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Geodesies of an affine connection and
electromagnetism with radiation reaction

R. R. Burman

This paper deals with the motion of a point test charge in an

external electromagnetic field with the effect of

electromagnetic radiation reaction included. The equation of

motion applicable in a general Riemannian space-time is written

as the geodesic equation of an affine connection. The

connection is the sum of the Christoffel connection and a tensor

which depends on, among other things, the external

electromagnetic field, the charge and mass of the particle and

the Ricci tensor. The affinity is not unique; a choice is made

so that the covariant derivative of the metric tensor with

respect to the connection vanishes. The special cases of

conformally flat spaces and the space of general relativity are

discussed.

1. Introduction

The generally covariant equation of motion of a test charge in an

external electromagnetic field, with radiation reaction neglected, has been

written as the equations of geodesies in a Finsler space and in a

five-dimensional Riemannian space [7S]. It has also been expressed,

within the usual four-dimensional Riemannian space, in the form of the

geodesic equation of an affine connection [7]; the affinity is the sum of

the Christoffel connection and a third rank tensor which depends on the

electromagnetic field and on the It-velocity and charge-to-mass ratio of

the particle. The affinity is not unique, there being a class of
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affinities having the same geodesies, but can be chosen so that the

covariant derivative of the metric tensor, taken with respect to the

affinity, vanishes [7]; this property is preserved if any further skew

part with zero torsion vector is added to the affinity.

The equations of motion of general relativity, for a test particle

under forces arising from fields with arbitrary energy-momentum tensors,

can also be expressed as the geodesic equations of an affine connection

satisfying the condition mentioned above [2].

In the present paper, the work of Droz-Vincent [7] is extended to

include the effect of the force of electromagnetic radiation reaction;

gravitational radiation reaction is still neglected. As a preliminary

step, the generally covariant form of the equation of motion used in

special relativity, namely the Lorentz-Dirac equation, is expressed as a

geodesic equation. Then the results are extended to the equation derived

by DeWitt and Brehme [4] and Hobbs [77] for motion in a general

four-dimensional Riemannian space-time.

2. The generally covariant Lorentz-Dirac equation

Consider a charged point particle, of charge e and mass m , acted

on by an external electromagnetic field (<j> ) , in the Minkowski space of

special relativity. Let [xV) denote the space-time position (r, at)

of the particle, a being the speed of light in empty space. The

equation of motion with the effect of radiation reaction included is the

Lorentz-Dirac equation [6; 7, p. 196; 74]:

(1) maV = ̂  <pavu + ^ ( i p U naXuv

In (l), [uV] and (aV) are the k-velocity and it-acceleration of the

charge: uV = xV and a^ = xV , where a dot denotes differentiation with

v 0
respect to proper time. Also, u u = a .

Equation (l) can be written in generally covariant form by replacing

the partial derivatives by covariant ones. If ds denotes the Riemannian

space-time interval, then uV = xV = cdxV/ds , and using the general
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expression for the covariant derivative of a vector, it follows that

(2a, b) aV = cuU f ! = O2 [<££ + J f I &L. &£
;v ds {^2 la &J as a

and

Here, a dot denotes absolute covariant differentiation with respect to

proper time, while a semi-colon denotes covariant differentiation with

respect to the Christoffel connection, which is represented by the braces.

The skew tensor (s™ ) is defined by [74]

11 \ aB 2e r a B a Si(U) s = [u a - a u } .
3a"

In Riemannian space ds2 = g dx dx , [g ) being the metric tensor,

V o

which will be used to lower and raise indices. So u u = a , which

v • v v
implies that a u = 0 and hence a u = - a a . Using these together

with (k), it follows that

(5) s u
a = \a + — a\a u

B 3o2^ a2 X

- the k-force of radiation reaction is equal to es uo/e . So, using

I 6 J
(2b), the generally covariant form of the Lorentz-Dirac equation can be

written

(6)

The

(7)

where

d2xv

ds2

quantities

1 v \ dxa da?
\a. 6/ ds ds

defined by

c = {:

e

ma

J
e}
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form an affine connection A , since the sum of an affinity and a tensor

of the appropriate type is another affinity. Since u u = e2 , it is
P

seen that (6) can be written

(a) d x + A V dx_dx_ _
( 9 ) ^ 2 Aa 6 ds ds " °

- the geodesic equation of A . When radiation reaction is neglected, the

connection A reduces to that introduced previously [7].

From (2a), (6) can also be expressed as

ia \ v v e f,ay -ays

(6a) u u ;v = —fo + 0 )ua .
Letting a dot denote covariant differentiation with respect to A , (9)

can be expressed as

(9a) K V v = 0

- an alternative form of the geodesic equation.

From the general expression for a covariant derivative, using (7)>

(10) a = q -A -A

Since g = 0 and since [$ R) and (s .) are skew-symmetric, it

follows that g = 0 .
pv.p

Square brackets around a pair of indices will denote a skew part.

Because of the skew-symmetry of (<$> ) and (s ) , <$> and s

vanish; hence the torsion vector of A has components given by

(11) A E Ar
 a = -=S-L ° + h °\u

and so is proportional to the total l(-force (external plus radiation

reaction) acting on the particle.

The above connection is not unique, but has been chosen to give

https://doi.org/10.1017/S0004972700046505 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046505


Geodesies and electromagnetism 229

g - 0 . If (7 ] is a vector and \B a skew-symmetric third rank

tensor, the quantities

(12) A' V = A \ + 6 VVo * 6a
vV * B y

0

form a connection with the same geodesies as A [76]. If V = 0 and

the torsion vector of B vanishes, g = 0 holds with respect to A'

if it does with respect to A [7]. The geodesies of an affinity are

unaffected by its skew part. The affinity A defined by (7) and (8) is

non-symmetric, as it must be for g = 0 to hold: a tensor B chosen

to cancel the skew part would have a non-zero torsion vector.

3. Motion in a general Riemannian space-time

DeWitt and Brehme [4] investigated the motion of a charged particle

in an external electromagnetic field in a Riemannian space-time of

arbitrary (hyperbolic) metric; they found the equation of motion to be

not just the generally covariant form of (1) but to have an additional term

(13) £«

on the right. Here T is the proper time and \fV , is a bi-tensor

I s J
which is skew in its first two indices. The additional force acting on

the charge is non-local in time, and arises from fields originating from

the charge and propagated back by the scattering effects of the space-time

curvature: Huygens1 principle fails in curved space-time [4, 5].

The problem was further investigated by Hobbs [77], who found that

yet another term should be included; this term also arises from the

scattering of the electromagnetic fields due to the space-time curvature.

The equation of motion takes the form of (l) with both (13) and

added to the right side; [R ) is the Ricci tensor (the contracted

Riemann-Christoffel curvature tensor), defined in terms of the Christoffel
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connection.

The equation of motion can be written in the form of (6) with the

bracketed quantity on the right side replaced by

/„_ \ ,au -au ,au au
(15) 4> + 8 + t + r

where

(16; t = i

and

(17) r*v = •

Since If , is skew in its first two indices, [tVV) is skew.

The quantities defined by (7), where now

(18) A v = =S-L v + 0
 v + t v + v Auo

a 6 3 [a a a a j 6

form an affine connection A , and the equation of motion can be written

as the geodesic equation of A , namely (9)-

The torsion vector of A now has components given by

(19) A = Ar . = d> + s + t + r \u - r u \ .
a La o3 3LI a a a a J a 0 aj

Because (r ) is not skew-symmetric, (A ] is not proportional to the

U-force acting on the particle. From (17),

(20) r° ••

in which R is the curvature scalar R

a

The fact that (r ) is not skew-symmetric also means that g

does not vanish. With (18), (10) becomes, since g = 0 ,

(21) g = -2—[r + r )u .
°uv.p 3v pv vvJ p
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So, using (17),

(22) g =^L[R _ -i- R x
u M }u

UV.O 5 UV 9 (u V) T p

where round brackets enclosing a pair of indices denote the symmetric part.

An alternative connection, with respect to which the covariant derivative

of {cj ) vanishes, can be found as follows.

The equation of motion can be written

(23)

[tii- + s + t }u - \R u - — R u u u

,2 la 6J ds ds

with (s ) and [t ) defined by (U) and (16). Consider the affine

connection F defined by

(2U) r uo = I
 v
n\ + B

 v

a B {a BJ a B

where
(25) B = -^— U V + s V + t V\uo + B vun

a g 3 \ja a 0 J B a B

in which (Bag)
 is a skew-symmetric second rank tensor. Since (B )

is skew-symmetric in its first two indices, it is seen from (10) that

g = 0 where a dot now denotes covariant differentiation with respect

to F . Equation (23) can be expressed as the geodesic equation of F

provided

(26) BvBjLUu.iABy) .
ex 31 ** 2 ot x

This condition is satisfied by the skew tensor (s ) , where

(27) B = ̂ — ur R ., u
X .

With (27), the components of T are given by
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«y -R
a T a

The torsion vector of F has components given by

(29) r E rr
 a = -=2-fo ° + a ° + t °}u -

and so is proportional to the total k-force acting on the particle.

4. Motion in a conformally flat space-time

A conformally flat space is one in which ds2 has the form exp(2fl)

exp(2S})n dxvdxv where (n ) is the flat space metric tensor and U is

a function of the xv . In such space-times, the force term found by

DeWitt and Brehme vanishes [72]. Also [19, Chapter 8]

(30) R = 2hi - fl n ) + n na 6fa 0 + 2fi fi o)

and

( 3 D « - 6 e " 2 V e ( n - + n n . )

,otp ,a , p

where a comma denotes partial differentiation.

The force term found by Hobbs, namely (lM, can be written

(32) gis
In a conformally flat space, using (30) and the fact that

(33)

vanishes, (32) becomes

where gVX = exp(-2f2)r)UT .

The equation of motion can be expressed as the geodesic equation of

the affine connection defined by (7) and (18), with r H replaced by
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V I where

(35)

Alternatively, the connection can be defined by (2k) and (25) where now,

using (30) in (27),

(36) B =^—ur (ft .. - Q _,ft }uz .
3mcD ' '

Then

y
a 6

and the torsion vector has the components

(38) r « £ f c
-^i-fft - n an x - —

For a certain class of conformally flat space-times, the force term

(31*) vanishes [J2]. The condition for this is ft = ft fi , the
, ap , a , p

solution of which is [J2]

(39) .« = - ^ 7

where (a ) is an arbitrary constant ^-vector and b is an arbitrary

constant. In such a space-time, the motion is described by the generally

covariant form of the Lorentz-Dirac equation. If the space-time is

required to be spatially isotropic, (39) becomes [72] exp(ft) = l/Ht , H

being constant: this corresponds to the de Sitter metric, as used in the

de Sitter universe (which is empty, stationary and has a cosmological

constant equal to 3H2/c2 ) and in the steady-state cosmology.
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5. Application of Einstein's field equations

As seen in the previous sections, the force term discovered by Hobbs

[7 7] introduces into the affine connection a part which involves the Ricci

tensor (R ) . In this section, Einstein's field equations of general

relativity, which have not so far been used, will be introduced and used

to express the geometrical quantities [R ) and R in terms of physical

quantities.

The field equations are

(1*0) R V + (X - I R)6 V = - K[M V + T v]

where X is the cosmological constant and K is a constant, while M )

and [T ) are the energy-momentum tensors of matter and the

non-gravitational fields, respectively. Contracting (1*0) gives

R - k\ = K(M + T)

where M H M° and T = T^ . Use of (Ul) to eliminate R from (Uo)

gives

(1*2) R V - X6 v = - K\M V - i M6 v ) - AT V - i T6 v ) .

For incoherent matter (dust), of proper density p , M = pu u and

M = pa2 ; these formulas can be applied to a single test particle by

writing p(x) = m6(x - x)/JIg where 6 is a four-dimensional delta

function, x and x represent points in space-time, the latter being on

the particle's world line, and g = det [g ) [77]. If \T represents

the electromagnetic field, then T = 0 [S, p. 183]. So, for a point test

particle in the presence of an electromagnetic field, (Ul) and (1(2) become

(1*3) R - hX = !23S^- 6(x - x)

and
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(1*1*) R - X6 = - KT 6{x - x) \u u - — 6
y y v r- { v 2 y J

Equation (1*1») gives

X - — — 6(x - x)\u

?/— ' a

and hence

(1*6) — R u°u = — T uaux + X - ̂ ^- 6{x - x) .
2 OX ? OX n I '

cl a1 2V-g

Equations (1*5) and (1*6) show that

uR u | M A L _ i u r i
3c [ ax 2 a ox J 3c (_ ax 2 a a T

So, assuming Einstein's field equations to be valid, the components of the

force term found by Hobbs [/!] can be expressed as the right side of

Equations (IT), (20) and (27) can be written, using (1*3) to (U6),

(1*8) r V = =f [fx + ̂ 1 6U - x)l [s V - -i- u uy] - <[T V - -i- T
a 3 LI o/— n a

 ni
 a J I a .2

(1*9) r ° = -efx + ̂ i S(x -
0 L —

and

(50) 0. = r T n u

It is noted that (B ) , unlike (r ) , does not contain the cosmological

constant or any delta function terms.

The electromagnetic energy-momentum tensor has components

(51) T V = if* y * 1 6 ̂  $
w ' y l*ir(_ y6 •» y OT

60 the right side of (1*7) can be written

which expresses the components of Hobb's l*-force in terms of the
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electromagnetic field tensor. The external h-force [k ) acting on the

test charge has components

so (52) can be written

( ^ "V
Equation (50) can be expressed as

(55) B

(56) B = -SS_ u $ k
a

Thus, when the field equations of general relativity are used, the

equation of motion can be expressed as the geodesic equation of the affine

connection T defined by

a 6/ _.s a a a g <: a T x

Because of the skew-symmetry of (<(>}, (s ) , [t ) and (s } , the

covariant derivative of [g ) with respect to T vanishes. The torsion

vector has components

/<TDI T> - e [± a . • a . , o) e2K (^ 1 , o l ,Xx

(5oJ I = hp + s + t: u — (0 ~ — w <p w [<p u,

and so is proportional to the total k-force on the charge.

6. Rohrlkh's electrodynamics

To overcome certain formal difficulties (divergences) which arise in

classical electrodynamics, Rohrlich [J3, 14] proposed a new approach. He

developed a theory of the interaction of charged point particles which is
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Lorentz covariant but neglects quantum effects; radiation reaction is

included, and the theory leads to the Lorentz-Dirac equation of motion.

The theory was generalized to apply in a Riemannian space-time [74, 75],

and the equation of motion for a test charge was then found to be (in

slightly different notation)

d2xv f v \ dxa dx _ e_(,av

here [F_ V } is a tensor defined by

F and \F being the retarded and advanced electromagnetic

field tensors having the test charge as the source. It is found that

[74, p. 221]

I /• \ uv pv uv

(61) F_ = iF + 2F

where

and

(63) 2F
VV = f f E(T - T')fyV

a,W
6'(T')dT' ,

in which e(x) = T/|T| . The tensor (i-FUV) is the same as (sUV) ,

where (s ) is defined by (k). The tensor (2^ ) involves the

bi-tensor introduced by DeWitt and Brehme [4]; (2^^) i s skew-symmetric.

The equation of motion (59) is of the same form as that found by

DeWitt and Brehme [4], but the integral terms differ; there is no term in

(>9) like that found by Hobbs [77]. Equation (59) can be written as the

geodesic equation of the affine connection T with components

I" r, = \ J - |<i> + \F + ?F
a 6 [a 61 31 a a a

v ' me v
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Because of the skew-symmetry of ((j> } , (XF ) and [2
F ) > t n e

covariant derivative of [g ) with respect to Y vanishes. The torsion

vector of V has components

(65) r =-=M$ ° + !*• a + 2F

and is thus proportional to the total It-force on the particle.

7. Concluding remarks

In this paper, the equation of motion of a point test charge in a

general Riemannian space-time, with the effect of electromagnetic radiation

reaction included, has been expressed as the geodesic equation of an affine

connection. The connection is the sum of the usual Christoffel connection

and a tensor consisting of several parts. When radiation reaction is

neglected, the part of the tensor which remains depends on the external

electromagnetic field, the charge-to-mass ratio of the particle and the

particle's ^-velocity: the affinity is not an "external" property of

space, independent of the particle. The parts of the affinity which arise

from the radiation reaction depend on the particle's charge and mass, its

U-velocity and rate of change of U-acceleration with respect to proper

time, the Ricci tensor and a bi-tensor introduced by DeWitt and Brehme [4].

A particular choice of affine connection has been made, so that the

covariant derivative of the metric tensor, taken with respect to the

resulting affinity, vanishes. A possible alternative condition on the

affinity is one which relates to a non-symmetric fundamental tensor, and

was used in the unified field theory developed by Einstein, Schrodinger

and others [76; 9, Appendix II; 101. This condition has previously been

applied in the case in which radiation reaction is neglected [3]; its

application when radiation reaction is included is a topic for future

investigation.
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