RELATIONS BETWEEN FINITE HOMOLOGY AND HOMOTOPY
B. Brown

(received June 21, 1968)

1. Introduction. For a finite abelian group G let »(G) be the
least positive mteger such that »(G)G = 0. Let 3(G) be the least
integer such that »(G) l »G) (M (G) divides »(G)) and if 2 | »(G) then
4 ' »(G). For a finitely generated abelian group G let GT be the
subgroup of G made up of all elements of G of finite order, and let
GF = G/G . For a simply-connected C-W complex X, let ¢(1TX; r)

T
be the smallest class of abelian groups containing the groups
Tri(X), i=2,...,1.

We will assume throughout this paper that the topological spaces
under discussion have the homotopy type of C-W complexes with only
finitely many cells in each dimension. We write H*(X) (H*(X)) for

reduced homology (cohomology) with integer coefficients.
The point of this paper is to prove

THEOREM 1%, Suppose

i) m(X)=0, i=1,...,k-1 where k-1>1
i where 2

ii) w (X) is finite for i=k,...,n,
i 1s iinite 10T
n
then n M7 (X)) H (X)e ¢(nX;n-k).
i=n-k+ n

COROLLARY 2.1. If dim X =k and H*(X) is finite then

k
M{X, X}) | @ W(H, (X))

i=1

*Hoo [1] proves a slightly different version of this theorem for the

special case k = 2.
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and
k
I

WX, X)) | 1Az (=) = {s" X} ].

i=1

THEOREM 3. I H'(X)=0 for i>n+k and H(Y) =0 for

i< n then

n+k i
{(X,¥} o= (2 H (XHE)L
1=n
and
n+k i k o
(X, Y} ) | (= H(XG;H(Y),) T MZ(8).
i=n i=1

2. Some algebraic lemmas . For an element a in an abelian
group A, of(a) will mean the order of a .

Definition. For finite abelian groups A and B we will write
A < B if and only if for every a ¢ A there exists a b ¢ B such that
o(a) | o(b). (o(a) divides o(b)).

The following algebraic lemmas are all trivial.

LEMMA 1. A< B<=> )(A) | xB).

LEMMA 2. A<0 => A=0.

LEMMA 3. If A< B and B is in some class of abelian groups

¢, then Ae¢.

LEMMA 4.

>
A
os]

and B<C = A< C.

LEMMA 5.

=
>
A

B then for any integer r, rA< rB .

LEMMA 6. If A - B—+C is exact A\(B) | \A)(C) and so

i) rA = 0 = rB < C

ii) sC = 0 => sB < A.

LEMMA 7. Suppose Ai—>Bi—> Ci is exact i=1,...,t;
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l
oo}

i) if niAi: 0 i=1,...,t and Ci— it for
i=1,...,t-1 then nt....n1B1<<Ct;

ii) if miCi=O i=1,...,t and AizBiH
i=1,...,t-1 then rntmt_i....rn1B1 < At.

LEMMA 8. I R is a finite ring with identity IR then A\(R) = O(IR).

LEMMA 9. For a finite abelian group G let IG be the identity

homomorphism. (I

G € Hom(G G).) Then \(Hom(G, G)) = O(IG) = (G) .

LEMMA 10. Suppose that G is an abelian group and that R is
a finite ring with identity IR . I m:RX G- G satisfies

i) m(IR, g) =g forall geG, and

ii) m(r1+r2,g) = m(r1,g) + m(rz,g) for all

r_. e R, g eG then A(G) | »(R).

R

LEMMA 11. For finite abelian groups G and H, X(G) | G @ H),’
and %G) | MG @ H).

k
LEMMA 12. G is a finite abelian group. If p | A(G) and
k+

p ¥ \G) then G =2,k O G'.

p

LEMMA 13. G is a finite abelian group. X(G) } X(G) if and only

if G=G' @ Z2 .. Q0 ZZ' where A(G') is odd.

3. Eilenberg-MacLane spaces and Moore spaces. Let K(G, n)
be the Eilenberg-MacLane space of type (G,n) and M(G,n) the Moore
space of type (G, n).

PROPOSITION 1. Let G be a finite abelian group and let LK be

the homotopy class of the identity map of K(G,n). Then

M([K(G, n), K(G, n)]) = o(I) = X(G).
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Proof. [K(G,n), K(G,n)] ¥~ Hom(G,G) and I, corresponds to
IG, under the isomorphism. Since [K(G,n), K(G,n)] is a ring with

identity ]K, M[K(G, n), K(G,n)]) = O(IK) Lemma 8

PROPOSITION 2.

If G is a finite abelian group and X is a
C-W complex, then )\(G)H1 (X; G)

= x(G)Hi (K(G,n)) = 0.

Proof. [K(G,n), K(G,n)] acts on both H (X;G) and H, (K(G, n))

as a ring of operators, so the statement follows from Lemma 10 and
Proposition 1.

PROPOSITION 3. If p is a prime and p ¥ 2 then

{M(z K’ n), M(Z K’ n)} = Z

K
p p p

Proof. Let £:5" = 5" bea map of degree pk Then the cone
of f, C;, has the homotopy type of M(Z

, n). The Hurewicz Theorem

k
n p
implies that {S, Cf} = Z "
p
n+
The fact that {S , Cf} = 0 follows from the exact sequence

fx (51),, +1
{sn+1, Sn} * {Sn+1 , Sn} N {sn-H, Cf} o {SnH’ Sn+'1} Jx n+1’ n }
Il [l [l [l
Z VA Z
2

Z
2

and the observation that f* is onto and (Sf)* is a monomorphism. The
sequence

X
f
(s} e— {shcy — (c,cp — (" )
I Il Il
zpk z, 0
P

is exact and f* is the zero homomorphism, since it is multiplication by
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k
p ,» and so {Cf, Cf} = Zpk.

PROPOSITION 4. If K > 2 then {M(Z " n), M(Z " n)} = Z K e ZZ'
2 2 2

Proof. Let f:S - S" bea map of degree Zk. LetAa:Sn - Cf

. . +
be the inclusion and let B :Cf - s" ! be the inclusion of Cf into the

t t#H t
cone of @. Let h :S - S be the appropriate suspension of the Hopf
n+i

map. We have {Sn, Cf} =Z (with generator o) and {S , Cf} = ZZ
2
(with generator ahn).
@y ﬁ*
n ' ' n+1i -
The sequence 0<¢— {S7, Cf} — {Cf, Cf} < {S ,Cf} «— 0
is exact. So {Cf, Cf} = sz+1 or sz (€ Z2 .

Assume that {Cf, Cf} =Z Let I be the stable homotopy

k+*
2
class of the identity map Cf - Cf . Then I is the multiplicative identity

in the ring {Cf, Cf} and consequently must be a generator of the cyclic

k

k k
group. Since o¥(2 I) =2 a=0, and 2 I ¥ 0, we must have

k n
2 I=p*(h ) = ahnﬁ . We will arrive at a contradiction by showing that
this last equation is false.

a P
£ *
The sequence 0 — {Sn+2'sn} * {Sn+2, Cf} 3 {sn+2' Sn+1} -0 is
+2
exact and {Sn ,Sn} = ZZ (with generator n” nﬂ)? {Sn+2’ SnH} = ZZ

. n+1
(with generator h ). Since B* is onto, there exists an element

+2
Y e{Sn , Cf} such that By = not . Since ¢, is a monomorphism

1 .
ahnhn+ X 0. So ahnﬁy X 0. But y is an element in a group of order

k .
4 and k > 2, so Zkly = Zky = 0. Therefore ahnﬁ £ 2 I and this
contradiction implies that {Cf, Cf} =z, Q Z2 . Let n >4 and let
2
X be the space in the Postnikov system for M(ZZ, n) made up of the
first two non-zero homotopy groups of M(Z2 ,n). Then the Postnikov

system of X looks like this:
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K(Z,,n+1) 2x

\p

k
K(Zz,n) - K(Zz, n+2).

2
The Postnikov invariant k is either 0 or Sq . I k =0, we have

X = K(z,,n) X K(Z,,n+1) and HnH(X;ZZ) = Z, @ Z,. But this

+ +
contradicts H T (x,Z.) = H" (M(Z, )i Z,) =Z,. So k= Sq° .

2 2"
(We begin now not to distinguish, in our symbols, between the following
objects: a cohomology operation, a cohomology class, a map, and its
homotopy class.

1
PROPOSITION 5. [X,X] = Z4 and ZIX = aSq b.
Proof. The sequence

a b qu

-1 +1 3 *
0= H (X;2.)~H" (X52,) Jx,x) - HY(X;Z,) -~ H'(x;z.)

2 2 2

+
is exact. H' (X5Z,) = Z, with generator Sq'b, Hn(X;ZZ) =z, with

2
generator b, and Sq b=0. So 0~ Z2 - [X,X]~> Z2 - 0 is exact
and [X,X]= 2 @ Z_ or Z4 depending on whether or not ZIX = 0.

2 2

If ZIX X 0 we have b*(ZIX) = 0 and 21X € lma*, that is,

1
21X = aSq b. We will prove that ZIX ¥ 0 by showing that for some

n+3
vy eH T(X5Z,), 2y % 0.

Let ¢ :K(Z4, n+3) —- K(ZZ, n+3) be the fibre map corresponding
to the projection Z4 - Zz, and let QJ:K(ZZ, n+3) - K(Z4, n+3) be
the inclusion of the fibre into the total space. The following computations

+3
are straightforward: H" (K(Zz,n);Z4) = Z2 (€2 Z2 with generators

1
L]JSqZSq and r, where ¢r = Sqisqz; Hn+3(K(ZZ, n+2); Z4) = Z_ with

2
1 1 1.2
generator t, where ¢t = Sq . o(r- tSqZ) = Sq qu - SqSq =0.

Therefore r- tSq2 =0 or kquZSq1 . Whatever the case, we have

tsq % ¥ Sq®sqt.
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2 %
(5q7) "
Hn+3(K(ZZ, n+2);z,) — Hn+3(K(ZZ,n);Z4) 25 B ix, z,)

b S 2
is part of the Serre exact sequence for the fibring X — K(Z2 ,n) —q—>K(ZZ, n+2).

+

For the generator te Hlrl 3 (K(Z2 ,n+2); Z4) s (qu)*t = tSq2 foquZSq'l.

2.1 1
So, b*(ySq Sq' ) = qJSqZSq b % 0. Now consider the element

2.1 +3 1 2.1 1.2_1 2.2
Sq Sq b ¢ H (X; ZZ). Sq (Sq Sq b) = (Sq Sq Sq )b = (Sq Sq )b =

2,2
Sq (Sq b) = 0. Therefore for some y ¢ Hn+3(X;Z4), oy = SqZSqib .

2_1
Then Yy = ySq Sq b X 0. But y¢ is twice the identity map
K(Z4,n+3)—>K(Z4,n+3). So Yoy = 2y ¥ 0, and the proof is complete.

PROPOSITION 5A. Let S be the (mod 2) Steenrod Algebra.

. 2
Define h:S—= S by h(6) = 6Sq . Let K =Ker h. Then KSq1 c SSqZ.

Proof. Suppose the statement is false. Then for some 0, OSq2 =0

1 2 1
and 6Sq ¢ SSq~. (Inparticular 6Sq % 0.) Let r = deg 6.
Take X as above with the qualification that n > r +2. Write K, for
1

K(Z2 ,i). The sequence

2
(Sq )* a b*
n+r +1 n+r+1 n+r +1
. —— . — . —
H (Kn—1’ZZ) H (Kn+1’ZZ) H (X; ZZ)
2
(Sq7)*
n+r+1 n+r+1
«—— H K ;Z) «<— ;
( n 2) H (Kn+2 ZZ)
is exact.
Consider 6 as an element of Hn+r+1 (Kn+'1; ZZ) . (qu)*e = esqz =0.

+r+ 1
Therefore, for some y ¢ o (X;ZZ), 6 = a*y. Thinking of Sq as

n+r+1

1 1
a map Kn—'Kn , we have (Sq )*a*y = (Sq1)*9 = 0Sq ¢ H (Kn; ZZ).

+1

1 1 2 1 1.
Also 6Sq X 0 and 6Sq é Im(Sq )*. Therefore b¥%(Sq )¥a*y=b*(6Sq ) X 0.
But b*(Sqi)*a* = (aSqib)* = (ZIX)*' (Proposition 5.) So

1
b*(Sq )*a*y = 2y = 0 and this contradiction proves our proposition.
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PROPOSITION 6. {M(Z2 ,n), M(Z_,n)} = Z

2’ 4"

Proof. Take n >4. Then {M(Zz,n), M(Zz,n)} =
[M(Zz,n), M(Zz,n)] = [M(Zz,n),X]. (Where X is as above.) Using

b
the homotopy sequence for the fibring K(Z2 ,n +1) x> K(Z2 ,n),

n-1 n+1 S b>-
we have that 0 = H (M(Zz,n); ZZ) - H (M(Zz,n); 22) - [M(ZZ, n), X] =

n n+2 . . n . _
H (M(Zz,n), ZZ) - H (M(Zz,n), Z2 =0 is exact; H (M(Zz,n),Zz) = ZZ.
n+l . 1
Call the generator g. H (M(ZZ, n); Z_) = Z2 with generator Sq g.

2
Since b},‘< is onto there exists a ge[M(Z2 ,n), X] suchthat b¢ =g. Then

1 1
Sq b§ = Sq g £ 0, and since a, 1is a monomorphism aSqibg = aSq g 5 O,

i
N

1 .
But aSq b = 2])(' Therefore 0 ¥ aSqibg = 2¢£, and [M(Zz,n),X]

Putting together Propositions 3, 4, and 6 we have that if G = Z

P
(any prime p and exponent k) then N({M(G,n), M(G,n)}) = Z(G).
Now we prove:

PROPOSITION 7. For any finite abelian group G, »({M(G, n), M(G,n)} )=

MG).

Proof. G = % Zp r,. Let M =M(G,n), M. = M(Z r.,n). Then
—_— . i p. i

i i i
M=v M.. Let IM (IM ) be the stable homotopy class of the identity map
. i .
i i

of M (Mi) . Then IM = \1/ IMi.

For any positive integer t, tIM = \1/ tIMi
and tIM = 0 if and only if thi = 0 for each i.

Since o(lM ) = _)(Zp ri) l 2 (G) (remark above and Lemma 11)
i i
we have X(G)IM = 0 for all i and o(IM) | "\(G). Now we must show
i

. . 1
that }(G) | o(L,,) . Using Lemma 13, 3(G) = X(G) or G=G @2, 8....0Z,

where X\(G') is odd.

Case 1. Assume X(G) = »(G). For any prime p suppose

+1
pk | \(G) and pk A \(G). Then G = Z , @ G'"' (Lemma 12).

p

(pk £ 2, otherwise we would not be in Case 1.) Let M K M(zZ K’ n)

p p
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and M'' = M(G'',n). Then M:Mk\/M", and M'' = M(G'', n).
P

. k .
Therefore o(lM ) l o(lM). That is p l o(IM) and this holds

k

p
k
for all maximal prime power factors p of 3(G). So »(Q) , o(IM).

That is, if 3(G) = »(G) then X»(G) = o(IM).

Case 2. Assume G =G' @ Z2 ...0 Z2 where \(G') is odd.
Let M' = M(G',n) and M2 = M(Z_,n). M =M vM_V....vM

2 2 2
=1 [P . i o= 3\ !
and IM M! \% IN[2 v Vv IMZ Since ) (G') MG') we have
= 3 1 3 : -
o(IN[l ) 2(G') (Case 1) and this number is odd. O(IMZ\/ Lol V IMZ) =
o(IMZ) = 4 is prime to o(IMl) and so o(IM) = o(IMl) . O<IM2V Y, IM
43 (G') = X (G).

PROPOSITION 8. If G is a finite abelian group and Y isa C-W
complex, then for any n> 3,

i) % [M(G,n), M(G,n)] = %(G)
ii) A [M(G,n), Y] | X(G).

Proof. 1i) is a consequence of stability and ii) is a consequence of
i) and Lemma 10.

4. The Theorems.
THEOREM 1. Suppose

i) Tri(X)=0,i=1,...,k—1 where k-1 > 1

ii) ni(X) is finite for i=k,...,n,
then
n
I Mr, (X)) H (X) e ¢(rX;n- k)
. i n
i=n-k+

Proof. Let X’ be the space in the Postnikov system for X made
up of the first j homotopy groups of X. We have fibrations

. j+1 j
K( (X), j+1) - x - X and the sequence

T
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j+1
H (K(m, !
n JjtH

Mr KDH (K

(X),j+1) ~ H (X )—>Hn(XJ) is exact when j> n-k.
. >

(X);j+1) =0 (Proposition 2) and so, using Lemma 7,

n

T . (X)DH (XY < H (X775, Also H (X%) = H (X) and
. 1 n n n n
i=n -k+1

-k
Hn(Xn ) ¢ ¢(1-rX;n—k) by the (mod ¢) Hurewicz Theorem. Now use

Lemma 3 and the proof is complete.
COROLLARY 1.1. I %.(X) (= {S',X)) is finite for i=1,...,n
ELD2H ) s finite for

n
then ) (H (X)) | T (=.(X)).
i=1 )

Proof. Choose m >n+1 and let Y = S"X. Then rrj(Y) =0 for

i<m and TTJ(Y) =3z, m(X) is finite for m < j < m +n. Applying
J_ - - -

m+n
Theorem 1 we have I x(ﬂ.(Y))Hm+n(Y) ¢ ¢(rY;n). But ¢(1r Y;n)
jem+
n
is the trivial class and H (Y) =H (X), sowehave I X2T.(X))H (X)=0.
m +n n 521 1 n

THEOREM 2A. K dim X =k and H (X) is finite, then for any Y
m- 2
i)\(Hi(X))[S X,Y] =0.

Proof. Let P = SZX and let P’ be the space in the Eckmann-Hilton
decomposition of P made up of the first i homology groups of P. Note

that all spaces and maps in this decomposition are double suspensions.

1

The inclusion P = - P’ has cone M(Hi(P),i) and so for any Y the

. -
sequence [M(Hi(P) ,i), Y] = [Pl, Y] - [P1 , Y] is exact.
;\(Hi(P)) [M(H.(P),1) Y] = 0 for all i (Proposition 8), and using Lemma 7
i
k+2
we have o H. (P)]
i=1 !
and Hi(P) = Hi-Z(X) and the proof is complete.

Pk+2 k+2 o

Y] <[P°,Y]. But P - =P P’ =pt.,[P° ¥Y]=0

THEOREM 2B. If ‘ITi(X) is finite for i<k and dim Y < k-2,

K
2
then 1 M (X)[Y, @ X]=0.
i=3
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Proof. Let L = QZX and let L' be the space in the Postnikov
system of L made up of the first i homotopy groups of L. All
spaces and maps in this Postnikov system are double loops. For each

‘ i i-1
i < k-2 we have the fibring K(‘lTi(L) ,i) = L' - I_,:l , and the sequence

H(Ysm (1) > [¥, L] > [Y, L] is exact. afr, (LK (Y37, (L) = 0

k-2
(Proposition 2) and using Lemma 7 I )\(Tri (L)[Y, Lk_z] <[Y, Lo] .
i=1

However, L°=pt., [¥,L°]=0, [Y,L5%]=[Y,L] = [Y,2%X]

(since dim Y < k-2) and w.(L) = ni+2(X), and so the proof is complete.
- i

Corollary 2.1A follows immediately from Theorem 2A and
Corollary 2.1B is easily proved by applying Theorem 2B to the case

[sx, 22 x] (=(x.%}).

COROLLARY 2.2. If dim X =k and H*(X) is finite then for any

C-W complex Y

k k k
I NH(X){X,Y} = 0 M=, (X){X,Y} = 0 \H(X){Y,X}
i=1 ! i=1 ! i=1 '
k
= 0 Mz (X)N{Y, X} = 0.
i=1 !

Proof. Use Lemma 10 and Corollary 2.1.

THEOREM 3. K H'(X) = 0 for i >n+k and H(Y) = 0 for
. _ i
i<n then {X,Y} F= (Zi) H (X’Hi(Y)))F and

n+k i k o
M{X, ¥} ) [ A (( i H (X5H, (V) 1) ifi Mz(s7) .

Proof. We may assume that we are in the stable range (i.e. n >k +1)
and that Y is a finite complex. Then for some r, Y has an r-dual Y',

and {X,Y} = {X#Y',S}. dim X #Y' = (n+k) +(r-n) =r+k< r+n<
2r-1. So {X#Y', S} =[X#7Y', S ]. Let a:S —K(Z,r) represent
the fundamental class of Sr , make it into a fibre map with fibre F.

Then [X #Y',F]~ [X #Y', S ] - [X#Y',K(Z,r)] -~ [S(X #Y'),F] is
exact. TTi(F) =0 for i < r and 1'rr+1(F) = Zi(SO) for 0 <i< k.
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k
o
Using Theorem 2B we have \([X #Y', F]) | 1 )\(Zi(S ).

i=1

n+k

T H(XGH, (Y)).
i=n !

[X #Y ,K(Z,r)] = H (X #Y") =

Also [S(X #Y'),F] is finite for the same reasons that [X #Y',F]

is finite. It is now easy to see that

n+k .
[X # Y',F] - [X # Y, sr]T - Hl(X;H_(Y))T
i=n !
r n+k i
is exact and that [X # Y', S ]F = > H (X;H'(Y))F (although a, need
. i
i=n

not induce this isomorphism). The theorem now follows from Lemma 6.
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