0$ and $\theta Sq^{\frac{1}{4}} \notin SSq^2$. (In particular $\theta Sq^{\frac{1}{4}} \neq 0$.) Let $r = \deg \theta$. Take X as above with the qualification that n > r+2. Write $K_{\frac{1}{4}}$ for $K(Z_2,i)$. The sequence

$$H^{n+r+1}(K_{n-1}; Z_2) \stackrel{(Sq^2)*}{\longleftarrow} H^{n+r+1}(K_{n+1}; Z_2) \stackrel{a^*}{\longleftarrow} H^{n+r+1}(X; Z_2) \stackrel{b^*}{\longleftarrow}$$

$$\longleftarrow H^{n+r+1}(K_n; Z_2) \stackrel{(Sq^2)*}{\longleftarrow} H^{n+r+1}(K_{n+2}; Z_2)$$

is exact.

Consider θ as an element of $H^{n+r+1}(K_{n+1}; Z_2)$. $(Sq^2)*\theta = \theta Sq^2 = 0$. Therefore, for some $\gamma \in H^{n+r+1}(X; Z_2)$, $\theta = a*\gamma$. Thinking of Sq^1 as a map $K_n \to K_{n+1}$, we have $(Sq^1)*a*\gamma = (Sq^1)*\theta = \theta Sq^1 \in H^{n+r+1}(K_n; Z_2)$. Also $\theta Sq^1 \nmid 0$ and $\theta Sq^1 \nmid Im(Sq^2)*$. Therefore $b*(Sq^1)*a*\gamma = b*(\theta Sq^1) \nmid 0$. But $b*(Sq^1)*a*\gamma = (aSq^1b)* = (2I_X)*$. (Proposition 5.) So $b*(Sq^1)*a*\gamma = 2\gamma = 0$ and this contradiction proves our proposition.

PROPOSITION 6. $\{M(Z_2, n), M(Z_2, n)\} = Z_4$.

 $\begin{array}{llll} & \underline{\operatorname{Proof}}. & \operatorname{Take} & n \geq 4 \text{.} & \operatorname{Then} & \{M(Z_2,n), M(Z_2,n)\} &= \\ & [M(Z_2,n), M(Z_2,n)] &= [M(Z_2,n), X]. & (\operatorname{Where} & X \text{ is as above.}) & \operatorname{Using} \\ & \operatorname{the homotopy sequence} & \operatorname{for the fibring} & K(Z_2,n+1) & \xrightarrow{a} & \xrightarrow{b} & K(Z_2,n), \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$

Putting together Propositions 3, 4, and 6 we have that if G=Z p (any prime p and exponent k) then $\lambda(\{M(G,n),M(G,n)\})=\bar{\lambda}(G)$. Now we prove:

PROPOSITION 7. For any finite abelian group G, $\lambda(\{M(G, n), M(G, n)\}) = \overline{\lambda}(G)$.

 $\frac{\text{Proof.}}{\text{i}}$ G = $\sum_{i} Z_{p_i} r_i$. Let M = M(G, n), $M_i = M(Z_{p_i} r_i, n)$. Then

 $\begin{array}{llll} M=\vee M_{i} & \text{Let } I_{M} & (I_{M_{i}}) & \text{be the stable homotopy class of the identity map} \\ \text{of } M & (M_{i}) & \text{Then } I_{M}=\vee I_{M_{i}} & \text{For any positive integer } t, & tI_{M}=\vee tI_{M_{i}} \\ \text{and } tI_{M}=0 & \text{if and only if } tI_{M_{i}}=0 & \text{for each } i. \end{array}$

Since $o(I_{M_i}) = \overline{\lambda}(Z_{p_i}) \mid \overline{\lambda}(G)$ (remark above and Lemma 11) we have $\overline{\lambda}(G)I_{M_i} = 0$ for all i and $o(I_M) \mid \overline{\lambda}(G)$. Now we must show that $\overline{\lambda}(G) \mid o(I_M)$. Using Lemma 13, $\overline{\lambda}(G) = \lambda(G)$ or $G = G^1 \oplus Z_2 \oplus \ldots \oplus Z_2$ where $\lambda(G')$ is odd.

 and M'' = M(G'', n). Then $M = M_{pk} \vee M''$, and M'' = M(G'', n).

Therefore $o(I_{M_{p^k}}) \mid o(I_{M})$. That is $p^k \mid o(I_{M})$ and this holds

for all maximal prime power factors p^k of $\lambda(G)$. So $\lambda(G) \mid o(I_M)$. That is, if $\bar{\lambda}(G) = \lambda(G)$ then $\bar{\lambda}(G) = o(I_M)$.

PROPOSITION 8. If G is a finite abelian group and Y is a C-W complex, then for any $n \geq 3$,

- i) $\lambda [M(G, n), M(G, n)] = \overline{\lambda}(G)$
- ii) $\lambda [M(G, n), Y] \mid \bar{\lambda}(G)$.

<u>Proof.</u> i) is a consequence of stability and ii) is a consequence of i) and Lemma 10.

4. The Theorems.

THEOREM 1. Suppose

- i) $\pi_i(X) = 0$, $i = 1, ..., k-1 \text{ where } k-1 \ge 1$
- ii) $\pi_i(X)$ is finite for i = k, ..., n,

then

$$\prod_{i=n-k+1}^{n} \lambda(\pi_{i}(X)) H_{n}(X) \in \varphi(\pi X; n-k) .$$

<u>Proof.</u> Let X^j be the space in the Postnikov system for X made up of the first j homotopy groups of X. We have fibrations $K(\pi_{j+1}(X), j+1) \rightarrow X^{j+1} \rightarrow X^j$ and the sequence

 $H_n(K(\pi_{j+1}(X)\,,\,j+1) \to H_n(X^{j+1}) \to H_n(X^j) \ \text{is exact when} \ j \geq n-k \;.$

 λ (π_{j+1} (X)) H_n (K(π_{j+1} (X); j+1) = 0 (Proposition 2) and so, using Lemma 7,

$$\prod_{i=n-k+1}^{n} \lambda(\pi_{i}(X)) H_{n}(X^{n}) < H_{n}(X^{n-k}). \text{ Also } H_{n}(X^{n}) = H_{n}(X) \text{ and }$$

 $H_n(X^{n-k}) \in C(\pi X; n-k)$ by the (mod C) Hurewicz Theorem. Now use Lemma 3 and the proof is complete.

COROLLARY 1.1. If $\Sigma_{i}(X)$ (= $\{S^{i}, X\}$) is finite for i = 1, ..., nthen $\lambda(H_{n}(X)) \mid \prod_{i=1}^{n} \lambda(\Sigma_{i}(X))$.

 $\begin{array}{c} \underline{Proof}. \ \ Choose \ m > n+1 \ \ and \ let \ \ Y = S^m X \ . \ \ Then \ \pi_j(Y) = 0 \ \ for \\ i < m \ \ and \ \pi_j(Y) = \sum_{j-m} (X) \ \ is finite for \ m \leq j \leq m+n \ . \ \ Applying \\ \underline{m+n} \\ Theorem 1 \ we have \ \ \prod_{j=m+1} \lambda(\pi_j(Y)) H_{m+n}(Y) \in \ \ (\pi \ Y;n) \ . \ \ But \ \ \ (\pi \ Y;n) \\ \underline{j=m+1} \\ is the trivial class and \ \ H_{m+n}(Y) = H_n(X) \ , \ \ so \ we \ have \ \ \prod_{i=1}^n \lambda(\Sigma_i(X)) H_n(X) = 0 \ . \\ \underline{i=1} \end{array}$

THEOREM 2A. If dim X = k and $H_*(X)$ is finite, then for any Y $\prod_{i} \bar{\lambda} (H_i(X))[S^2 X, Y] = 0$.

<u>Proof.</u> Let $P = S^2X$ and let P^i be the space in the Eckmann-Hilton decomposition of P made up of the first i homology groups of P. Note that all spaces and maps in this decomposition are double suspensions. The inclusion $P^{i-1} \to P^i$ has cone $M(H_i(P), i)$ and so for any Y the sequence $[M(H_i(P), i), Y] \to [P^i, Y] \to [P^{i-1}, Y]$ is exact. $\bar{\lambda}(H_i(P))[M(H_i(P), i), Y] = 0$ for all i (Proposition 8), and using Lemma 7 we have $\prod_{i=1}^{k+2} \bar{\lambda}(H_i(P))[P^{k+2}, Y] < [P^0, Y]$. But $P^{k+2} = P, P^0 = pt., [P^0, Y] = 0$ and $H_i(P) = H_{i-2}(X)$ and the proof is complete.

THEOREM 2B. If $\pi_i(X)$ is finite for $i \le k$ and dim $Y \le k-2$, $\frac{k}{1-2} = \frac{1}{1-2} \lambda(\pi_i(X))[Y,\Omega^2 X] = 0.$

Proof. Let $L = \Omega^2 X$ and let L^i be the space in the Postnikov system of L made up of the first i homotopy groups of L. All spaces and maps in this Postnikov system are double loops. For each $i \leq k-2$ we have the fibring $K(\pi_i(L),i) \to L^i \to L^{i-1}$, and the sequence $H^i(Y;\pi_i(L)) \to [Y,L^i] \to [Y,L^{i-1}]$ is exact. $\lambda(\pi_i(L))H^i(Y;\pi_i(L)) = 0$ (Proposition 2) and using Lemma 7 $\prod_{i=1}^{k-2} \lambda(\pi_i(L)[Y,L^{k-2}] < [Y,L^0]$. However, $L^0 = pt.$, $[Y,L^0] = 0$, $[Y,L^{k-2}] = [Y,L] = [Y,\Omega^2 X]$ (since dim $Y \leq k-2$) and $\pi_i(L) = \pi_{i+2}(X)$, and so the proof is complete.

Corollary 2.1A follows immediately from Theorem 2A and Corollary 2.1B is easily proved by applying Theorem 2B to the case $[s^kx, \Omega^2s^{k+2}x]$ (= {x, x}).

COROLLARY 2.2. If dim X = k and $H_*(X)$ is finite then for any C-W complex Y

Proof. Use Lemma 10 and Corollary 2.1.

THEOREM 3. If
$$H^{i}(X) = 0$$
 for $i > n+k$ and $H_{i}(Y) = 0$ for $i < n$ then $\{X, Y\}_{F} = (\sum_{i} H^{i}(X; H_{i}(Y)))_{F}$ and k

$$\lambda(\{X,Y\}_T) \mid \lambda((\sum_{n}^{n+k} H^i(X;H_i(Y)))_T) \prod_{i=1}^k \lambda(\Sigma_i(S^\circ)).$$

<u>Proof.</u> We may assume that we are in the stable range (i.e. n > k + 1) and that Y is a finite complex. Then for some r, Y has an r-dual Y', and $\{X,Y\} = \{X \ \# \ Y',\ S^r\}$. dim $X \ \# \ Y' = (n+k) + (r-n) = r+k < r+n < 2r-1.$ So $\{X \ \# \ Y',\ S^r\} = [X \ \# \ Y',\ S^r]$. Let a: $S^r \to K(Z,r)$ represent the fundamental class of S^r , make it into a fibre map with fibre F. Then $[X \ \# \ Y',F] \to [X \ \# \ Y',\ S^r] \to [X \ \# \ Y',\ K(Z,r)] \to [S(X \ \# \ Y'),F]$ is exact. $\pi_i(F) = 0$ for $i \le r$ and $\pi_{r+1}(F) = \Sigma_i(S^0)$ for $0 \le i \le k$.

Using Theorem 2B we have $\lambda([X \# Y', F]) \mid \prod_{i=1}^{k} \lambda(\Sigma_i(S^0)).$

$$[X \# Y', K(Z, r)] = H^{r}(X \# Y') = \sum_{i=n}^{n+k} H^{i}(X; H_{i}(Y)).$$

Also [S(X # Y'), F] is finite for the same reasons that [X # Y', F] is finite. It is now easy to see that

$$[X \# Y', F] \rightarrow [X \# Y', S^r]_T \rightarrow \sum_{i=n}^{n+k} H^i(X; H_i(Y))_T$$

is exact and that $[X \# Y', S^r]_F = \sum_{i=n}^{n+k} H^i(X; H_i(Y))_F$ (although a_* need not induce this isomorphism). The theorem now follows from Lemma 6.

REFERENCE

1. C.S. Hoo, Some remarks on a paper of D.W. Kahn. Canad. Math. Bull. 10 (1967) 233-237.

Sir George Williams University Montreal