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Abstract We construct an explicit algebraic example of a subshift of finite type over a group Γ with
an invariant Markov measure which has completely positive sofic entropy (with respect to ‘most’ sofic
approximations) and yet does not have a direct Bernoulli factor because its model spaces shatter into
exponentially many clusters of sub-exponential size. The example and its analysis are related to random
low-density parity-check (LDPC) codes.
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1. Introduction

This paper constructs explicit dynamical systems with unusual properties related to recent

work on the weak Pinsker property and shattering. The construction is explained next;

the background, motivation and precise statements are developed afterwards.
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Algebraic dynamical systems from LDPC codes 3

Fix natural numbers d,k and let Γ = Γd,k be the d -fold free product of order-k cyclic
groups

Γ := 〈s1, . . . ,sd : sk1 = · · ·= skd = e〉= Zk ∗ · · · ∗Zk︸ ︷︷ ︸
d

,

where Zk means Z/kZ. The set of all functions x : Γ→Z2 is denoted Z
Γ
2 . This is a compact

Abelian group under pointwise addition with the pointwise convergence topology. Let

X ≤ Z
Γ
2 be the closed subgroup defined by

X =

⎧⎨
⎩x ∈ Z

Γ
2 :

k−1∑
j=0

xgsji
= 0 ∀g ∈ Γ, i= 1, . . . ,d

⎫⎬
⎭,

and let μ=mX be the Haar probability measure on X.

For g ∈ Γ, let T g : ZΓ
2 → Z

Γ
2 be the continuous group automorphism given by permuting

indices on the left:

T g((xh)h∈Γ) = (xg−1h)h∈Γ. (1)

The subgroup X is invariant under this action, and hence so is its Haar measure.

This state space is easily visualized in terms of the Cayley graph of Γ with its generators

s1, . . . ,sk. Through each group element g, each si generates a k -cycle. So each vertex of
the Cayley graph lies in d of these k -cycles, and there are no other relations in the group,

so these k -cycles are attached together into a hyper-tree. With this picture in mind, a

member of X is simply an assignment of zeros and ones to the vertices of the Cayley
graph such that the sum around every k -cycle is even. For this reason, and by analogy

with similar constructions in coding theory, we call X a parity check subshift. Indeed,

certain random finite parity check codes play a crucial auxiliary role later in the paper:
see Section 6.

Informally stated, our main results are these:

• If k > d ≥ 3, then the sofic entropy of the dynamical system (X,mX,T ) is
(1−d/k) log(2).

• Every nontrivial factor of (X,mX,T ) has positive sofic entropy and therefore
positive Rokhlin entropy (this property is called ‘completely positive entropy’ or
‘CPE’). In fact, we prove the stronger assertion that the outer Pinsker factor of
(X,mX,T ) is trivial.

• The system (X,mX,T ) is not isomorphic to a direct product of a nontrivial
Bernoulli shift with another system. Combined with the previous conclusion, this
is a strong negation of the weak Pinsker property.

• The system (X,mX,T ) is not weakly contained in a Bernoulli shift. It is one of
the first examples that has completely positive entropy and also this property.

Next, we introduce background needed to state our main results precisely.
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1.1. Background: classical entropy theory

Kolmogorov introduced entropy theory into dynamics for the purpose of distinguishing

Bernoulli shifts up to measure conjugacy. Given a standard probability space (K,κ), the

Bernoulli shift over a countable group Γ with base space (K,κ) consists of the

probability space (KΓ,κΓ) together with the action of Γ by permuting indices as in 1. A
sample of (KΓ,κΓ) is a random K-valued configuration (xg)g∈Γ whose coordinates are i.i.d.

with law κ.

Suppose we are given a standard probability space (X,μ) (where we have left the
sigma-algebra out of the notation for simplicity). Let Aut(X,μ) denote the group of all

measure-preserving automorphisms of (X,μ). A pmp (probability-measure-preserving)

action of Γ is a homomorphism T : Γ → Aut(X,μ). The triple (X,μ,T ) is a Γ-system.
We also refer to it as a system or action if Γ is understood.

If we are given two Γ-systems (Xi,μi,Ti), then a measurable map Φ : X1 → X2 is a

factor map if it is a.e. Γ-equivariant (this means Φ(T g
1 x) = T g

2Φ(x) for all g ∈ Γ and μ1-

a.e. x ∈X1) and the pushforward measure satisfies Φ∗μ1 = μ2. More precisely, we allow
that Φ be defined only on a subset of full measure. If Φ is invertible (after ignoring a null

set), then it is a measure-conjugacy or isomorphism.

If Γ=Z, then an action of the integers is given by a single transformation T ∈Aut(X,μ).
Thus, it makes sense to consider whether two transformations are measurably conjugate.

A problem attributed to von Neumann asks whether there could be two Bernoulli

shifts over the group of integers which are not measurably conjugate. To answer this,
Kolmogorov defined the entropy rate of a dynamical system in the special case in which

Γ = Z [43, 44]. He proved entropy is invariant under measure-conjugacy and computed

entropy rates for Bernoulli shifts, thereby answering the problem in the affirmative. In

fact, the entropy rate of a Bernoulli shift action is the same as the Shannon entropy of
the base space. When the base space is (K,κ) and K is countable, its Shannon entropy is

H(κ) =−
∑
k∈K

κ({k}) log(κ({k})).

If κ is not supported on a countable set, then its Shannon entropy is defined to be +∞.

Kolmogorov’s theory extends fairly directly to the case when Γ is amenable. The first
published work on entropy theory for general amenable groups is due to Kieffer [41].

Since Kolmogorov’s pioneering work, entropy and Bernoulli shifts have played a central

role in classifying dynamical systems. For example, Sinai proved that if an ergodic action

of Z has positive entropy, then it factors onto a Bernoulli shift of the same entropy [67].
Because entropy cannot increase under a factor map, this shows that Bernoulli factors

witness entropy. Inspired by Sinai’s theorem, Ornstein proved that Bernoulli shifts over

the integers are isomorphic if and only if they have the same entropy [52, 53]. These
results were extended to the case of amenable acting groups in [58].

Shannon entropy is easily seen to be additive under direct products, and this property is

inherited by Kolmogorov’s entropy rate. Naively, one might guess that any ergodic system
is isomorphic to a direct product of a Bernoulli shift with a zero entropy system. This turns

out to be false; counterexamples to weaker claims appear in [56, 55, 54]. If it were true

for a system which was not itself isomorphic to a Bernoulli shift, then additivity implies

https://doi.org/10.1017/S147474802510100X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802510100X


Algebraic dynamical systems from LDPC codes 5

that the system would have a nontrivial (direct) factor with zero entropy. A system is

said to have completely positive entropy (CPE) if every nontrivial factor has positive

entropy. Here a ‘trivial’ factor is a measure-preserving system where the measure is a
delta mass at a single point. This system is a factor of every other system, and it is easy

to see that its entropy is zero. The paper [57] shows that for any positive number h > 0,

there exist uncountably many pairwise non-isomorphic transformations which are CPE
and have entropy h.

A factor map π : (X1,μ1,T1) → (X2,μ2,T2) is said to be direct or split if there is

another factor map ξ : (X1,μ1,T1)→ (X3,μ3,T3) so that the pair (π,ξ) together forms an
isomorphism

(X1,μ1,T1)→ (X2×X3,μ2×μ3,T2×T3).

Note that the measure on the right-hand side is required to be the product, so in particular

the factor maps π and ξ must generate independent sigma-subalgebras of subsets of X1.

While Sinai’s factor theorem shows the existence of Bernoulli factors, it does not say
anything about the existence of direct Bernoulli factors.

In the 1970s, Thouvenot defined a system to have the weak Pinsker property (WPP) if

for every ε > 0, it is isomorphic to a direct product of a Bernoulli shift with a system of

entropy less than ε [69]. In other words, a system has the WPP if its entropy is witnessed
by direct Bernoulli factors. Thouvenot asked whether every ergodic transformation has

the WPP. The first author recently proved that this is indeed the case [5]. Moreover, the

statement holds whenever the acting group Γ is amenable.

1.2. Background: sofic entropy theory

The second author constructed a system without the WPP in the special case when the

group Γ is a free group of sufficiently high rank [17]. To explain, we need to pause for a

moment to discuss entropy theory when the acting group is not amenable.
An example due to Ornstein and Weiss in [58] suggested it might not be possible

to extend entropy theory to non-amenable groups. However, this changed with the

introduction of sofic entropy theory [11]. The new theory applies to all sofic groups, which

is a class of groups containing amenable and linear groups, for example. It is unknown
whether all countable groups are sofic. Sofic entropy theory is reviewed in §2.2.
A sofic approximation to a group Γ is a sequence Σ of partial actions on finite sets

which approximates the action of the group on itself by left-translations. To be precise,
Σ = (σn)n∈N where σn : Γ→ Sym(Vn), Vn are finite sets, Sym(Vn) is the symmetric group

on Vn and the sequence is required to satisfy for all g,h,f ∈ Γ such that f is not the

identity,

1 = lim
n→∞

|Vn|−1|{v ∈ Vn : σn(gh)v = σn(g)σn(h)v}|

0 = lim
n→∞

|Vn|−1|{v ∈ Vn : σn(f)v = v}|.

A group is called sofic if it admits a sofic approximation. The sofic entropy of a system

(X,μ,T ) (defined in Section 2.2) depends a priori on a choice of sofic approximation,

although for many actions where it has been computed, it has been shown not to.
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Many classical results extend to the sofic setting. For example, the sofic entropy of
a Bernoulli shift action is equal to the Shannon entropy of the base. Sofic entropy is

a measure-conjugacy invariant, and so two Bernoulli shifts with different sofic entropy

are not isomorphic. In recent work, Seward completed the converse direction: for any
countable group Γ, if two Bernoulli shifts over Γ have the same base space Shannon

entropy, then they are measurably conjugate [68, 13, 66]. This converse does not depend

on sofic entropy, which might not even be defined.

In a series of works generalizing Krieger’s Theorem [63, 64], Seward introduced Rokhlin
entropy. To define it, suppose we are given an action T : Γ→ Aut(X,μ) and a countable

measurable partition P of X. We say the partition is generating if the smallest sigma-

algebra containing it which is also T (Γ)-invariant is the sigma-algebra of all measurable
sets (up to sets of measure zero). Then Rokhlin entropy is defined to be the infimum of

Hμ(P) over all generating partitions, where

Hμ(P) =−
∑
P∈P

μ(P ) log(μ(P ))

is the Shannon entropy of (P,μ).
It is immediate that Rokhlin entropy is a measure-conjugacy invariant. Moreover, it

upper bounds sofic entropy. In fact, it is unknown whether Rokhlin entropy equals sofic

entropy whenever the latter is not minus infinity (which can happen). However, the only

known method for computing a lower bound to Rokhlin entropy uses sofic entropy. For
example, it is unknown how to compute the Rokhlin entropy of Bernoulli shift actions,

except in the case when Γ is assumed to be sofic.

In a different paper [65], Seward generalized Sinai’s factor theorem: every ergodic system

with positive Rokhlin entropy factors onto a Bernoulli shift with the same entropy.
However, other structural results about classical Kolmogorov–Sinai entropy break down

outside the world of amenable groups. For example, Ornstein and Weiss’ example shows

that sofic entropy can increase under a factor map. In fact, recent work of the second
author shows that if Γ is an arbitrary non-amenable group, then every Bernoulli shift

over Γ factors onto every Bernoulli shift over Γ [15]. For example, Bernoulli shifts of

small entropy factor onto Bernoulli shifts of infinite entropy.
Although Bernoulli shifts themselves have been classified, there is no known substitute

for broader ‘Ornstein theory’, which provides necessary and sufficient conditions for

general ergodic processes to be isomorphic to Bernoulli shifts. Moreover, some specific

counterexamples show that the story must change substantially for some non-amenable
groups. For example, when G has property (T), Popa and Sasyk [60] have given simple

examples of factors of Bernoulli shifts that are not isomorphic to Bernoulli shifts.

It is also known that the weak Pinsker property does not hold for all non-amenable
groups and for the main non-amenable notions of entropy. The first counterexample

appeared in [17]. While that counterexample does not have the WPP, it might still admit

some direct Bernoulli factors. In other words, the system might be measurably conjugate
to the direct product of a Bernoulli shift with another system, but one cannot choose

the other system to have entropy less than ε if ε > 0 is chosen low enough. In this work,

we present a new counterexample which does not admit any nontrivial Bernoulli factors.
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Here, a Bernoulli shift (KΓ,κΓ,T ) is said to be trivial if κ is supported on a single point

in K. So a trivial Bernoulli shift is measurably conjugate to the trivial system which

consists of Γ acting on a single point.

1.3. Main results

Recall from the introduction that Γ is the d -fold free power of Zk, X ⊂ (Z2)
Γ is a certain

closed ‘parity check’ subgroup and T : Γ→ Aut(X,mX) is the canonical shift action by

automorphisms.

Theorem A. Let k > d≥ 3. Then there exists a sofic approximation Σ= (σn)n to Γ such

that

hΣ(X,mX,T ) = (1−d/k) log2

and along which the outer Pinsker factor of (X,mX,T ) is trivial. In particular, (X,mX,T )

has completely positive sofic entropy along Σ.

Since sofic entropy is always bounded above by Rokhlin entropy, the last part of this
theorem has the following immediate corollary:

Corollary 1.1. The outer Rokhlin Pinsker factor of (X,mX,T ) is trivial, so it has

completely positive Rokhlin entropy.

Theorem B. If k > d≥ 3, then the system (X,mX,T ) has no nontrivial direct Bernoulli

factors.

Remark. Theorems A and B should hold in the more general setting in which

Γ = Γ1 ∗ · · · ∗Γd, where each Γi is a group of order k. That is, we do not need to require

that each Γi is cyclic. The proofs are essentially the same.

Remark. The weak Pinsker entropy of a system (X,μ,T ) is defined to be the

supremum of the Shannon entropies H(K,κ) over all direct Bernoulli factors of the form

Γ�(K,κ)Γ. This concept was introduced in [18]. So Theorem B implies that (X,mX,T )
has zero weak Pinsker entropy.

Finally, our methods also give the following.

Theorem C. If k > d ≥ 3, then the system (X,mX,T ) is not weakly contained in a
Bernoulli system.

For a definition of weak containment of measure-preserving systems, see, for exam-

ple, [19].
Theorems B and C are consequences of the system having totally shattered microstate

spaces along some sofic approximation: see Corollary 5.5.

Together, Theorems A and C show that (X,mX,T ) has completely positive sofic entropy
along some sofic approximation, and hence also completely positive Rokhlin entropy, but

is not weakly contained in a Bernoulli shift. The authors are not aware of other systems

for which both of these properties have been verified previously.
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1.4. Probabilistic versions of the main theorems

Both Theorem A and Theorem B will be derived as corollaries of probabilistic theorems.

To explain, we say that a permutation of a set V is k-uniform if it consists entirely of k -

cycles: that is, its cycle type is [kn/k]. Recall that Γ=Γd,k = 〈s1, . . . ,sd : sk1 = · · ·= skd = e〉.
A homomorphism σ : Γ → Sym(V ) is k-uniform if for each generator si, the image
σ(si) is k -uniform. Let Pn be the uniform distribution on the set Homunif(Γ, Sym(Vn)) of

k -uniform homomorphisms. We will always assume n is chosen so that k divides n (since

otherwise there are no k -uniform permutations).
We infer the existence of sofic approximations with the desired properties from the next

proposition, which follows immediately from a more precise estimate in [2, Lemma 3.1].

Proposition 1.2. There are subsets Ωsofic
n of Homunif(Γ, Sym(Vn)) with Pn(Ω

sofic
n )→ 1

and such that (σn)n is a sofic approximation to Γ whenever σn ∈ Ωsofic
n for all n.

With Proposition 1.2 in hand, Theorem A is a corollary of the following probabilistic

version.

Theorem 1.3. There are subsets Ω′
n ⊆Ωsofic

n with Pn(Ω
′
n)→ 1 and such that, if σn ∈Ω′

n

for every n, then

a. the sofic entropy of (X,mX,T ) along any subsequence of (σn)n equals

(1−d/k) log2;

b. every nontrivial factor of (X,mX,T ) inherits positive sofic entropy along (σn)n.

Part (b) of this theorem refers to ‘inherited’ sofic entropy. This quantity has previously

been referred to as ‘extension’ sofic entropy, ‘outer’ sofic entropy, or ‘sofic entropy in the

presence’. The outer Pinsker factor along (σn)n is the largest factor of (X,mX,T ) for
which this quantity vanishes, so part (b) above asserts that the outer Pinsker factor of

(X,mX,T ) along (σn)n is trivial. We recall these definitions and discuss our choice of

terminology in Subsection 2.3 below.

Remark. It is tempting to summarize part (b) of Theorem 1.3 as ‘(X,mX,T ) has

completely positive entropy with high probability according to Pn’. But we must be
careful because this summary hides an important detail about the order of quantifiers.

For part (b) of Theorem 1.3, the high-probability subsets Ω′
n are found a priori, and then

any factor of (X,mX,T ) has positive sofic entropy along any choice of σn from those

subsets. One could instead take ‘completely positive entropy with high probability’ to
mean that for every factor of (X,mX,T ), there is a sequence of high-probability sets Ω′

n

(depending on the factor) within which one sees the desired positive sofic entropy. The

latter conclusion is formally weaker, and we do not know whether there exist examples
that satisfy one but not the other. Since the collection of all factors may be uncountable,

one cannot use a simple diagonal argument to prove that these two formulations are

equivalent. (If one identifies factors with their conditional expectation operators, then
their induced strong operator topology is separable, but the semi-continuity properties

of sofic entropy still do not obviously combine with approximations in this topology to

enable a more complicated diagonal argument.)
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Theorem B is also a corollary of a probabilistic assertion about randomly-chosen σn

and the geometry of the space of microstates. We will prove that the space of microstates

shatters in a strong sense, which roughly speaking means that it splits into a union of

exponentially many well-separated clusters, each of which has sub-exponential size. The
precise definition is given in §5, and the precise statement of the result for the parity-check

subshift (Theorem 6.1, part (3)) is formulated in §6.1 below. It was essentially already

known from [17] that this phenomenon is incompatible with having a direct Bernoulli

factor. We give a formal proof of this incompatibility in §5.
Our focus on the geometry and on shattering is inspired by similar ideas from statistical

physics on random sparse graphs [1]. As far as we know, the term ‘shattering’ first appears

in [22]. In other works, this phenomenon is called dynamical replica symmetry breaking
[29, 45].

1.5. Outline of the paper

This paper is divided into two parts. In Part I, we consider general symbolic dynamical

systems with a focus on the case in which Γ is a free product of finite cyclic groups.

• Section 2 is a review of sofic group theory and sofic entropy.
• Section 3 introduces Kikuchi entropy and annealed entropy for actions of Γd,k.

These entropies generalize the F -functional and the f -invariant from [10] and are
strongly related to the first moment method in statistical physics. This is the main
tool for proving Theorem 1.3 part (a).

• Section 4 relates completely positive inherited entropy to a version of uniform
mixing for model spaces that we call ‘property M’. These general notions provide
the background and tools needed to prove Theorem 1.3 part (b).

• Section 5 defines totally shattered microstate spaces and shows how this property
prevents both direct Bernoulli factors and weak containment in a Bernoulli shift.

Part II focuses on the parity check sub-shifts which appear in the main theorems:

• Section 6 discusses random (finite) LDPC codes.
• Section 7 proves that for a typical sequence of these codes, the sequence of uniform

measures on the codebooks has property M.
• Section 8 proves that typically these uniform measures converge locally and

empirically to the Haar measure. Since the sequence also has property M, this
gives Theorem 1.3(b) as an application of Theorem 4.3.

• Section 9 proves that the sofic entropy of the Haar measure is (1−d/k) log2 over
most sofic approximations (Theorem 1.3(a)).

• Section 10 proves that the Haar measure typically has totally shattered microstate
spaces (Theorem 6.1(3)). This implies Theorem B (the Haar measure has no direct
Bernoulli factors) via Corollary 5.5(2).

1.6. Notational conventions

We use the following standard notation for approximate comparison of functions. Let f

and g be real-valued functions on the same domain S, and let A be any set of additional

parameters in specifying these functions. Then,
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• In case g is nonnegative, we write f = OA(g) if there is a positive constant c,
depending possibly on A but on nothing else, such that |f | ≤ cg.

• In case g is nonnegative and S =N, we write f = oA(g) if g(n) is strictly positive for
all sufficiently large n and f(n)/g(n)→ 0, where this convergence may be bounded
by a function that tends to 0 and depends only on A.

• For any S, we write f �A g or g �A f if (i) both functions are nonnegative, and (ii)
there is a positive constant c, depending possibly on A but on nothing else, such
that f ≤ cg. Note that this is similar to writing ‘f =OA(g)’, except here it is part
of the assertion that f and g are both nonnegative, in case this is not obvious.

Finally, if (Ωn,Pn) is a sequence of probability spaces indexed by n∈N, we write ‘op(1)’

as a placeholder for any sequence of random variables Xn on these spaces such that

Pn(|Xn|> ε)→ 0 ∀ε > 0.

So this is essentially an analog of o(1) for convergence in probability.

Part I

General systems

2. Preliminaries

2.1. Sofic groups

A sofic approximation to a countable group Γ is a sequence Σ = {σn}n∈N of maps

σn : Γ→ Sym(Vn),

where Vn are finite sets, Sym(Vn) is the symmetric group on Vn, and the sequence is

required to be asymptotically homomorphic and free in the following sense: For every

g,h ∈ Γ, we require that the homomorphism equation σn(gh)v = σn(g)σn(h)v holds for
asymptotically all v ∈ Vn:

1 = lim
n→∞

|Vn|−1|{v ∈ Vn : σn(gh)v = σn(g)σn(h)v}|.

For every non-identity element g ∈ Γ\{1Γ}, we require that the percentage of points fixed
by σn(g) tends to zero:

0 = lim
n→∞

|Vn|−1|{v ∈ Vn : σn(g)v = v}|.

A group Γ is sofic if it admits a sofic approximation.
If Γ admits a finite generating set S, then it is common to visualize a map σn as

above in terms of the labeled and directed graph G(σn) = (Vn,En) it induces. The edges

of this graph are pairs of the form (v,σn(s)v) for s ∈ S and v ∈ Vn, and the label of
this pair is s. Then Σ is a sofic approximation precisely when this sequence of graphs

G(σn) Benjamini-Schramm converges to the (labeled and directed) Cayley graph of Γ

with respect to S [27].
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It is an exercise to check that all amenable groups and all residually finite groups are
sofic. Because finitely generated linear groups are sofic and direct unions of sofic groups

are also sofic, it follows that all linear groups are sofic. It is an open problem whether all

countable groups are sofic.
The class of sofic groups was introduced implicitly by Gromov [35] and explicitly by

Weiss [73]. For further background on sofic groups, see [59, 21].

2.2. Sofic entropy

This section defines sofic entropy for subshifts using the formulation from [14]. See also

[16] or [40] for more comprehensive references.
Let Γ denote a countable group and let A be a finite set (called the alphabet). Let AΓ

be the set of all functions x : Γ→ A. We write either xg or x(g) for the value of x on g ∈ Γ,

whichever is most convenient. We endow AΓ with the pointwise convergence topology,
under which it is compact and metrizable.

Let Prob(AΓ) denote the space of all Borel probability measures on AΓ, which we endow

with the weak* topology. In this topology, a sequence of Borel probability measures
(μn)n∈N converges to a measure μ∞ if and only if for every continuous function f : AΓ →R,

limn→∞
∫
f dμn =

∫
f dμ∞. An equivalent characterization uses cylinder sets which are

defined as follows. Given a finite subset F ⊂ Γ and x : F → A, let C(x,F ) be the set of all

functions y : Γ→ A such that y(f) = x(f) for all f ∈ F . Then (μn)n∈N converges to μ∞ if
and only if for every such F and x, limn→∞μn(C(x,F )) = μ∞(C(x,F )). This is because

the cylinder sets C(x,F ) form a sub-basis for the topology on AΓ.

Let T = (T g)g∈Γ be the shift action on AΓ defined by T gx(f) = x(g−1f) for x ∈ AΓ.
This induces an action on Prob(AΓ) by pushforwards. The set of all shift-invariant Borel

probability measures on AΓ will be denoted ProbΓ(AΓ). If μ is a shift-invariant Borel

probability measure on AΓ, then the system (AΓ,μ,T ) is called a shift Γ-system. We
define here the sofic entropy of such systems.

Given σ : Γ → Sym(V ), v ∈ V and x : V → A, the pullback name of x at v is the

labeling Πσ
v (x) ∈ AΓ defined by

Πσ
v (x)(g) = xσ(g−1)v ∀g ∈ Γ.

For the sake of building some intuition, note that when σ is a homomorphism, the map v 
→
Πσ

v (x) is Γ-equivariant (in the sense that Πσ
σ(g)v(x) = T gΠσ

v (x)). In particular, Πσ
v (x) ∈ AΓ

is periodic. In general, we think of Πσ
v (x) as an approximate periodic point.

The empirical measure of x : V → A is

P σ
x = |V |−1

∑
v∈V

δΠσ
v (x)

∈ Prob(AΓ),

where, for y ∈ AΓ, δy ∈ Prob(AΓ) is the Dirac measure concentrated on {y}. For example,

if σ is a homomorphism, then P σ
x is a Γ-invariant measure supported on the Γ-orbits of

the pullback names Πσ
v (x).

Given an open set O ⊂ Prob(AΓ), a map x : V → A is called an (O,σ)-microstate if

P σ
x ∈O. Typically, we take O to be a small neighborhood of μ, in which case we consider
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(O,σ)-microstates to be ‘good microstates for μ’. Let Ω(σ,O) ⊂ AV denote the set of all

(O,σ)-microstates.

Let μ ∈ Prob(AΓ) be Γ-invariant and let Σ = (σi : Γ → Sym(Vi))i∈N be a sofic
approximation to Γ. We say that the system (AΓ,μ,T ) has microstates along Σ if

for every neighbourhood O of μ,

Ω(σn,O) �= ∅ for all sufficiently large n.

More generally, an arbitrary measure-preserving Γ-system has microstates along Σ if

every shift-system factor of it has microstates along Σ.

The Σ-entropy of the action (AΓ,μ,T ) is defined by

hΣ(A
Γ,μ,T ) := inf

O�μ
limsup
i→∞

|Vi|−1 log |Ω(σi,O)|, (2)

where the infimum is over all open neighborhoods of μ in Prob(AΓ). We abbreviate this
to hΣ(μ) if the other data are clear from the context. This number depends on the action

(AΓ,μ,T ) only up to measure conjugacy [11]. It therefore defines an invariant for any

abstract measure-preserving system that can be represented up to measure conjugacy by

a shift system with a finite alphabet or, equivalently, that has a finite generating partition.
If the system does not have microstates along any subsequence of Σ, then we declare that

the Σ-entropy is −∞.

2.3. Factor maps and inherited entropy

The second part of Theorem A concerns the entropy not only of (X,mX,T ) but also of

all its factors. Since X is a shift-invariant subset of ZΓ
2 , the Σ-entropy of (X,mX,T ) is an

instance of formula (2). But this system may have factors that are not measure conjugate
to shift systems, so that formula (2) does not apply.

Sofic entropy can be generalized to measure-preserving systems on standard measurable

spaces in various ways: see, for instance, [16, Subsection 2.4] and [3, Subsection 3.1] for
formulations and proofs of their equivalence. However, rather than repeat these in detail

here, we need only recall how they are controlled by another entropy notion that does

permit us to reduce our work to the study of shift systems.

Towards defining this, consider a factor map between two shift systems on finite
alphabets, say

Φ : (AΓ,μ)→ (BΓ,ν), (3)

where μ and ν are both invariant under the shift actions of Γ on their respective spaces.
Rather than counting good microstates for μ or ν separately, we can ask how many of the

good microstates for ν can be lifted to good microstates for μ – that is, how many good

microstates ν ‘inherits’ through the map Φ. To make this precise, consider the graphical

joining

λ :=

∫
AΓ
δ(x,Φ(x)) dμ(x). (4)
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This is invariant under the shift action of Γ on (A× B)Γ. Let proji be the coordinate

projection from (A×B)Vi to BVi . Finally, define the inherited Σ-entropy of Φ to be

hΣ(μ,T ; Φ) := inf
O�λ

limsup
i→∞

|Vi|−1 log |proji[Ω(σi,O)]|. (5)

If Φ is the identity, then this is easily checked to coincide with hΣ(μ).

Like sofic entropy itself, inherited sofic entropy can be generalized to factor maps

between arbitrary measure-preserving systems. This general notion is not new, but our
use of the term ‘inherited’ is new. Indeed, the idea behind this quantity is already implicit

in Kerr’s original approach to defining sofic entropy itself for general measure-preserving

systems (see [39] or [16, Subsubsection 2.4.2]). It was formulated and studied explicitly
by Hayes in [38, 37], who refers to it as ‘entropy in the presence’ in recognition of a

parallel usage in Voiculescu’s theory of free entropy [70]. It has also been studied by

other authors under various names, including ‘outer sofic entropy’ and ‘extension sofic

entropy’. It is reviewed in [16, Subsection 11.1], which gives more complete references.
Despite this history, we do propose the new name ‘inherited’ entropy because this seems

to capture the idea behind the definition better.

Starting from (5), one can define entropy for a factor map between general systems
by carefully inserting a supremum over generating partitions of the lower system and

an infimum over generating partitions of the upper system. However, the proof that

sofic entropy itself is invariant under measure conjugacy can be adapted directly to the
quantity in (5), showing that it is an invariant of Φ, where we consider two factor maps to

be equivalent if they appear downwards in a commuting square whose horizontal arrows

are conjugacies. As a corollary, (5) coincides with the abstract inherited entropy in the

case of two shift systems. A more general version of this argument can be found in [38,
Proposition 2.9].

One crucial advantage to working with inherited sofic entropy is its monotonicity under

factor maps. The following lemma is a special case of parts (iii) and (iv) of [38, Proposition
2.10].

Lemma 2.1. If

(X,μ,T )
Π→ (Y ,ν,S)

Φ→ (Z,θ,R)

are factor maps, then

hΣ(μ,T ; Φ◦Π)≤min
{
hΣ(ν,S ; Φ), hΣ(μ,T ; Π)

}
.

In particular, taking Π (resp. Φ) to be the identity, we obtain

hΣ(μ,T ; Φ)≤ hΣ(μ,T ) (resp. hΣ(μ,T ; Π)≤ hΣ(μ,S)).

Inspired by this property, one defines the outer Σ-Pinsker factor of a measure-

preserving system to be the largest factor whose inherited Σ-entropy is zero. A routine
argument shows that a unique maximal such factor exists. Hayes’ paper [38] develops

this story as well, although it had been considered in unpublished work previously. As

a result, the assertion that every nontrivial factor of a measure-preserving system has
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positive inherited Σ-entropy is equivalent to the assertion that the outer Σ-Pinsker factor
of that system is trivial. In addition, by the last inequality in Lemma 2.1, if a system has

this property, then it also has completely positive Σ-entropy. The observations together

explain our formulation of the second part of Theorem A.
Starting from Lemma 2.1, Hayes develops enough properties of the outer Pinsker factor

to turn it into a valuable tool in the study of sofic entropy in general. For instance, these

properties are crucial to his proof that a certain large class of systems of algebraic origin

all have completely positive sofic entropy [37]. Our reasons for using inherited entropy in
the proof of Theorem A are similar, but the details of our proof are essentially disjoint

from those of Hayes, and our LDPC system is not among the systems of algebraic origin

that he considers in that reference.
Among its useful consequences, Lemma 2.1 gives the following:

Corollary 2.2. Let (X,μ,T ) be a measure-preserving system. If every nontrivial factor

map of (X,μ,T ) to a shift system has positive inherited Σ-entropy, then every nontrivial

factor map of (X,μ,T ) has positive inherited Σ-entropy.

Proof. Let Π be a factor map to another nontrivial system (Y ,ν,S). Then (Y ,ν) has a

nontrivial partition into two measurable subsets. By acting on this partition using S, we
define a further factor map of the form

Φ : (Y ,ν,S)→ ({0,1}Γ,θ,shift),

where θ is not a Dirac measure. Now our hypothesis gives that hΣ(μ,T ; Φ◦Π) > 0, and

this implies that hΣ(μ,T ; Π)> 0 by Lemma 2.1.

Corollary 2.2 can simplify many of the technicalities involved in a proof of completely

positive inherited entropy by letting us restrict our attention to factor maps between shift
spaces. Given such a map, say

Φ : (AΓ,μ)→ (BΓ,ν),

it is uniquely determined by its coordinate at the identity of Γ, which is an arbitrary
measurable map φ : AΓ → B. Starting from φ, we write φΓ for the factor map that it

induces, which is given by

φΓ(x)(γ) = φ(γ−1 ·x). (6)

When working with such a map Φ, a further simplification is often necessary. If D is
a finite subset of Γ, then the map φ above is called D-local if the image φ(x) depends

only on the coordinates of x indexed by D – equivalently, if φ factorizes into maps

AΓ → AD → B,

where the first map is the coordinate projection. We say that φ is local if it is D-local for

some finite set D,and apply the same terminology to the whole of φΓ. This is equivalent

to φΓ being a continuous map for the product topologies on our shift spaces.

https://doi.org/10.1017/S147474802510100X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802510100X


Algebraic dynamical systems from LDPC codes 15

If x ∈ AV is some good microstate for μ over a map σ : Γ→ Sym(V ), we might attempt

to send it to a good microstate for ν using the map φσ : AV → BV defined by

φσ(x)(v) = φ(Πσ
vx), (7)

since the empirical distribution of φσ(x) would then be φΓ
∗P

σ
x . Since P

σ
x is close to μ, one

would hope this would be close to ν. This argument is correct in case φΓ
∗ acts continuously

on measures, which in turn holds if φ is local. In that case, φσ also has the following form

of quantitative continuity.

Lemma 2.3. Suppose A,B are finite sets, φ : AΓ → B is D-local, and σ : Γ→ Sym(V ). If x

and y are elements of AV that disagree in exactly one coordinate, then φσ(x) and φσ(y)
disagree in at most |D| coordinates.

Equivalently, this asserts that φσ is |D|-Lipschitz for the ‘normalized Hamming metrics’

on AV and BV . This point of view is introduced and used for an application of Lemma 2.3

in Subsection 5.1.

Proof. Suppose that x(u) �=y(u), and let v ∈ V . Since φ is D-local, we can have φ(Πσ
vx) �=

φ(Πσ
vy) only if there exists γ ∈D such that x(σ(γ−1)v) �= y(σ(γ−1)v), and hence only if

u appears in the set σ(D−1) · v. Since σ is an action by permutations, this holds if and

only v lies in σ(D−1)−1 ·u, and that set has cardinality at most |D−1|= |D|.

The arguments about φσ above can fail for general measurable factor maps, but this

problem can be overcome by approximating these in measure by local factor maps. We

say that a sequence of maps

ψm : AΓ → B (m= 1,2, . . . )

is a local approximating sequence to φ if each ψm is local and

μ{ψm �= φ}→ 0. (8)

(Note that this notion implicitly also depends on the measure μ.) These are the special

case for shift spaces of the ‘almost Lipschitz approximating sequences’ introduced and

used in [3] to study factor maps between more general measure-preserving systems. At a
few points in the sequel, we refer to [3] for properties that we need in our special case.

For instance, informally, if ψ is a good enough local approximation to φ, then ψσ sends

very good microstates for μ to fairly good microstates for φΓ
∗μ [3, Lemma 4.10].

3. Bethe–Kikuchi entropy and annealed calculations

Throughout this section, we set Γ = Γd,k = Zk ∗ · · · ∗Zk equal to the free product of d
copies of Zk = Z/kZ.

The proof of Theorem A part (a) (and its probabilistic version Theorem 1.3) relies on a

first moment calculation. These kinds of computations have a long and interesting history
in statistical physics and more recently appeared in the entropy theory of actions of the

free group, where, for example, they were used to answer a long-standing open problem on

the classification of Bernoulli shifts over free groups [10]. This history is reviewed in §3.3.
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In the next section, we introduce the uniformly random sofic approximation to Γ.
This will be our main focus, and we will only obtain results about deterministic sofic

approximations indirectly as a consequence of the analysis of these random ones.

In Section 3.2, we introduce Kikuchi entropy, which has historical roots in physics [42]
and is a version of the functional F of [10] adapted from the free group to groups Γ which

are free products of finite groups. This entropy is a first approximation to the annealed

entropy which in recent ergodic-theory research was called the f -invariant [10]. These

entropies are key ingredients for proving Theorem 1.3 part (a).

3.1. Random sofic approximations

Instead of directly constructing sofic approximation sequences σn : Γ→ Sym(Vn), we will
construct probability measures on the space of homomorphisms from Γ to Sym(kn). These

measures were used for the same purpose in [2].

Let V be a finite set whose size is divisible by k. Let us say that a permutation of V
is k-uniform if it consists entirely of k -cycles: that is, its cycle type is [kn/k]. Consider

a d -tuple of k -uniform permutations (σ(s1), . . . ,σ(sd)). Then σ(ski ) equals the identity

permutation for each i, and so the tuple (σ(si), . . . ,σ(sd)) is the image of the generators
(s1, . . . ,sd) under a homomorphism σ : Γ → Sym(V ). We call such a homomorphism

k-uniform if the images of these generators are all k -uniform permutations. Denote

the set of k -uniform homomorphisms into Sym(V ) by Homunif(Γ, Sym(V )). Note that for

arbitrary members of Hom(Γ, Sym(V )), the cycle sizes of the images of the generators of
Γ must be factors of k.

Given a homomorphism σ ∈Homunif(Γ, Sym(V )), consider the collection of all the orbits

of the individual maps σi = σ(si) – that is, all the subsets of the form

{σ(sji )(v) : 0≤ j < k} (9)

for v ∈ V and i ∈ [d]. Taken together, these may be regarded as a hyper-graph on V.
Because we consider a k -uniform homomorphism, this hyper-graph is k -uniform in the

usual sense in combinatorics: this is the origin of the terminology. However, it could

happen that two σi and σj give some vertex the same orbit. In this eventuality, it is
better to think of the family of sets (9) as a multi-hyper-graph, in that we count each

hyper-edge with this multiplicity.

For each n, we set Vn := {1,2, . . . ,n}. If k divides n, then we let Pn be the uniform

distribution on Homunif(Γ, Sym(Vn)). The sofic approximations that appear in Theorem A
are obtained at random from these distributions and are shown to have all the desired

properties with high probability.

In order to take this approach, Proposition 1.2 above is a basic prerequisite. It
allows us to focus on typical properties of the microstate spaces, knowing that random

homomorphisms will be good sofic approximation maps with high probability. It is implied

by the more precise estimate in [2, Lemma 3.1], where our Pn is called ‘Pu
n’. Note that

attention is restricted to even n in that reference, but that restriction is unnecessary for

the case of Pu
n; it is included there only for the sake of the other probability distribution

P
p
n that is covered by the same lemma.
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3.2. Formula for Kikuchi entropy

Let A be a finite set and Γ = (Zk)
∗d as above. Given a Γ-invariant measure μ ∈ Prob(AΓ),

we define the edge weight Wμ(·; ·) : AZk × [d]→ [0,1] by

Wμ(a; i) = μ{x ∈ AΓ : x(sji ) = a(j) ∀0≤ j < k}.

Each W (·; i) is a probability measure on AZk which records the statistics of μ on the

hyper-edge {si,s2i , . . . ,sd−1
i }. Also define the vertex weight

Wμ(a) = μ{x ∈ AΓ : x(e) = a}

for a ∈ A. This probability measure on A records the single-site statistics of μ. It is

determined by the edge weight Wμ(·; ·).
More generally, an abstract weight W is a d -tuple of probability vectors

W (·;1), . . . ,W (·;d) on AZk such that there is a probability vector W (·) on A satisfying the

consistency condition

W (a0) =
∑

a∈AZk :a(j)=a0

W (a; i)

for every i ∈ [d], j ∈ Zk and a0 ∈ A.

For any weight W, we define the Kikuchi entropy of W by

HK(W ) := (1−d)H(W (·))+ 1

k

∑
i∈[d]

H(W (·; i)),

where H(·) denotes Shannon entropy, and for a Γ-invariant measure μ on AΓ, we abbreviate
HK(Wμ) to HK(μ). The functional HK appears in our work because it gives the upper

exponential growth rate of the expected number of microstates whose averaged hyper-edge

marginals are approximately specified by μ. This is an analog of [9, Theorem 1.4]. Given

a microstate x ∈ AV and σ ∈ Hom(Γ, Sym(V )), let Wx,σ be the weight corresponding to
P σ
x ∈ Prob(AΓ), the empirical distribution of x over σ. Also, given two weights W,W ′, let

‖W −W ′‖ := max
1≤i≤d

max
a∈AZk

|W (a; i)−W ′(a; i)|.

Proposition 3.1. We have

HK(μ) = lim
ε→0

limsup
n→∞

1

nk
logEσn∼Pnk

|{x ∈ Ank : ‖Wx,σn
−Wμ‖< ε}|.

The proof of this proposition shows that we also obtain HK(μ) if limsup is replaced

with liminf on the right-hand side.

Proof. Let Zk act on AZk in the usual way: πa(j) = a(j− π) for π ∈ Zk, a ∈ AZk and

j ∈ Zk. We will say that two elements a,b ∈ AZk are equivalent if they are in the same
Zk-orbit. Let [a]⊂ AZk denote the equivalence class of a. For a weight W, write

W ([a]; i) :=
∑
b∈[a]

W (b; i).
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A weight W is cyclically invariant if W (a; i) = W (b; i) for every equivalent pair a,b

in AZk . For example, since μ is Γ-invariant, for each i ∈ [d], the probability measure

Wμ(·; i) ∈ Prob(AZk) is cyclically invariant.
We first calculate E|{x ∈ Akn : Wx,σn

=W}| for an arbitrary cyclically invariant weight

W with denominator kn (i.e., such that kn ·W ([a]; i) ∈ Z for each i,a). Letting

Nn = |Homunif(Γ, Sym(kn))|=
(
(kn)!

n!kn

)d

,

we have

E|{x ∈ Akn : Wx,σn
=W}|= 1

Nn

∑
σ∈Homunif (Γ, Sym(kn))

|{x ∈ Akn : Wx,σ =W}|

=
1

Nn

∑
x∈Akn

|{σ ∈Homunif(Γ, Sym(kn)) : Wx,σ =W}|.

Now a labeling x ∈ Akn admits at least one σ that gives the correct weight W if and

only if it has the correct ‘vertex statistics’; that is, 1
kn |{i ∈ [kn] : x(i) = a}| = W (a) for

all a ∈ A. There are exp{kn(H(W (·))+o(1))} such x, and each admits the same number
of σ. From now on, fix one such x.

For i∈ [d], let Gi be the set of k -uniform permutations π ∈ Sym(kn) such that if W (·;π)
is the probability vector on AZk given by

W (a;π) = (kn)−1|{v ∈ [kn] : a(t) = x(πt(v)) ∀0≤ t < k}|,

then W (·;π) ≡ W (·; i). Any k -uniform homomorphism σ with Wx,σ = W is determined

by the permutations σ(si) which must be in Gi. So the number of such homomorphisms
is
∏d

i=1 |Gi|.
Let G(x) be the set of permutations g ∈ Sym(kn) which fix x in the sense that x(v) =

x(gv) for all v ∈ [kn]. Observe that G(x) acts on Gi by conjugation. This means that if
πi is a fixed permutation in Gi and g ∈G(x), then gπig

−1 ∈Gi. Moreover, this action is

transitive. So

|Gi|=
|G(x)|

|Stab(πi)|

where Stab(πi) is the set of g ∈G(x) with gπig
−1 = πi. Observe

|G(x)|=
∏
a∈A

(kn ·W (a))!.

There are two mechanisms by which a g ∈ G(x) can stabilize πi. Either g can permute

k -cycles with the same labels or it can rotate a given labeled k -cycle. Therefore,

|Stab(πi)|=
∏

[a]∈AZk/Zk

(n ·W ([a]; i))!

(
k

|[a]|

)n·W ([a];i)

.

https://doi.org/10.1017/S147474802510100X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802510100X


Algebraic dynamical systems from LDPC codes 19

Putting everything together, we get

E|{x ∈ Akn : Wx,σn
=W}|=

ekn(H(W (·))+o(1))
(
n!kn

∏
a∈A (kn ·W (a))!

)d
(kn)!d

∏
i∈[d]

∏
[a]∈AZk/Zk

(n ·W ([a]; i))!
(

k
|[a]|

)n·W ([a];i)
.

Applying Stirling’s approximation logn! = n logn−n+o(n), the logarithm of this is

kn

⎛
⎝H(W (·))+d

∑
a∈A

W (a) logW (a)− 1

k

∑
i∈[d]

∑
[a]

W ([a]; i) log
W ([a]; i)

|[a]|

⎞
⎠+o(n).

By cyclic invariance of each W (·; i), we have W (a; i) = W ([a];i)
|[a]| , so this gives

E|{x ∈ Akn : Wx,σn
=W}|= enkF (W )+o(n),

where

F (W ) := (1−d)H(W (·))+ 1

k

∑
i∈[d]

H(W (·; i)).

Now, since the number of denominator-n weights W grows polynomially in n, it follows

that for any ε > 0,

lim
n→∞

1

kn
logE|{x ∈ Akn : ‖Wx,σn

−Wμ‖< ε}|= sup{F (W ) : ‖W −Wμ‖< ε},

and taking ε to 0 gives the claimed formula, by continuity of F.

The annealed entropy of μ is defined by

hann(μ) = inf
O�μ

limsup
n→∞

1

nk
logEσn∼Pnk

|Ω(σn,O)|,

where the infimum is over all open neighborhoods of μ.

To emphasize the relationship between HK(μ) and hann(μ), let

Oε(μ) = {ν ∈ Prob(AΓ) : ‖Wν −Wμ‖< ε}.

Then Oε(μ) is an open neighborhood of μ and Proposition 3.1 becomes

HK(μ) = inf
ε>0

limsup
n→∞

1

nk
logEσn∼Pnk

|Ω(σn,Oε(μ))|.

In particular, hann(μ)≤HK(μ).

The next proposition shows that HK(μ) is an upper bound for sofic entropy with respect

to ‘most’ sofic approximations.

Proposition 3.2. Let μ be a Γ-invariant Borel probability measure on AΓ. Then there
are subsets Ω′

n ⊆ Ωsofic
n with

lim
n→∞

Pn(Ω
′
n) = 1
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and such that if Σ = {σn}∞n=1 satisfies σn ∈ Ω′
in

for some increasing sequence (in)n with

k | in for all n, then

hΣ(A
Γ,μ,T )≤HK(μ).

Proof. Given a positive integer n divisible by k, ε > 0, and σ : Γ→ Sym(n), let Nn,ε(σ)

be |Ω(σ,Oε(μ))|. Think of Nn,ε as a random variable with respect to the uniform measure

on the space of k -uniform homomorphisms from Γ to Sym(n). In addition, let

HK,ε(μ) := limsup
n→∞

1

n
logE[Nn,ε],

where here and below we always restrict n to be a multiple of k.
For each ε and n as above, let Ω′

n,ε be the set of those σ ∈Ωsofic
n that satisfy Nn,ε(σ)≤

e
√
n
E[Nn,ε], and let Ω′

n := Ω′
n,1∩·· ·∩Ω′

n,1/n. Then Markov’s inequality gives

Pn(Ω
′
n)≥ 1−

n∑
m=1

Pn

(
Nn,1/m(σ)> e

√
n
E[Nn,1/m]

)
≥ 1−ne−

√
n → 1.

Finally, suppose that Σ= {σn}∞n=1 satisfies σn ∈Ω′
in

for some increasing sequence (in)n
with k | in for all n. Then we also have σn ∈ Ω′

in,1/m
whenever in ≥ m. Fixing m and

letting n→∞, it follows that

hΣ(A
Γ,μ,T )≤ limsup

n→∞

1

in
logNin,1/m(σn)≤ limsup

n→∞

1

in
logE[Nin,1/m]≤HK,1/m(μ),

where the first inequality uses again the fact that O1/m(μ) is an open neighborhood

of μ for every positive integer m. Now letting m → ∞, Proposition 3.1 gives HK(μ) =

limm→∞HK,1/m(μ), so this completes the proof.

3.3. A brief history

The most basic method for analyzing the behaviour of a random sofic approximation is

the first moment method. Our first indication of the typical number of microstates for

(X,mX,T ) over σn chosen from Pn is given by the expectation of that number.
In the analogous setting of actions of free groups, such averages have been studied

intensely in recent years. In [9], the exponential growth rate of the expected number of

good microstates was shown to coincide with an invariant of systems previously introduced

by the second author in [10], where it was used to solve the isomorphism problem for
finite-state Bernoulli actions of free groups. In those and several subsequent papers, this

invariant was called the ‘f-invariant’. Here, we propose a new term instead: we refer to

this quantity as ‘annealed entropy’.
In work of the second author, the f-invariant was obtained as a limit of functionals

referred to as F, which are annealed entropies of Markov approximations. As explained

farther below, this quantity first appeared in refinements of work of Kikuchi [42]. For this
reason, we call it Kikuchi entropy. In later sections, it is used to prove Theorem 1.3.

The reason for the name ‘annealed entropy’ is a connection to statistics and statistical

physics. During the last forty years, very similar first-moment calculations for various
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configurations over large sparse random graphs have become a central feature of the
analysis of ‘graphical models’ in those disciplines. Often, the use of such averages can be

seen as a first attempt to find the value for a ‘typical’ random graph. In such settings,

the first moment is referred to as an annealed average: see, for instance, the usage in
[50, Section IV.1] or [49, Section 5.4]. Its use as a prediction of typical behaviour is called

the ‘Bethe ansatz’ (or sometimes the ‘replica symmetric’ approximation in reference to a

phenomenology in the study of spin glasses that we do not explain here: see, for instance,

[50, Chapter I] or [49, Chapter 8]1).
In fact, the origins of these quantities lie even farther back in the statistical physics

literature. In the general setting for random graphical models studied in statistics, the

leading order exponents in first moment calculations are given by quantities called ‘Bethe’
or ‘Kikuchi’ entropy.

The first of these terms refers to foundational work by Bethe [8]. He estimated the

free energy of a certain model of an alloy on a two-dimensional lattice by a recursive
expansion that retained nearest-neighbour interactions but ignored the effect of loops in

the lattice graph. A more mathematical description is that the two-dimensional lattice is

approximated by an infinite regular tree, and this is why such trees are now often called

‘Bethe lattices’ in statistical physics.
In [42], Kikuchi expanded on Bethe’s ideas by proposing a more careful expansion that

respects slightly more of the lattice structure. In modern terms, this can be understood

as an approximation to the lattice by a hyper-tree rather than a simple tree. While
Bethe argued mostly in terms of free energies, Kikuchi’s paper includes various explicit

formulae for entropy estimates, and these evolved over time into the quantities studied in

statistical inference today. See [42, Equations (A.7) and (C1.6)] for early intimations of
these modern formulae. Bethe’s and Kikuchi’s approximation methods can also be found

in physics surveys from closer to that time such as Section III in Burley’s contribution

[26, Chapter 9].

These formulae were brought explicitly into statistical theory around 2000 by Yedidia
and various co-authors in a series of technical reports: see, in particular, [77, 78] and

the further references given there. While these references continued to emphasize free

energy more than entropy, they do cover both: the explicit formula for Bethe entropy is
[77, Formula (1.32)], for example.

The term ‘annealed entropy’ (instead of ‘f-invariant’) emphasizes the connection

between these two fields. To be more precise, the annealed entropy of a measure-preserving
action of a free group is defined as an infimum of the values of a more elementary quantity

over Markov approximations to the action. This more elementary quantity, denoted by

‘F ’ in [10, 9], has precisely the same formula as Bethe entropy. Thus, the same formula

for an entropy-like quantity was discovered independently and then used for very similar
first-moment calculations in both fields.

Bethe entropy has by now become a textbook topic in statistical inference with graphical

models: see, for instance, [71, Section 4] or [49, Chapter 14, especially Subsection 14.2.4].

1Indeed, the second author has previously also suggested the term ‘replica-symmetric entropy’
[14, Subsection 7.3], but we feel ‘annealed’ reflects the general nature of this quantity better.
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Some of the theory of these models has also been analyzed rigorously in the probability
literature. For example, [24] proves that a first-moment quantity asymptotically agrees

with the typical free energy for ferromagnetic Potts models over sparse graph sequences,

justifying the ‘Bethe ansatz’ for these models.
Whereas Bethe entropy can be understood as a functional of a probability distribution

over a tree, the extension to Kikuchi entropy allows an underlying graph that is a hyper-

tree, which is a hyper-graph G = (V ,E) such that there is some tree with vertex set V

whose subgraphs induced by hyper-edges of G are all connected.
For the first-moment calculations we need below, the exponent is given by the analogous

annealed entropy for an action of Γ, the d -fold free power of Zk, rather than a free group. It

turns out that this could again be defined as an infimum of a more elementary quantity
over Markov approximations, where now the more elementary quantity is the Kikuchi

entropy associated to the Cayley hyper-tree of Γ. We do not work this out completely

here. Instead, we give a more direct formula for the annealed entropy and only show that
it is bounded above by the Kikuchi entropy (see discussion following Proposition 3.1).

4. Completely positive entropy, local convergence and model mixing

In order to prove the completely positive entropy (CPE) statement in Theorem 1.3, we

will use a variant of the main result of [7]. That paper proves that if a model measure

sequence locally and empirically converges to the target measure and is uniformly model
mixing, then the system is CPE. The local and empirical convergence result needed to

prove CPE will also help us establish the lower bound in Theorem 1.3, part (a). We review

these concepts here.
As in previous sections, let A be a finite set, Γ be a countable group and μ be a

Γ-invariant Borel probability measure on AΓ. We also let Σ = (σn)n be a sofic approxima-

tion, where σn : Γ→ Sym(Vn) for each n.

Given a probability measure κ on AVn and a vertex v ∈ Vn, the localization of κ at v
is the probability measure

Loc(κ,v) = (Πσn
v )∗κ=

∑
x∈AVn

κ(x)δΠσn
v (x) ∈ Prob(AΓ).

This is the law of the pull-back name of a κ-random sample, as viewed from a fixed
v ∈ Vn. This measure depends on the homomorphism σn, but we will usually leave that

dependence implicit. If we want to specify σn, we use the notation Locσn
(κ,v).

A model measure sequence is a sequence (μn)n of probability measures μn on AVn .
The sequence (μn)n is said to converge to μ locally and empirically if for every open

neighborhood O of μ in Prob(AΓ),

1 = lim
n→∞

|Vn|−1 |{v ∈ Vn : Loc(μn,v) ∈ O}|

1 = lim
n→∞

μn({x ∈ AVn : P σn
x ∈ O}).

Below, we will sometimes refer to the first equality holding for everyO as local convergence

and the second as empirical convergence in order to be explicit about which property is

relevant.
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If the measures μn and/or the maps σn are random with law Pn, then we say the

sequence converges locally and empirically in probability to μ if the same limits hold in

probability. Explicitly, for every open neighborhood O of μ and every ε > 0,

1 = lim
n→∞

Pn

{
|Vn|−1 |{v ∈ Vn : Loc(μn,v) ∈ O}|> 1− ε

}
1 = lim

n→∞
Pn

{
μn({x ∈ AVn : P σn

x ∈ O})> 1− ε
}
.

It will be convenient to reformulate local convergence in probability in terms of total

variation distance between marginals. To make this precise, we need notation for the
marginals.

Given a finite set B ⊂ Γ and a probability measure ν on AΓ, let νB be the probability

measure on AB equal to the pushforward of ν under the projection map AΓ → AB . This is
the marginal of ν on B.

Let dTV denote total variation distance. Because the sets of the form O(B,ε,μ) = {ν ∈
Prob(AΓ) : dTV(νB,μB)< ε} form a neighborhood basis for the topology at μ, it follows
that a sequence of random measures μn ∈ Prob(AVn) converges locally in probability to a

measure μ ∈ Prob(AΓ) if and only if for every finite B ⊂ Γ and ε > 0,

lim
n→∞

Pn

{
1

|Vn|
|
{
v ∈ Vn : dTV

(
Loc(μn,v)B, μB

)
> ε

}
|> ε

}
= 0. (10)

Versions of the next lemma have appeared several times before: for instance, inside

the proof of [12, Theorem 4.1], or explicitly as [36, Lemma 5.4] or [3, Corollary 5.7]. We
include a proof for completeness.

Lemma 4.1. If a sequence of random measures (μn)n converges locally in probability to

an ergodic measure μ ∈ ProbΓ(AΓ) over some random sequence of homomorphisms, then

it converges locally and empirically in probability to μ.

Proof. For each n, let θn ∈ Prob(ProbΓ(AΓ)) denote the law of

1

|Vn|
∑
v∈Vn

Locσn
(μn,v),

where (σn,μn) are jointly distributed as given. As stated, θn is supported on Γ-imvariant
measures because each σn is a homomorphism, and therefore, the empirical measure P σn

x

is invariant, for any x ∈ AVn .

Passing to a subsequential limit if necessary, the sequence (θn)n converges weakly to

some θ∈Prob(ProbΓ(AΓ)). We first show the barycenter of θ must be μ: given a continuous
function g ∈ C(AΓ),∫∫

g(z)ν(dz)θ(dν) = lim
n→∞

∫∫
g(z)ν(dz)θn(dν)

= lim
n→∞

E

[
1

|Vn|
∑
v∈Vn

∫
g(Πσn

v x)μn(dx)

]
.
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Now given ε > 0, let O � μ be an open neighborhood such that if ν ∈ O, then
∫
gdν is

within ε of
∫
gdμ. Then we control the expectation above by dividing up the terms based

on whether μn looks like μ near v :

E

[
1

|Vn|
∑
v∈Vn

∫
g(Πσn

v x)μn(dx)

]
=

1

|Vn|
E

⎡
⎢⎢⎣ ∑

v∈Vn

Loc(μn,v)∈O

∫
g(Πσn

v x)μn(dx)

⎤
⎥⎥⎦

+
1

|Vn|
E

⎡
⎢⎢⎣ ∑

v∈Vn

Loc(μn,v) �∈O

∫
g(Πσn

v x)μn(dx)

⎤
⎥⎥⎦ .

The magnitude of the second term is bounded by

max |g| ·E
[

1

|Vn|
|{v ∈ Vn : Loc(μn,v) �∈ O}|

]
which goes to 0 as n goes to infinity by definition of local convergence in probability. By

choice of O, the first term is within ε of
∫
gdμ for large n. Since ε > 0 was arbitrary, this

proves that the (subsequential) limit must have barycenter μ.

Since m is ergodic, the only possible subsequential limit with barycenter μ is δμ, so this

is the true limit. This implies that for any ε > 0 and open O � μ,

P
{
μn(Ω(σn,O))> 1− ε

}
→ 1.

This is because

P
{
1−μn(Ω(σn,O))> ε

}
≤

E
[
1−μn(Ω(σn,O))]

ε
=

1−E[Ex∼μn [1P
σn
x ∈O]]

ε
=

1−θn(O)

ε
→ 0

using Markov’s inequality, the tower law of expectation and the portmanteau theorem.

4.1. Property M

To define notions of model mixing, we will impose distance functions on the finite sets
V which form a given sofic approximation. For this purpose, we will assume Γ is finitely

generated and let E ⊂ Γ be a finite symmetric generating subset. For g ∈ Γ, let |g| be
the word-length of g, which is the length of the shortest word in E representing g. Given
σ : Γ→ Sym(V ), define distance in V by

dσ(v,w) = min{|g| : g ∈ Γ,σ(g)v = w}.

If there does not exist g with σ(g)v = w, then we set dσ(v,w) = +∞. If σ is not a
homomorphism, then dσ may fail to satisfy the triangle inequality.

A subset S ⊂ V is r-separated if dσ(v,w)> r for every pair of distinct v,w ∈ S.

Suppose a model measure sequence (μn)n converges locally and empirically to μ. We
say the sequence is uniformly model mixing (umm) if for every finite F ⊂ Γ and

every ε > 0, there is some r <∞ and a sequence of finite subsets Wn ⊂ Vn such that

|Wn|= (1−o(1))|Vn|,

https://doi.org/10.1017/S147474802510100X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802510100X


Algebraic dynamical systems from LDPC codes 25

and if S ⊂Wn is r -separated, then

H((μn)σF
n (S))≥ |S|(H(μF )− ε),

where

• μF is the probability measure on AF which is the pushforward of μ under the
projection map AΓ → AF ;

• σF
n (S) = {σn(f)s : f ∈ F,s ∈ S};

• (μn)σF
n (S) is the probability measure on Aσ

F
n (S) which is the pushforward of μn

under the projection map AVn → Aσ
F
n (S).

This is a microstates analog of uniform mixing, introduced by Rudolph and Weiss in [62]

for actions of an amenable group; see also [74, Definition 10], where the name ‘uniform
mixing’ appears for the first time. The main result of [7] is that if (μn)n locally and

empirically converges to μ and is uniformly model mixing with respect to a fixed sofic

approximation Σ, then the system (AΓ,μ,T ) has completely positive entropy with respect

to Σ, in analogy with a corresponding result of [62].
Unfortunately, we do not know whether the parity check sub-shifts of Theorem 1.3

are uniformly model mixing. Instead, we define a weaker version of model mixing which

suffices.

Definition 4.2 (Property M). Suppose (μn)n is a model measure sequence and μ ∈
ProbΓ(AΓ) is an invariant measure. We say the sequence has property M if for every

ε > 0 and 0< r <∞, there is a sequence of subsets Sn ⊂ Vn such that

liminf
|Sn|
|Vn|

> 0

and

H((μn)σBr
n (Sn)

)≥ |Sn|(H(μBr
)− ε) (11)

for all n, where Br = B(r,e) ⊂ Γ denotes the ball of radius r centered at the identity.

In applications, μ will be a limit of the sequence (μn)n, but we do not impose any such

requirement for the definition.

In contrast with uniform model-mixing, we only require Sn to have asymptotically
positive density in Vn, and there is no uniform lower bound on this density across different

choices of ε,r. This density could be much smaller than |Br|−1, for example. We also do

not require the sets Sn to be separated, although the lower bound (11) does usually imply

a kind of approximate separation anyway.
We suspect that other variants of uniform model mixing could be used in a similar

way to prove completely positive entropy, so Definition 4.2 is not an attempt at optimal

generality. This is why we have chosen a rather bland name for Property M, although it
is convenient in our work below.

Here is the main result of this section:

Theorem 4.3. As above, let μ be a Γ-invariant probability measure on AΓ, Σ= (σn : Γ→
Sym(Vn))n a sofic approximation, and (μn)n a model measure sequence. Assume (μn)n
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converges to μ locally and empirically along Σ and has property M. Then every nontrivial
factor of (AΓ,μ,T ) inherits positive Σ-entropy.

Proof. By Corollary 2.2, it suffices to consider factor maps to other shift systems. For
these, the proof is based on the proof of [7, Theorem 1.2].

Step 1. We start by establishing some general entropy inequalities. For two or more

jointly distributed random variables X1, . . . ,Xk, define the total correlation

TC(X1; · · · ;Xk) =

(
k∑

i=1

H(Xi)

)
−H(X1, . . . ,Xk).

This is a generalization of mutual information to more than two random variables,

introduced in [72]. It can also be recursively defined by setting TC(X1;X2) = I(X1;X2)

and for k ≥ 3

TC(X1; · · · ;Xk) = TC(X1; · · · ;Xk−1)+I(X1, . . . ,Xk−1;Xk).

Using this recursion and the data-processing inequality [23, Theorem 2.8.1], it can be
shown by induction on k that if f is any function and Yi = f(Xi) for each i, then

TC(Y1; · · · ;Yk)≤ TC(X1; · · · ;Xk). (12)

This inequality has also appeared in [6, Lemma 4.3]. Note that the total correlation does

not depend on the order in which the random variables are listed. Below, we will refer to
the total correlation of a collection of random variables {Xi : i ∈ I} indexed by a finite

set I using the notation TC({Xi : i ∈ I}), since fixing an ordering would unnecessarily

complicate notation.
The Rokhlin distance between random variables α,β which are defined on the same

probability space is defined by dRok
μ (α,β) = Hμ(α|β)+Hμ(β|α). This satisfies the triangle

inequality, and it equals zero if and only if α and β generate the same partition up to

null sets. This distance can be used to control total correlation via the bound

|TC(X1; · · · ;Xk)−TC(Y1; · · · ;Yk)|

≤ |H(X1, . . . ,Xk)−H(Y1, . . . ,Yk)|+
k∑

i=1

|H(Xi)−H(Yi)|

≤ 2

k∑
i=1

(
H(Xi|Yi)+H(Yi|Xi)

)
= 2

k∑
i=1

dRok(Xi,Yi).

Step 2. Since (μn)n locally and empirically converges to μ, if Sn ⊂ Vn satisfies

liminf |Sn|
|Vn| > 0, then

1

|Sn|
∑
v∈Sn

H
(
(μn)σBr

n (v)

)
=H(μBr

)+o(1).
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So property M implies that for every r,ε > 0, there is a sequence of subsets Sn ⊂ Vn such
that liminf |Sn|

|Vn| > 0 and

1

|Sn|
TC

(
{(xn)

σBr
n (v) : v ∈ Sn}

)
≤ ε

for all large n, where xn is a random sample of μn and the projections {(xn)
σBr
n (v) : v ∈Sn}

are jointly distributed in the natural way (from a common sample of xn).

Step 3. Now let φ : AΓ → B be a measurable map into a finite set B generating a factor
map φΓ as in (6). If this factor is nontrivial, then Hμ(φ)> 0. We want to show that the

property M assumption on μn implies that

hΣ(μ ; φ
Γ)> 0.

Let λ be the graphical joining of the factor map φΓ as in (4).

Fix r ∈ N and a B(r,e)-local function ψ : AΓ → B which approximates φ closely enough

in measure that dRok
μ (ψ,φ)< 1

8 Hμ(φ).

Now with ε = 1
8 Hμ(φ) and this r, let (Sn)n be the sequence of subsets of Vn given by

property M. Since ψ is B(r,e)-local, the data-processing inequality (12) above implies

that

TC
(
{ψσn(xn)(v) : v ∈ Sn}

)
≤ TC

(
{(xn)

σBr
n (v) : v ∈ Sn}

)
≤ ε|Sn|,

where xn is a random sample of μn and ψσn : AVn → BVn is defined as in (7).

Step 4. Let (ψm)m be a local approximating sequence sequence to φ, meaning that (8)

holds, and hence, dRok
μ (φ,ψm) also converges to 0. Since the Rokhlin distance satisfies the

triangle inequality, there is some M ∈N such that if m≥M , then dRok
μ (ψ,ψm)< 1

8 Hμ(φ).
Given an open neighborhood O� λ, by [3, Prop. 4.10], there is some open neighborhood

U � μ and some m ≥ M such that, for all large enough n, the map (idAVn ,ψσn
m ) sends

U -microstates to O-microstates. Let us also assume m is large enough that Hμ(ψm) ≥
1
2 Hμ(φ).
Now fix some R such that ψ and ψm are both B(R,e)-local. By local convergence of μn

to μ, for any δ > 0, the fraction of v ∈ Sn for which the local marginal Loc(μn,v)BR
is

within total variation distance δ of μBR
is 1− o(1). For the rest of the v ∈ Sn, the term

in the sum below has the upper bound 2log |B|:
1

|Sn| |TC
(
{ψσn(xn)(v) : v ∈ Sn}

)
−TC

(
{ψσn

m (xn)(v) : v ∈ Sn}
)
|

≤ 2

|Sn|
∑
v∈Sn

(
HLoc(μn,v)(ψ|ψm)+HLoc(μn,v)(ψm|ψ)

)
≤ 2dRok

μ (ψm,ψ)+o(1).

Hence,

1
|Sn| TC

(
{ψσn

m (xn)(v) : v ∈ Sn}
)
≤ 3

8
Hμ(φ)+o(1). (13)
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By empirical convergence, for large n, the model measure μn is mostly supported on
U -microstates. So (idAVn ,ψσn

m )∗μn is mostly supported on O-microstates, and using Fano’s

inequality, we see that

1

|Vn|
H(ψσn

m ∗μn)≤
1

|Vn|
log |projn[Ω(σn,O)]|+o(1).

The total correlation bound (13) gives

H(ψσn
m ∗μn) = H(ψσn

m (xn))≥H({(ψσn
m (xn)(v) : v ∈ Sn})

≥
∑
v∈Sn

H((ψσn
m (xn)(v)})−|Sn|

(
3
8 Hμ(φ)+o(1)

)
.

Since (μn)n converges locally to μ and ψm is a local function,

1

|Sn|
∑
v∈Sn

H((ψσn
m (xn)(v)) = Hμ(ψm)+o(1)≥ 1

2 Hμ(φ)+o(1).

So

1

|Vn|
log |projn[Ω(σn,O)]| ≥ |Sn|

|Vn|
(
1
8 Hμ(φ)+o(1)

)
+o(1),

and for every O � λ,

liminf
n→∞

1

|Vn|
log |projn[Ω(σn,O)]| ≥

(
liminf
n→∞

|Sn|
|Vn|

)
1
8 Hμ(φ).

Since we chose (Sn)n independently of O, and liminfn→∞
|Sn|
|Vn| > 0, taking the infimum

over O completes the proof.

5. Shattering

Let (AΓ,μ,T ) be a shift Γ-system and Σ = (σn)n a sofic approximation, where
σn : Γ→ Sym(Vn). On each model space AVn , we have the normalized Hamming distance

defined by

d(Vn)(x,y) = |Vn|−1|{v ∈ Vn : x(v) �= y(v)}|.

In this section, we derive ergodic-theoretic consequences from the following phe-

nomenon, which is at the heart of our study of parity check shifts.

Definition 5.1. The shift system has totally shattered microstate spaces along Σ

if (i) it has microstates along Σ, and (ii) there exists a δ > 0 for which the following holds.
For every ε > 0, there exist a weak∗ neighbourhood O of μ and a positive integer n0 such

that, for any n≥ n0 and any two microstates x,y ∈ Ω(σn,O), we have

either d(Vn)(x,y)≥ δ or d(Vn)(x,y)< ε.

We refer to any such δ as a shatter distance for the system along Σ.
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5.1. Consequences of shattering

In this section, fix a sofic approximation Σ= (σn)n by homomorphisms, and assume that

(AΓ,μ,T ) has totally shattered microstate spaces along Σ.

Theorem 5.2. For every ε > 0, there is a neighbourhood O of μ for which the following

holds. Let (BΓ,ν,T ) be another shift system that has microstates along Σ, let (KΓ,κΓ,T )

be a Bernoulli shift, and let

φ : BΓ×KΓ → A

be a measurable map. If

φΓ
∗ (ν×κΓ) ∈ O, (14)

then

(ν×κΓ×κΓ){(y,z,z′) : φ(y,z) �= φ(y,z′)}< ε. (15)

Intuitively, the conclusion is that if φΓ is approximately a factor map onto (AΓ,μ,T ),

then it must be approximately independent from the second coordinate in BΓ×KΓ. There
are many ways to capture the latter assertion precisely, but (15) turns out to be convenient

during the proof.

The proof of Theorem 5.2 has much in common with the main proof in [33]. In that
paper, Gamarnik and Sudan used a relative of shattering to prove an a.a.s. upper bound

on the maximum size of an independent set on a random regular graph that can be

constructed using a local algorithm. The property they use there is now called the ‘overlap

gap property’ and is actually a little weaker than being totally shattered. See [32] for a
recent survey. The reference [46, Section 4] explains how the absence of an approximating

local algorithm for certain combinatorial problems implies that a resulting limit process

is not weakly contained in a Bernoulli shift.
Our proof of Theorem 5.2 needs a couple of known facts about microstate spaces for

a product in which one factor is Bernoulli. We recall these as separate lemmas before

starting the proof.

Lemma 5.3. Let (BΓ,ν,T ) be a shift system and let (LΓ,λΓ,T ) be a Bernoulli shift.
Assume that yn ∈ BVn is a sequence such that P σn

yn
→ ν. Then

λVn
{
z : P σn

(yn,z)
∈ O

}
→ 1

for every neighbourhood O of ν×λΓ. symbol

Lemma 5.3 is well known as folklore in the study of sofic entropy, and a full proof can

be found inside the proofs of some of its consequences in the literature. The earliest and
perhaps easiest to extract is inside the proof of the lower bound in [11, Theorem 8.1].

The next lemma is more specialized but was also used in the second author’s previous

counterexample to the weak Pinsker conjecture for some sofic groups: it is a special case of
[17, Proposition 7.9]. It refers to ‘hereditary’ neighbourhoods of a shift-invariant measure.

We do not repeat the definition of these here; the only property we need is that they form

a basis for the weak∗ topology.
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Lemma 5.4. Let U ⊂ V be open neighborhoods of ν × κΓ with U hereditary and V
containing the closure of U . For every δ > 0, if n is large enough, then for every

z,z′ ∈ KVn and y ∈ BVn , if (y,z), (y,z′) are in Ω(σn,U), then they are δ-connected within
Ω(σn,V) (this means there are w1, . . . ,wk ∈ Ω(σn,V) with w1 = (y,z), wk = (y,z′) and

d(Vn)(wi,wi+1)< δ for all i). symbol

Proof of Theorem 5.2. Let δ be a shatter distance for the system along Σ. Let ε > 0 be

small enough that 2ε < δ, and now let O1 and n0 be a neighbourhood and positive integer

as promised by Definition 5.1 for this choice of ε. Lastly, choose a smaller neighbourhood
O of μ whose closure is contained in O1.

Let φ : BΓ×KΓ → A be a measurable map such that φΓ
∗ (ν×κΓ) ∈ O. In the rest of the

proof, we show that (15) holds for this O and with 3ε in place of ε.

Step 1. Since A is finite and φ is measurable, for any η > 0, there is an approximating

map

ψ : BΓ×KΓ → A

such that

(ν×κΓ){ψ �= φ}< η (16)

and such that (i) ψ is a local map and (ii) ψ depends on the coordinates in KΓ only

through some finite measurable partition P of K. If we choose η sufficiently small in terms
of O ⊂O1 and ε, then (14) and (16) imply that ψΓ

∗ (ν×κΓ) still lies in O, and also (16)

implies that the desired conclusion (15) holds for φ with error 3ε if it holds for ψ with

error 2ε.
By replacing K with the set of cells P, we have therefore reduced our work to the case

when K is finite and φ is F -local for some finite subset F of Γ. We assume this for the

rest of the proof and do not refer to ψ again.

Having made these assumptions, let us note that the set

Δ := {(y,z,z′) : φ(y,z) �= φ(y,z′)}

is closed and open in BΓ×KΓ×KΓ.

Step 2. Since φ is local, pushing forward by the equivariant map φΓ acts continuously
on probability measures. We may therefore choose a neighbourhood V of ν×κΓ such that

φΓ
∗ [V]⊂O. Since σn is a homomorphism, we have P σn

φσn (x) = φΓ
∗P

σn
x , so this implies that

φσn [Ω(σn,V)]⊂ Ω(σn,O) for every n. (17)

In addition, since hereditary neighbourhoods form a basis, we may let U be a hereditary

neighbourhood of ν×κΓ whose closure is contained in V.

Step 3. By assumption, there is a sequence yn ∈ BVn such that P σn
yn

→ ν. Fix this for

the rest of the proof.
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For each n, consider zn and z′n ∈ KVn drawn independently at random according to κVn ,

and consider the event

E :=
{
(zn,z

′
n) ∈ KVn ×KVn : (yn,zn),(yn,z

′
n) ∈ Ω(σn,U)

}
.

By Lemma 5.3, we have

(κVn ×κVn)(E)→ 1. (18)

When E occurs, we can draw the following additional conclusions:

• The points (yn,zn) and (yn,z
′
n) are (δ/|F |)-connected within Ω(σn,V) for all

sufficiently large n (not depending on the specific values of yn, zn or z′n), by
Lemma 5.4.

• Since φ is F -local, the map φσn is |F |-Lipschitz for the normalized Hamming
metrics (Lemma 2.3), so φσn(yn,zn) and φσn(yn,z

′
n) both lie in Ω(σn,O) and are

δ-connected within that set, by the previous conclusion and (17).
• By total shattering and our choice of O, we can now deduce that

d(Vn)
(
φσn(yn,zn),φ

σn(yn,z
′
n)
)
< ε (19)

for all sufficiently large n. Indeed, if n is large enough and

φσn(yn,zn) =w1, . . . , wl = φσn(yn,z
′
n)

is a sequence in Ω(σn,O) with all consecutive distances less than δ, then total
shattering implies that all of these distances are actually less than ε. Then
the triangle inequality implies that d(Vn)(w1,w3) < 2ε, which is still less than
δ. We may therefore invoke total shattering again to conclude that in fact
d(Vn)(w1,w3)< ε. Now a simple induction shows that in fact d(Vn)(w1,wi) < ε
for every i, giving (19) when i= l.

Unpacking the definitions of normalized Hamming metric and empirical distribution,
the left-hand side of (19) is equal to

1

|Vn|
∑
v∈Vn

1{φ(Πσn
v yn,Π

σn
v zn) �=φ(Πσn

v yn,Π
σn
v z′

n)} = P σn

(yn,zn,z′
n)
(Δ).

Therefore, in view of the conclusions above, (18) implies that

(κVn ×κVn)
{
P σn

(yn,zn,z′
n)
(Δ)< ε

}
→ 1. (20)

However, since Δ is a closed and open set, another appeal to Lemma 5.3 (this time for
the larger product ν×κΓ×κΓ) shows that

(κVn ×κVn)
{
P σn

(yn,zn,z′
n)
(Δ)> (ν×κΓ×κΓ)(Δ)− ε

}
→ 1. (21)

The limits (20) and (21) can hold simultaneously only if

(ν×κΓ×κΓ)(Δ)< 2ε.

Since ε was arbitrary, this completes the proof.

Theorem 5.2 has several more streamlined consequences.
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Corollary 5.5. Suppose that (AΓ,μ,T ) has totally shattered microstate spaces along Σ.

1. If (Y ,θ,S) is any probability-preserving Γ-system that has microstates along Σ (recall

the definition of this property from Subsection 2.2), and (KΓ,κΓ,T ) is a Bernoulli

shift, then any factor map

(Y ×KΓ,θ×κΓ,S×T )→ (AΓ,μ,T )

factorizes through the coordinate projection Y ×KΓ → Y up to agreement a.e.

2. The system (AΓ,μ,T ) has no nontrivial direct Bernoulli factors.

3. The system (AΓ,μ,T ) is not weakly contained in a Bernoulli shift unless it is actually

a trivial system, meaning that μ= δ(...,a,a,... ) for some a ∈ A.

Proof. Part 1. Let the factor map in question be ξΓ for some measurable map

ξ : Y ×KΓ → A. Let ε > 0, and let O be the neighbourhood of μ given by Theorem 5.2 for

this ε.
By approximating the level sets of ξ by measurable rectangles, for any η > 0, we can

choose (i) a factor map π from (Y ,θ,S) to a finite-alphabet shift system (BΓ,ν,T ) and (ii)

a map φ : BΓ×KΓ → A such that

(θ×κΓ){(y,z) : φ(π(y),z) �= ξ(y,z)}< η. (22)

Provided we choose η small enough, the inequality (22) implies that

φΓ
∗ (ν×κΓ) ∈ O.

By shrinking further if necessary, we may also assume that η < ε.
Fix a choice of η with these properties, and consider the resulting maps π and φ. Since

(Y ,θ,S) has microstates along Σ, so does its factor (BΓ,ν,T ). By our choice of η, we have

arranged that this factor system and the map φ satisfy (14). Therefore, Theorem 5.2 tells
us that they also satisfy (15). Combined with (22), this gives

(θ×κΓ×κΓ){(y,z,z′) : ξ(y,z) �= ξ(y,z′)}
≤ 2η+(ν×κΓ×κΓ){(y1,z,z′) : φ(y1,z) �= φ(y1,z

′)}< 2η+ ε < 3ε.

Since ε is arbitrary, the left-hand side here must actually equal 0, so in fact,

ξ(y,z) = ξ(y,z′) for (θ×κΓ×κΓ)-a.e. (y,z,z′).

Therefore, possibly after adjusting on a set of measure zero, ξ depends on only the first

coordinate in Y ×KΓ.
Part 2. If

ξΓ : (Y ,θ,S)× (KΓ,κΓ,T )→ (AΓ,μ,T )

is an isomorphism, then the system (Y ,θ,S) is a factor of (AΓ,μ,T ), and so it inherits the
property of having microstates along Σ. Therefore, Part 1 shows that, up to agreement

a.e., ξ depends on only the first coordinate in Y ×KΓ. Since ξΓ is an isomorphism, this is

possible only if the Bernoulli factor (KΓ,κΓ,T ) is trivial.
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Part 3. Towards a contradiction, suppose that (KΓ,κΓ,T ) is a Bernoulli shift and that

φm : KΓ → A is a sequence of measurable maps such that

φΓ
m∗κ

Γ → μ. (23)

Apply Theorem 5.2 by inserting a trivial one-point system in the place of (BΓ,ν,T ). The

conclusion is that

(κΓ×κΓ){(z,z′) : φm(z) �= φm(z′)}→ 0.

However, this implies that the distribution of φm is converging to δa for some a ∈ A.

Combined with (23), it follows that μ= δ(...,a,a,... ).

5.2. Shattering and Bernoulli splittings

Suppose the shift system (AΓ,μ,T ) has totally shattered microstate spaces along Σ. Note

as soon as ε < δ/2, if O is the neighborhood of μ given by the definition, then the relation
‘d(Vn) < δ’ restricted to the microstate space Ω(σn,O) is an equivalence relation, so it

partitions the microstate space into small-diameter, well-separated clusters.

In this section, we give a second proof of Corollary 5.5(2) and sketch a third. Both

of these approaches are based on the clusters of microstates: one uses the number of
clusters, which is one of the sofic homological invariants introduced in [17], and the other

uses the sizes of clusters. Both can be compared to the use of the ‘overlap gap property’

introduced in [33] to prove an a.a.s. upper bound on the size of an independent set on
a random regular graph, when the independent set is required to be constructed from a

local algorithm.

The size of clusters can be used as follows: if a direct Bernoulli factor exists, it can
be shown that its entropy rate is a uniform lower bound for the exponential size of all

microstate clusters, while if a system has totally shattered microstate spaces, then all its

clusters are of subexponential size. This implies Corollary 5.5(2).

In the rest of the section, we give a proof using the number of clusters. First, we give
relevant definitions.

If O is a subset of a metric space and x,y ∈ O, we say x,y are δ-connected within

O if there is a sequence of points z1, . . . ,zl ∈O with z1 = x, zl = y, and d(zi,zi+1)< δ for
each i. This defines an equivalence relation on O, which we denote cl(O,δ).

Given a map σ : Γ→ Sym(V ), a labeling x ∈ AV , an open set O ⊂ Prob(AΓ), and δ > 0,

let

cl(σ,x,O,δ) = [x]cl(Ω(σ,O),δ) = {z ∈ AV : z is δ-connected to x within Ω(σ,O)},

where Ω(σ,O)⊂ AV has the normalized Hamming metric d(V ). In particular, cl(σ,x,O,δ)⊂
Ω(σ,O).

Now if in addition to the above we have some O′ ⊂O, the quotient

Ω(σn,O′)
/
cl(Ω(σn,O), δ)

https://doi.org/10.1017/S147474802510100X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802510100X


34 T. Austin et al.

is the set of clusters of O′-microstates that are δ-connected within Ω(σn,O). We define

b0,Σ(μ) = sup
O�μ

sup
δ>0

inf
μ∈O′⊂O

limsup
n→∞

1

|Vn|
log |Ω(σn,O′)

/
cl(Ω(σn,O), δ) |.

Informally, we first set coarseness parameters O,δ which divide microstate spaces into

clusters. We consider the exponential growth rate of the number of these clusters which

containO′-good microstates for μ. At first, it might seem more natural to consider directly
the growth rate of the number of δ-connected clusters within a single Ω(σn,O):

limsup
n→∞

1

|Vn|
log |Ω(σn,O)

/
cl(Ω(σn,O), δ) |,

then take δ to 0 and in some sense O to μ. But there is no monotonicity in O: shrinking

the neighborhood of μ removes some microstates from Ω(σn,O), but this can both remove

some clusters and/or break a cluster into multiple pieces. Considering pairs O′ ⊂ O is
one natural way around this. See also the discussion of a related definition of connected

model spaces in [4, Section 2.2].

In [17], b0,Σ(μ) is called the 0th Betti number of μ. If X is totally disconnected and
μ ∈ ProbΓ(XΓ), then b0,Σ(μ) is a measure-conjugacy invariant [17, Corollary 4.2].

It follows directly from the definition that b0,Σ(μ) ≤ hΣ(μ) (a similar inequality holds

for higher-dimensional sofic homology theories [17, Lemma 7.13]).

Lemma 5.6. If (AΓ,μ) has totally shattered microstate spaces over Σ, then

b0,Σ(μ) = hΣ(μ).

Proof. Recall that in general b0,Σ(μ) ≤ hΣ(μ), so we only have to prove that having

totally shattered microstate spaces implies the reverse inequality.

Let δ > 0 be as in the definition of totally shattered microstate spaces. Given ε < δ/2,
there exists a neighborhood U of μ such that for all large n, every x,y ∈ Ω(σn,U) have

d(Vn)(x,y) ∈ [0,ε)∪ [δ,∞). In particular, for every x ∈ Ω(σn,U),

cl(σn,x,U,ε)⊆ B(ε,x),

where B(ε,x) is the radius-ε ball around x. Thus,

|cl(σn,x,U,ε)| ≤ |B(ε,x)| ≤ exp
(
|Vn|(H(ε)+ ε log |A|+o(1))

)
.

This leads to a lower bound on the number of clusters for all O′ ⊂ U :

|Ω(σn,O′)
/
cl(Ω(σn,U), ε) | ≥ |Ω(σn,O′)|exp

(
−|Vn|(H(ε)+ ε log |A|+o(1))

)
.

Hence,

inf
μ∈O′⊂U

limsup
n→∞

1

|Vn|
log |Ω(σn,O′)

/
cl(Ω(σn,U), ε) | ≥ hΣ(μ)−

(
H(ε)+ ε log |A|

)
,

and taking the supremum over ε > 0 and U � μ completes the proof.

Alternate proof of Corollary 5.5(2). To obtain a contradiction, suppose that (AΓ,μ,T ) is

measurably conjugate to the direct product of a nontrivial Bernoulli shift (KΓ,κΓ,T ) with

another shift system (BΓ,ν,S) where B is a compact metrizable space. We may assume
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B is totally disconnected without loss of generality because any dynamical system is
measurably conjugate to a system of this form; this assumption is used in results of [17]

cited below.

Sofic entropy is additive under taking direct products with a Bernoulli shift [11,
Theorem 8.1], so

hΣ(A
Γ,μ,T ) = H(K,κ)+hΣ(B

Γ,ν,S)> hΣ(B
Γ,ν,S). (24)

Theorem 7.8 of [17] implies that the 0-dimensional sofic homology theories of (AΓ,μ,T )

and (BΓ,ν,S) are equivalent. In particular, this implies that the exponential rate of growth
of the number of clusters in the microstate spaces of the two actions are the same. In the

notation of [17], this means

b0,Σ(A
Γ,μ,T ) = b0,Σ(B

Γ,ν,S)≤ hΣ(B
Γ,ν,S),

where the last inequality holds by [17, Lemma 7.13].

Because (AΓ,μ,T ) has totally shattered microstate spaces, by Lemma 5.6, we have

b0,Σ(A
Γ,μ,T ) = hΣ(A

Γ,μ,T ). Combined with the previous inequality, this implies

hΣ(A
Γ,μ,T ) = b0,Σ(A

Γ,μ,T )≤ hΣ(B
Γ,ν,S),

which contradicts (24). This contradiction finishes the proof.

PART II

Parity check subshifts
In this part, we fix natural numbers d,k with k > d≥ 3 and let Γ = Γd,k be the d -fold free
product of order-k cyclic groups:

Γ := 〈s1, . . . ,sd : sk1 = · · ·= skd = e〉= Zk ∗ · · · ∗Zk︸ ︷︷ ︸
d

.

Let X ≤ Z
Γ
2 be the closed subgroup defined by

X =

⎧⎨
⎩x ∈ Z

Γ
2 :

k−1∑
j=0

xgsji
= 0 ∀g ∈ Γ, i= 1, . . . ,d

⎫⎬
⎭,

and let μ=mX be the Haar probability measure on X.

If F is any subset of Γ, let XF be the image of X under the coordinate projection map
Z
Γ
2 → Z

F
2 , and let mF be the pushforward of mX under this projection. We mostly use

these notations when F is Br, the ball of radius r centered at the identity in the Cayley

graph of Γ, where we use {sji : 1≤ i≤ d,1≤ j ≤ k−1} for the generating set.

6. LDPC codes and measures on microstate spaces

6.1. The use of LDPC codes

Our proofs of the main theorems are considerably simplified by using the special structure

of the system as a subgroup of ZΓ
2 . We largely do so via the corresponding finitary codes
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constructed over the sofic approximations. Given a k -uniform homomorphism σ : Γd,k →
Sym(V ), let

Xσ :=

⎧⎨
⎩x ∈ Z

V
2 :

k−1∑
j=0

xσj
i (v)

= 0 ∀v ∈ V , i= 1, . . . ,d

⎫⎬
⎭ .

Let μσ be the uniform distribution on Xσ.

These are the obvious finitary analogs of X and mX themselves. It turns out that these

finitary constructs can be used as better and better approximations to the infinitary
system and measure, and their linear structure makes them easier to analyze than the

‘looser’ sets Ω(σ,U) that are used to define sofic entropy.

In fact, sets such as Xσ are classical objects in coding theory. They are linear codes over

the field Z2, each defined by a collection of parity-check constraints. Since each of those
parity-checks involves only k vertices, and k is fixed as n grows, these are examples of

low-density parity-check (‘LDPC’) codes. Such codes were introduced in Gallager’s PhD

thesis [31, 30]. After many years of relative neglect, they were rediscovered independently
by MacKay in the late 1990s [47], and they are now a textbook family of codes with

desirable properties. A good basic reference for their theory is [48, Chapter 47], and a

more dedicated treatment is [61]. In fact, the essence of the parity-check subshift X itself
already appears in those sources too, playing the role of an ‘idealized limit code’ on which

to investigate the performance of local decoding algorithms: see, for instance, [48, Figure

47.11] and the discussion around it.

6.2. Outline of the rest of the paper

Our use of the measures μσ to analyze the system (X,mX,T ) rests on the following main

results. As before, we confine the index n to multiples of k. Abbreviate Xσn
to Xn and

μσn
to μn.

Recall that Pn is the uniform probability measure on Homunif(Γ, Sym(n)) which is the

set of k -uniform homomorphisms σ : Γ→ Sym(n).

Theorem 6.1. There are subsets

Ω′
n ⊆Homunif(Γ, Sym(Vn))

such that Pn(Ω
′
n)→ 1 and the following holds. If σn ∈ Ω′

n for each n, then

1. (μn)n has property M;

2. (μn)n converges locally and empirically to mX ;

3. (X,mX,T ) has totally shattered microstate spaces along Σ= (σn)n.

Our proof of Theorem 6.1 relies on the linear structure of the codes Xσ.

In the next few sections, we introduce notation to formulate Proposition 7.1 which,
roughly speaking, rules out near-cancellations among parity-check words of a typical

σn ∼ Pn. Section §7.1 proves Theorem 6.1(1) from Proposition 7.1. The rest of §7 proves

Proposition 7.1.
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Item (2) of Theorem 6.1 is proven in §8. Its proof relies on item (1). Item (3) is proven in

§10. Its proof does not refer to items (1) or (2). Theorem B is an immediate consequence

of item (3) and Corollary 5.5(2).
Theorem 1.3 is proven in §9. Part (b) of that theorem follows readily from items (1)

and (2) of Theorem 6.1 together with Theorem 4.3. Part (a) (which computes the sofic

entropy value) uses item (2) and the Bethe-Kikuchi entropy theory of §3.

6.3. Random factor graphs

In this subsection, fix a size n that is divisible by k and suppress it from the notation:

thus, for instance, P stands for Pn. Most of our work towards Theorem 6.1 consists of

estimates of various probabilities under P.
Several of these estimates involve a sum or union bound over possible subfamilies of

the set of all hyper-edges of the form (9). We need to be able to move the sum outside

an expectation, and for this purpose, the sum must be over a range which is fixed, not
random. For this reason, it is convenient to augment the information in σn with a labeling

of the family of hyper-edges (9) by a fixed index set.

Let E1, . . ., Ed be disjoint sets, each of size n/k, and let E :=E1∪· · ·∪Ed. Taking some

terminology from coding theory, we refer to the elements of E as check nodes: this is
explained further in Subsection 6.4 below. Let σ ∈Homunif(Γ, Sym(V )) with |V |= n. Fix

i ∈ [d], and consider that V is partitioned into the orbits of the generator σ(si). Each

orbit corresponds to a hyper-edge as in (9). Since each hyper-edge has size k, there are
n/k of them, and so there exists a bijection between Ei and this family of hyper-edges.

Let us choose such a bijection uniformly and independently at randomly for each i, and

record the result as a subset H ⊆ E×V : a pair (e,v) ∈ Ei×V lies in H if e is attached
by the ith bijection to the hyper-edge that contains v.

We regard H as a bipartite graph on the disjoint union of E and V. As such, each

check node in E has exactly k neighbours in V, and each vertex in V has exactly one

neighbour in each of the subsets Ei (and thus d neighbours in total). It follows that each
intersection H ∩ (Ei×V ) is equivalent to a partition of V into parts labeled by Ei. In

the sequel, we borrow some more terminology from coding theory and refer to any such

bipartite graph H on E and V as a factor graph: see, for instance, [48, Sections 26.1 and
47.2]. Beware that this is actually a slight deviation from standard usage, which would

not insist that H be a union of the partitions H ∩ (Ei×V ), but here we do take this as

part of the definition of a ‘factor graph’.
More generally, if F ⊆E, then a partial factor graph on F and V is a bipartite graph

M ⊆ F ×V such that every check node in F has precisely k neighbours in V and every

vertex in V is joined to at most one check node in each intersection F ∩Ei. Equivalently,

there exists a factor graph H such that M =H ∩ (F ×V ). In particular, if F = Ei, then
a partial factor graph is simply a partition of V into k -sets that are labeled by Ei.

If H is a factor graph on E and V and F ⊆E, then the vertex neighbourhood of F

is the set

Vert(H;F ) := {v ∈ V : (e,v) ∈H for some e ∈ F}.
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We also use the notation Vert(M ;F ) for a partial factor graph M in the same way.

Similarly, the check-node neighbourhood of U ⊆ V is the set

Check(H;U) := {e ∈ E : (e,v) ∈H for some v ∈ V }.

We may iterate these definitions to define neighbourhoods with larger radii. In general,

for F ⊆ E or U ⊆ V , we define

Vert1(H;F ) := Vert(H;F ),

Check1(H;U) := Check(H;U),

Check1(H;F ) := Check1
(
Vert1(H;F )

)
and Vert1(H;U) := Vert1

(
Check1(H;U)

)
.

Then for integers r > 1, we make the recursive definitions

Vertr(H;F ) := Vert1(H;
(
Vertr−1(H;F )

)
,

and the same with U in place of F or Check in place of Vert. In graph theoretic terms,

if F ⊆E, then Vertr(H;F ) is the set of all vertices whose graph distance in H is at most
2r−1 from F, Checkr(H;F ) is the set of all check nodes whose graph distance in H is at

most 2r from F, and similarly for subsets of V.

These neighbourhoods are compatible with the Cayley graph neighbourhoods Br =

B(e,r) induced by the word metric on Γ (with respect to the generating set {sji : 1 ≤
i≤ d,1≤ j ≤ k−1}). Specifically, if H arises from σ through the construction above, and

U ⊆ V , then

σBr(U) := {σg(u) : g ∈Br, u ∈ U}= Vertr(H;U).

Now consider σ ∼ P and generate H from it as described above. Then H results from

two random steps: the choice of σ and then the choice of a bijection for each i. Let P̃ be
the joint distribution of (σ,H) after this construction. This is a probability measure on

Ω̃ := Homunif(Γ, Sym(V ))×{0,1}E×V .

It is a coupling of P to the law of H described above, and it has the following simple

properties:

• Given σ, the conditional distribution of H is uniform over ((n/k)!)d choices of
bijections.

• Given H, the conditional distribution of σ is uniform over all choices of cyclic
orderings for each hyper-edge of the multi-hyper-graph: there are ((k−1)!)dn/k

such choices for any H.
• Under the marginal distribution of H, the intersections H ∩ (Ei×V ) are indepen-

dent as i varies.

For (σ,H) drawn from P̃, the underlying multi-hyper-graph may be read off from either
coordinate: it is the multi-set of all σ(si) orbits for i ∈ [d], and it is also the collection of

all vertex neighbourhoods of the check nodes according to H. The labeling of these hyper-

edges by the fixed set E that is given by H is convenient for union bounds and other forms
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of counting. Most of our probabilistic estimates concerning these hyper-graphs later refer
to P̃ rather than P.

Remark. The random hyper-graphs on V that arise from σ ∼ P are k -uniform and

d -regular.

Models of such random hyper-graphs already have an established place in the literature
on probabilistic combinatorics: see, for instance, [76, Subsection 3.5] and the references

given there. However, most of that literature is dedicated to a uniform random choice of

such a hyper-graph, and this is not the same as the distribution that results from a random
choice of σ. The point is that if the hyper-graph is generated by a homomorphism σ, then

its hyper-edges can be classified according to which generator si gave rise to them. For

each single i, the corresponding hyper-edges form a partition of V into k sets. In general,
a k -uniform d -regular hyper-graph need not be a union of partitions.

In case k = 2, the difference here is between a uniformly random d -regular graph and

the sum of d independent random matchings. In this case, the difference has been studied

in some depth, with the outcome that these models are ‘contiguous’: see, for instance, [34]
or[76, Subsection 4.3]. The relation of contiguity is strong enough to allow us to transfer

most phenomena of interest from one model to the other.

However, for k > d ≥ 3, it turns out that contiguity fails. While we have not found a
reference for this fact in the literature, it follows fairly easily from some other standard

results, so we explain this in Appendix A.

For uniformly random k -uniform d -regular hyper-graphs, estimates on the typical
behaviour of the resulting LDPC codes are widely available in the coding theory literature.

For example, the typical rate of the resulting LDPC code is known very exactly from [51]

(we cite this in our proof of non-contiguity in Appendix A). These known results would

include most of the facts we need here, were it not for the difference in the underlying
random hyper-graph model. However, we have not found the analogous estimates for our

distributions P, so we must develop them here from scratch as necessary. Nevertheless,

the conclusions generally look the same as in those previous works, and we have been
guided by those throughout.

6.4. Parity-check matrices

To prove the desired properties of the random measures μσn
, we make careful use of

the linear structure of the codes Xn. As is standard in coding theory, this structure is
conveniently summarized by a parity-check matrix.

To introduce this point of view, we start with some more notation. If a ground set A

is understood and B ⊆A, then eB denotes the mod-2 indicator function of B : this is the

element of ZA
2 with entries equal to 1 precisely at the indices in B.

Now consider a vertex set V of size n which is a multiple of k, and let E =E1∪·· ·∪Ed

as in Subsection 3.1. Let H be a factor graph on E and V, and turn it into the (E×V )-

matrix H= eH , which also takes values in Z2. If this generates the same hyper-graph as
σ ∈Homunif(Γ, Sym(V )), then our code is given by

Xσ = {x ∈ Z
V
2 : Hx= 0}= kerH.
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In this role, H is called the parity-check matrix (for an introduction, see, for instance,

[20, Chapter 9], [23, Section 7.11] or [48, Chapter 1], especially the discussion of Exercise

1.9). This is why we refer to the elements of E as ‘check nodes’: each corresponds to a
row of H, which every codeword x must be orthogonal to. The representation of a code

using a set of connections between vertices and check nodes is a common example of a

‘factor graph representation’ [48, Section 47.2] – hence our use of the term ‘factor graph’
for H.

Because Xσ is a linear subspace of ZV
2 , it may equivalently be specified via its dual

code

X⊥
σ := {y ∈ Z

V
2 : 〈y,x〉= 0 (mod 2) ∀x ∈Xσ}.

Below, we refer to elements of X⊥
σ as parity checks. By the construction of Xσ, this X

⊥
σ

is precisely the linear subspace of ZV
2 spanned by the rows of H – that is, by the vectors

eVert(H;{e}) for e ∈ E. More succinctly,

X⊥
σ = img(HT).

Theorem 6.1 (1,2) are proved by counting relations or ‘near relations’ among the rows of

H. The second of these theorems requires the more complicated calculation. It is based on
Proposition 7.1 below. With that proposition in hand, we can also prove Theorem 6.1(2);

see Section 8.

7. Property M

In this section, we again suppress the subscript n from our notation, as in Subsection 6.3.

As before, this index will tend to ∞ along multiples of k.
The main part of the proof of Theorem 6.1 parts (1) and (2) is another, more technical

proposition. Put roughly, it rules out most ‘near cancellations’ among the parity-check

words of a typical (σ,H) drawn at random. However, for the application to Theorem 6.1,

we need such a result not only when (σ,H) ∼ P̃ but also after conditioning (σ,H) on a
small fraction of the vertices and check nodes.

We formulate this technical proposition next. For each i ∈ [d], let Fi ⊆ Ei and let

Wi := Vert(H;Fi). Let wi := |Wi|= k|Fi|. Let F := F1∪·· ·∪Fd, W :=W1∪·· ·∪Wd, and
w := |W |; see Figure 1. Then

max{w1, . . . ,wd} ≤ w ≤ w1+ · · ·+wd.

Let M be a partial factor graph on F and V, and let P̃M be the distribution obtained

by conditioning P̃ on the event that H ∩ (F ×V ) =M . The key to Theorem 6.1 is that if

the sets Fi are small enough, then after this conditioning, the rest of H is very unlikely
to create many new parity checks that involve only vertices inside W. Roughly speaking,

this means that if x ∈ Z
W
2 satisfies all of the parity checks arising from F, then, with high

probability, it admits an extension satisfying all of the parity checks.
Here and in the rest of the paper, if F ⊆ E and U ⊆ V , then HF×U denotes the

submatrix of H indexed by these sets, and we use analogous notation for the transpose

HT and for vectors indexed by either E or V. We identify Z
E\F
2 as a subspace of ZE

2
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Figure 1. Diagrams showing full factor graph H (left) and partial factor graph M (right). The square

vertices on the right of each graph are the check nodes, colored according to their membership in the

sets E1,E2,E3. The distribution P̃
M draws a new pair (σ,H) conditioned on the edges on the right being

present.

in the obvious way, and so any y ∈ Z
E\F
2 may be written as a tuple (y1, . . . ,yd)

T with

yi ∈ Z
Ei\Fi

2 .

Proposition 7.1 (‘Few additional checks inside W ’). For every K > 0 and ε > 0, the

following holds for all sufficiently small δ (depending on d, k, ε and K). Let Fi, Wi, wi

and M be as above. If

δn≤ w1+ · · ·+wd ≤Kδn, (25)

then

P̃
M
(
∃y ∈ Z

E\F
2 such that min{|yi|,|eEi\Fi

−yi|} ≥εδ
n

k
for some i

and (HTy)V \W = 0
)
→ 0

as n→∞. The rate of convergence depends only on d, k and δ and is independent of δ
provided δ is small enough and also bounded away from zero.

We show how Proposition 7.1 implies Theorem 6.1 in the next subsection, and then we

prove Proposition 7.1 itself in Subsection 7.2.

Remark. Proposition 7.1 has a similar flavor to the analysis of the satisfiability threshold

for the random combinatorial problem known as random XORSAT. But our setting has
the additional complication that we must analyse conditional probabilities given the

behaviour of the random factor graph H on the small sets Fi, which seems to make our

situation less ‘homogeneous’. The random XORSAT model is treated in [49, Chapter 18]
using the paradigm of ‘belief propagation’. It is possible that that approach could also

be brought to bear in the situation in Proposition 7.1, possibly leading to an alternative

proof, but we have not pursued this idea further.
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7.1. Property M from few additional checks

To deduce Theorem 6.1 from Proposition 7.1, we also need two simpler calculations that

we present as separate lemmas.

The first concerns the following construction. Fix a subset R of V and let r > 0. For

any factor graph H ⊂ E×V , we can form the neighbourhood F := Checkr(H;R), and
then the intersection M :=H ∩ (F ×V ) is a partial factor graph on F and V. Let us call

the pair (F,M) possible with respect to (R,r) if they can arise from a factor graph in

this way.

Lemma 7.2. Let R and r be as above, let (F,M) be possible with respect to (R,r), and
let (σ,H)∼ P̃. If the event

{H : H ∩ (F ×V ) =M}

occurs, then so does the event

{H : Checkr(H;R) = F}.

If we condition on the former event, then the subsets H ∩ ((Ei \F )×V ) are independent

for different i, and each is a uniform random labeled partition of V \Vert(M ;Ei∩F ) into

k-sets.

Proof. First, the definition of the neighbourhood Checkr(H;R) depends only on those
edges of the bipartite graph H that connect this neighbourhood to V. Since we are told

that (F,M) is possible with respect to (R,r), all those edges must already be visible in

M, and so knowing that H ∩ (F ×V ) =M is enough to tell us that Checkr(H;R) = F .
Now the conditional probability in question is P̃

M , as introduced previously. Since P̃

is a uniform distribution, P̃M is the uniform distribution over all factor graphs for which

the event holds. However, if the event holds, then (i) H∩ (F ×V ) is uniquely determined,

(ii) each H∩((Ei \F )×V ) must consist of a labeled partition of V \Vert(M ;Ei∩F ) into
k -sets, and (iii) any tuple of such labeled partitions is still possible. So this conditional

distribution is simply the uniform distribution over the Cartesian product set of tuples

of such labeled partitions. This implies the desired joint distribution for these sets.

The next lemma may be well known in coding theory, but we have not found a
convenient reference.

Lemma 7.3. Let A be any finite nonempty index set, δ < 1/3, and let Y be a linear
subspace of ZA

2 such that

either |y| ≤ δ|A| or |y| ≥ (1− δ)|A| for every y ∈ Y. (26)

Then dimY ≤ 2δ|A|+1.

Proof. Let Z be the subset of all y ∈ Y for which |y| ≤ δ|A|. We prove that Z is a linear
subspace, dimY/Z ≤ 1, and dimZ ≤ 2δ|A|.
First, Z clearly contains 0, and if y,y′ ∈ Z, then y+y′ ∈ Y and

|y+y′| ≤ 2δ|A|.
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Since 2δ < 1− δ, by (26), this forces y+y′ ∈ Z, so Z is a subspace.

Next, if y,y′ ∈ Y \Z, then

|y−y′| ≤ |(1, . . . ,1)−y|+ |(1, . . . ,1)−y′| ≤ 2δ|A|,

so again we must in fact have y−y′ ∈ Z. Therefore, dimY/Z ≤ 1.

Finally, call an index i ∈A proper if some member of Z is nonzero in this coordinate.

Now choose z from Z uniformly at random. If i is proper, then the coordinate zi is equally

likely to be 0 or 1, so the expectation of |z| is half the number of proper coordinates.
Therefore, the number of proper coordinates is at most 2δ|A|, and this number is an

upper bound on dimZ.

Property M (Theorem 6.1) follows from the following result, which is also used to prove

local and empirical convergence:

Theorem 7.4. Given r ∈N and η > 0, for all small enough δ > 0, the following holds: if

for each n, Rn ⊂ Vn is a subset of size �δn�, then with high probability as n→∞,

H
(
(μn)σBr

n (Rn)

)
≥ (1−η) H

(
mBr

)
|Rn|.

Proof of Theorem 7.4 assuming Proposition 7.1. Beware that we continue to sup-

press n from subscripts where possible. It should be understood that the following
argument and construction are carried out for each n that is divisible by k.

Fix ε > 0. For a small positive δ to be specified shortly, let R be any fixed choice of a

subset of V of size �δn�, and now consider the following three subsets of (σ,H) in Ω̃:

i. (Few additional checks) (σ,H) is in Ω1 if for

any y ∈ Z
E\Checkr(H;R)
2 such that (HTy)V \Vertr(H;R) = 0 also has

min{|yi|,|eEi\Fi
−yi|}< εδ

n

k
for every i ∈ [d],

where Fi = Ei∩Checkr(H;R).

ii. (Most vertices in R well-separated) (σ,H) is in Ω2 if the set

S1 :=
{
v ∈R : Vertr(H;v)∩Vertr(H;R\v) = ∅

}
has |S1|> (1− ε)|R|.

iii. (Most vertices in R not close to any short loops) (σ,H) is in Ω3 if the set

S2 :=
{
v ∈R : the orbit map Br → Vertr(H;v) is injective

}
has |S2|> (1− ε)|R|. (Here, the orbit map sends γ ∈Br ⊂ Γ to σ(γ)v.)

Let S := S1∩S2 and Ω′ := Ω1∩Ω2∩Ω3. Think of S as the result of expurgating the ‘bad’

vertices from R and Ω′ as the event that there are only a few of these.
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In the remainder of the proof, we show that, provided δ was chosen small enough, we
have P̃(Ω′)→ 1 and the set R satisfies the desired entropy bound.

Step 1: P̃(Ω′)→ 1. First, we have P̃(Ω2)→ 1 as n→∞ for any sufficiently small δ in

terms of d, k, r and ε. To see this, observe that although we are fixing R and choosing
(σ,H) at random, we obtain the same distribution on |S1| if we choose R uniformly at

random among all subsets of V of cardinality �δn�, independently of (σ,H). Thus, it

suffices to show that on any d -regular k -uniform hyper-graph on n vertices, if a subset
R⊂ V of �δn� vertices is chosen uniformly at random, then the probability that there are

more than εδn vertices of R which are ≤ 2r distance from another vertex in R tends to

zero as n→∞.

If some number, say x, of vertices have already been chosen, then the probability that
the next vertex is not within distance 2r of the previously selected vertices is at least

1− (kd)2rx

n−x
≥ 1− (kd)2r�δn�

n−�δn� ≥ 1− (kd)2r
δ

1− δ
.

This is because the number of vertices in the (2r)-neighbourhood of a given vertex is

at most (kd)2r. Thus, P̃(Ω2) is at least the probability that in �δn� Bernoulli trials with
success probability 1−(kd)2r δ/(1−δ), there are at least (1−ε)�δn� successes. This occurs
with overwhelming probability as n→∞ as long as ε > (kd)2r δ/(1− δ), which we may

assume by choosing δ sufficiently small.
Second, for any δ > 0, we have P̃(Ω3) → 1 as n → ∞ as an immediate corollary of

Proposition 1.2.

So now let us show that P̃(Ω1)→ 1 as n→∞. This is our application of Proposition 7.1.
We make contact with that proposition by conditioning on the partial factor graph H ∩
(Checkr(H;R)×V ) and using the law of total probability.

Let (F,M) be a possible pair with respect to (R,r) as in Lemma 7.2, and let P̃
M

be the result of conditioning P̃ on the event H ∩ (F × V ) = M , as previously. Let
Wi := Vert(M ;Fi) and let W :=W1∪·· ·∪Wd. By the law of total probability, P̃(Ω̃\Ω1)

is equal to the sum∑
possibleF,M

P̃
(
H ∩ (F ×V ) =M

)
· P̃M

(
∃y ∈ Z

E\F
2 such that

min{|yi|,|eEi\Fi
−yi|} ≥ εδ

n

k
for some i and (HTy)V \W = 0

)
.

Let K := (dk)r+1+1. Our construction of the possible pair (F,M) gives that

δn≤ |R| ≤ |W | ≤
d∑

i=1

|Wi| ≤ (dk)r+1|R| ≤Kδn

when δn> 1, and so the condition (25) is satisfied for this value of K by the second factor
in every term of the sum above. Therefore, by Proposition 7.1, if δ is small enough in

terms of d, k, ε and r, then this sum is a convex combination of quantities that converge

to 0 at a rate depending only on d, k and δ, and hence, so does the whole expression.
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This proves that P̃(Ω′)→ 1 for any sufficiently small δ. Fix such a δ for the rest of the

proof.

Step 2. To finish the proof, we show that if σ ∈ Ω′, then (i), (ii) and (iii) imply that

S has the properties required to witness property M as in Definition 4.2.

First, S1 is (2r)-separated by property (ii), and hence, so is S.

Second, properties (ii) and (iii) together give

|S|
|V | ≥ (1−2ε)

|R|
|V | ≥ (1−2ε)δ,

which is uniformly positive in n provided ε < 1/2.

Finally, we must prove (11). Because μσ is the uniform distribution on the linear

subspace Xσ of ZV
2 , the projection of μσ over the subset of vertices σBr (S) = Vertr(H;S)

is the uniform distribution on the linear space

Z := {xVertr(H;S) : x ∈Xσ}.

Therefore, after ignoring a factor of log2, we need a lower bound on dimZ.

By property (iii), each of the neighbourhoods Vertr(H;v) for v ∈ S is a bijective copy of

Br ⊆ Γ, and by property (ii), these neighbourhoods are disjoint. Therefore, Z is naturally
identified with a linear subspace of∏

v∈S

Z
Vertr(H;v)
2

∼= (ZBr
2 )S .

As a linear subspace of Z
Vertr(H;S)
2 , Z is determined by its dual code Z⊥ – that is, its

own collection of parity-check words in Z
Vertr(H;S)
2 [48, Section 13.10]. Since Z is the

projection of Xσ, each word in Z⊥ becomes a word in X⊥
σ when it is extended by 0 to

V \Vertr(H;S). Therefore, Z⊥ is identified with the set of all mod-2 sums of the rows of

H that vanish on V \Vertr(H;S), and so the rank-nullity formula gives

dimZ = dim(ZBr
2 )S −dimkerHT

(V \Vertr(H;S))×E . (27)

So let us consider the ways in which a mod-2 sum of the rows of H can vanish
on V \ Vertr(H;S). First, each individual row of H that is indexed by an element of

Checkr(H;S) vanishes outside Vertr(H;v) for some single element v ∈ S. Since each of

these sets is a bijective copy of Br, these checks by themselves show that Z is actually a
linear subspace of XS

Br
⊂ (ZBr

2 )S .

However, given any other mod-2 sum of rows of H which vanishes on V \Vertr(H;S),

we may remove any summands indexed by Checkr(H;S) without losing that property. So
now consider a mod-2 sum of rows of H that is supported in Vertr(H;S) and uses no rows

indexed by Checkr(H;S). It might use only rows indexed by Checkr(H;R)\Checkr(H;S).

Or it might include at least one summand indexed by an element of E \Checkr(H;R), in

which case those summands by themselves define a nonzero vector in

D := kerHT
(V \Vertr(H;R))×(E\Checkr(H;R))
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because the rows of H indexed by Checkr(H;R) are supported in Vertr(H;R), and so

ignoring them cannot change the support in V \Vertr(H;R).

Combining these possibilities, (27) implies the lower bound

dimZ ≥ |S| ·dimXBr
−|Checkr(H;R)\Checkr(H;S)|−dimD. (28)

By properties (ii) and (iii), |S| ≥ (1−2ε)|R|. Since |Checkr(H;R\S)| ≤ (dk)r−1k|R\S|,
this implies

|Checkr(H;R)\Checkr(H;S)| ≤ |Checkr(H;R\S)| ≤Kkε|S|.

However, by property (i), if y ∈D and we write y= (y1, . . . ,yd)
T, then for each i, we have

yi ∈ Z
Ei\Checkr(H;R)
2 and

either |yi|< εδ
n

k
or |eEi\Checkr(H;R)−yi|< εδ

n

k
.

Therefore, provided εδ < 1/3, Lemma 7.3 gives

dim{yi : y ∈D} ≤ 2εδ
n

k
+1 for each i,

and hence, dimD ≤ 2εδnd/k+d.
Inserting these bounds into (28), we finally arrive at

dimZ ≥ |S| ·dimXBr
−Kkε|S|−2εδ

nd

k
−d

≥
(
dimXBr

−Kkε− 2εd

k
−o(1)

)
· |S|.

This gives us a lower bound on the desired joint entropy:

H
(
(μn)σBr

n (R)

)
≥H

(
(μn)σBr

n (S)

)
= log2 ·dimZ

≥
(
log2 ·dimXBr

− ε log2 ·
(
Kk− 2d

k
−o(1)

))
· (1−2ε)|R|

≥ (H(mBr
)− εC) |R|,

where C = log2 ·(Kk− 2d
k )+2H(mBr

). Since C depends only on d,k and r, we could have
taken at the beginning ε= η/C, so this proves (11).

Remark. Proposition 7.1 shows that, with high conditional probability in the choice of

H, the only parity checks among the bits in W that are created by H are (i) those created

by the rows in F, and possibly (ii) a few others that are generated by some vectors y
whose support is either extremely small or extremely close to the whole of E \F . Since

the number of possible vectors of type (ii) is very small compared with those of type (i),

this implies that there are few enough ‘spurious’ parity checks among the bits in W to
give Theorem 6.1. However, we do not expect that there are no extra parity checks of

type (ii): just by chance, one should typically find as many as a very small multiple of n

of these.
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Proof of Theorem 6.1 item (1) from Theorem 7.4. We have to prove there are

subsets

Ω′
n ⊆Homunif(Γ, Sym(Vn))

such that Pn(Ω
′
n)→ 1 and if σn ∈Ω′

n for each n, then (μn)n has property M with respect
to Σ = (σn)n. This means that for every ε > 0 and 0 < r < ∞, there is a sequence of

subsets Sn ⊂ Vn such that

liminf
|Sn|
|Vn|

> 0

and

H((μn)σBr
n (Sn)

)≥ |Sn|(H(mBr
)− ε) (29)

for all n.

Let r,ε > 0. By Theorem 7.4, if δ > 0 is sufficiently small and for each n, Sn ⊂ [n] is an
arbitrary set of size �δn�, then there is some sequence (Ω′

n)n with P(Ω′
n)→ 1 such that

the desired entropy inequality holds when σn ∈Ω′
n, and liminf |Sn|

n = liminf �δn�
n = δ > 0.

Then, by diagonalizing over the countably many choices of r ∈ N and ε ∈ {1
2,

1
3,

1
4, . . .},

we can get a single sequence of sets (Ω′
n)n with P(Ω′

n)→ 1 such that for any r ∈ N and

ε > 0, there is a sequence (Sn)n with the desired properties.

7.2. Proof that there are few additional checks

This subsection proves Proposition 7.1. Let the sets Fi, Wi and M and parameters K, ε,

wi and w be as in that statement. For y ∈ Z
E\F
2 , let

Gy :=
{
(σ,H) : (HTy)V \W = 0

}
⊂ Ω̃n.

Write y = (y1, . . . ,yd)
T with yi ∈ Z

Ei\Fi

2 . We will focus on those vectors y which satisfy

restrictions on the cardinalities |yi| coming from Proposition 7.1. To be precise, let R=

R(ε,δ) be the set of all nonnegative integer tuples �= (�1, . . . ,�d) that satisfy

�i ≤
n−wi

k
for every i and min

{
�i,

n−wi

k
− �i

}
≥ εδ

n

k
for some i. (30)

The main conclusion of Proposition 7.1 is equivalent to

P̃
M

⎛
⎝ ⋃

y: (|y1|,...,|yd|)∈R
Gy

⎞
⎠→ 0

as n → ∞. Our proof uses a simple union bound over y. We will derive estimates
on P̃

M (Gy) that depend on ε and δ for y ∈ R(ε,δ) and then use these to conclude

Proposition 7.1 provided δ is chosen correctly.

Fix a vector y ∈ Z
E\F
2 with (|y1|, . . . ,|yd|) ∈ R, and set ri := k|yi| and r := (r1, . . . ,rd).

Let Yi be the support of the random vectorHTyi for each i. This meansHTyi = eYi
. These

random sets are independent by the independence in Lemma 7.2. Each Yi is uniformly

random among all subsets of V \Wi of size ri.
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Each Yi may have nonempty intersection with W \Wi. We bound P̃
M (Gy) by breaking

into a few further cases depending on the sizes of these intersections. To this end, let

Zi := Yi \W . Under P̃M , the cardinality |Zi| is a random quantity obtained by sampling
ri points from V \Wi without replacement and counting how many of them land in V \W .

This random quantity has the hypergeometric distribution with parameters n−wi, n−w

and ri: see, for instance, [28, Section II.6]. Its possible values are the integers si that
satisfy

max(0,ri− (w−wi))≤ si ≤min(ri,n−w), (31)

and for such values, we have

P̃
M (|Zi|= si) =

(
n−w
si

)(
w−wi

ri−si

)(
n−wi

ri

) .

By the standard exponential estimate for binomial coefficients (see, for instance, [23,
Example 11.1.3]), this ratio is at most

exp

(
H

(
si

n−w

)
(n−w)+H

(
ri−si
w−wi

)
(w−wi)−H

(
ri

n−wi

)
(n−wi)+o(n)

)
, (32)

where quality of the error term does not depend on any other parameters.

Towards Proposition 7.1, we estimate the probability of Gy after further conditioning

on the tuple of cardinalities |Zi|, and then combine this estimate with (32) using the
law of total probability. That refined conditional probability estimate depends on the

following lemma.

Let Even(d) be the subset of all strings in {0,1}d that have even weight.

Lemma 7.5. Let q1, . . ., qd be probability distributions on {0,1}, and assume that q is a

coupling of q1, . . ., qd that is supported on Even(d). Then

H(q)≤
(
1− 1

d

)(
H(q1)+ · · ·+H(qd)

)
.

Proof. By permuting indices, we may assume without loss of generality that

H(q1)≥ ·· · ≥H(qd).

Let z= (z1, . . . ,zd) be the identity map on {0,1}d, and regard it as a random binary string
with distribution q. Then z has even weight almost surely, and hence, the coordinates z2,

. . ., zd determine z1 almost surely. Therefore,

H(q) = Hq(z) = Hq(z2, . . . ,zd)≤Hq(z2)+ · · ·+Hq(zd) = H(q2)+ · · ·+H(qd).

Because of our ordering of the indices, this is at most the desired upper bound.
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Now let S(r) be the set of all integer tuples s = (s1, . . . ,sd) that satisfy (31) for

every i.

Lemma 7.6. Fix a vector y ∈ Z
E\F
2 with (|y1|, . . . ,|yd|) ∈R as above. If s ∈ S(r), then

P̃
M
(
Gy

∣∣ |Zi|= si for each i
)
≤ exp

(
−1

d

d∑
i=1

H

(
si

n−w

)
· (n−w)+od(n)

)
.

Proof. To lighten notation, within this proof, let

P̃
M,s := P̃

M
(
·
∣∣ |Zi|= si for each i

)
.

Record the random sets Z1, . . ., Zd into the random vector

η = (ηv)v∈V \W ∈ ({0,1}d)V \W where ηv := (1Z1
(v), . . . ,1Zd

(v)).

Let Pη = 1
|V \W |

∑
v∈V \W δηv

be the empirical distribution of η. This is a probability

distribution on {0,1}d, and the event Gy occurs if and only if this probability distribution

is supported on the subset Even(d). The marginals of Pη are (qi,1− qi) for i= 1,2, . . . ,d,

where qi := si/(n−w). Moreover, Pη must take values that are multiples of 1/(n−w),
and the total number of such possible distributions is at most

(n−w+1)2
d ≤ n2d = eod(n)

(here and in some subsequent steps, we generally loosen od(n−w) to od(n)). Therefore,

P̃
M,s(Gy)≤ eod(n)max

{
P̃
M,s(Pη = q) : q a coupling (33)

of q1, . . . ,qd such that q(Even(d)) = 1
}
.

For a distribution q as above, the set of vectors η that give Pη = q are the ‘type class’ of

q, and their number is simply bounded using the entropy of q :

|{η ∈ ({0,1}d)V \W : Pη = q}| ≤ eH(q)·(n−w)

(see, for instance, [23, Theorem 11.1.3], except note that Cover and Thomas use log2
rather than natural logarithms to define H). By Lemma 7.5, this upper bound is always

at most

exp

((
1− 1

d

)
·
(
H(q1)+ · · ·+H(qd)

)
· (n−w)

)
. (34)

However, under the conditional probability measure P̃
M,s, the set Zi is a uniform

random subset of V \W of size si, and these random sets are still independent. Therefore,

the probability of any particular d -tuple of sets of these sizes occurring is

d∏
i=1

(
n−w

si

)−1

,
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and by another use of standard exponential estimates on binomial coefficients
[23, Example 11.1.3], this is at most

exp
(
−
(
H(q1)+ · · ·+H(qd)

)
· (n−w)+od(n)

)
.

Multiplying by the cardinality upper bound (34), we obtain

P̃
M,s(Pη = q)≤ exp

(
−1

d

(
H(q1)+ · · ·+H(qd)

)
· (n−w)+od(n)

)
for any such coupling q. Since this upper bound is independent of the particular coupling
q, and the extra factor in (33) is sub-exponential, this gives the result.

Lemma 7.7. Fix k and d as before, and define the function

f(t,α′,α′′) := (1−k−1)H
(
(1− t)α′+ tα′′)− (1− t)(1−d−1)H(α′)− tH(α′′)

for 0≤ α′,α′′,t≤ 1. Then

P̃
M

⎛
⎝ ⋃

y: (|y1|,...,|yd|)∈R
Gy

⎞
⎠≤

∑
r∈kR, s∈S(r)

exp

(
−

d∑
i=1

fi(ri,si) · (n−wi)+od(n)

)
,

where

fi(ri,si) = f

(
w−wi

n−wi
,

si
n−w

,
ri−si
w−wi

)
.

Proof. For each y, we let ri := k|yi| and bound P̃
M (Gy) from above using (32), Lemma

7.6 and the law of total probability. The resulting upper bound is

P̃
M (Gy)≤

∑
s∈S(r)

exp

(
− 1

d

d∑
i=1

H

(
si

n−w

)
(n−w)+

d∑
i=1

H

(
si

n−w

)
(n−w)

+

d∑
i=1

H

(
ri−si
w−wi

)
(w−wi)−

d∑
i=1

H

(
ri

n−wi

)
(n−wi)+od(n)

)
.

However, the number of vectors y ∈ Z
E\F
2 with given weights |yi|= ri/k is at most

exp

(
d∑

i=1

H

(
ri

n−wi

)
n−wi

k

)
.

Therefore, the sum of P̃M (Gy) over all y satisfying (|y1|, . . . ,|yd|) ∈R is at most

∑
r∈kR, s∈S(r)

exp

(
−

d∑
i=1

fi(ri,si) · (n−wi)+od(n)

)
, (35)
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where

fi(ri,si) :=−1

k
H

(
ri

n−wi

)
+

1

d
· n−w

n−wi
·H

(
si

n−w

)

− n−w

n−wi
·H

(
si

n−w

)
− w−wi

n−wi
·H

(
ri−si
w−wi

)
+H

(
ri

n−wi

)

=

(
1− 1

k

)
·H

(
ri

n−wi

)

−
(
1− 1

d

)
· n−w

n−wi
·H

(
si

n−w

)
− w−wi

n−wi
·H

(
ri−si
w−wi

)

= f

(
w−wi

n−wi
,

si
n−w

,
ri−si
w−wi

)
.

We are nearly ready to prove Proposition 7.1. For that proof, we must combine

Lemma 7.7 with an elementary but rather fiddly estimate. That estimate refers to the

functions

γ1(t) :=
1

(log(1/t))1/3
and γ2(t) :=

1

(log(1/t))2/3
,

both for 0 < t < 1. The exponents 1/3 and 2/3 are not particularly special here: all

we really need is the ordering 0 < 1/3 < 2/3 < 1. The next lemma gives a collection of

simple bounds on the quantity f(t,α′,α′′) for different ranges of the arguments. Each part

requires that t is sufficiently small in terms of d and k. The quantities t
(a)
0 ,t

(b)
0 , t

(c)
0 and

t
(d)
0 are unspecified positive numbers that are sufficiently small in terms of only d and k.

Recall we assume k > d≥ 3.

Lemma 7.8. Write α := (1− t)α′ + tα′′. The function f from Lemma 7.7 satisfies the

following.

a. If t < t
(a)
0 and either α′′ ≤ α′ ≤ 1/2 or α′′ ≥ α′ > 1/2, then

f(t,α′,α′′) �d,k H(α).

(This includes the assertion that the left-hand side is nonnegative; see Section 1.6.)

b. If t < t
(b)
0 and tγp(t)≤ α′ ≤ 1− tγp(t), then

f(t,α′,α′′) �d,k t · (log(1/t))1−p/3.

c. If t < t
(c)
0 and γp(t)≤ α′′ ≤ 1−γp(t), then

f(t,α′,α′′) �d,k t · (log(1/t))1−p/3.

d. If t < t
(d)
0 and

[ α′ < tγp(t) or α′ > 1− tγp(t)] and [ α′′ < γp(t) or α′′ > 1−γp(t) ],
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then

max{0,−f(t,α′,α′′)} �d,k t · (log(1/t))1−p/3.

(The maximum is used here to maintain the nonnegativity convention for �.)

Observe that at least one of the parts (b), (c) or (d) must hold whenever

t <min{t(b)0 ,t
(c)
0 ,t

(d)
0 }.

Proof. Each part of this lemma is symmetric under replacing (α′,α′′) with (1−α′,1−α′′),
and so is the function f. We therefore assume that α′ ≤ 1/2 throughout the proof.

Part (a). By the concavity of H, we have

(1− t)(1−d−1)H(α′)+ tH(α′′)

≤
(
(1− t)(1−d−1)+ t

)
H

(
(1− t)(1−d−1)

(1− t)(1−d−1)+ t
α′+

t

(1− t)(1−d−1)+ t
α′′
)
.

Since 1− d−1 < 1, the convex combination inside the argument of H here skews more

towards α′′ than does the convex combination that gives α. Therefore, since α′′ ≤α′ ≤ 1/2
and H is increasing on [0,1/2], the right-hand side above is bounded above by(

(1− t)(1−d−1)+ t
)
H(α) = (1−d−1+ td−1)H(α).

Therefore,

f(t,α′,α′′)≥
(
(1−k−1)− (1−d−1+ td−1)

)
H(α) = (d−1−k−1− td−1)H(α),

which is �d,k H(α) provided t < t
(a)
0 .

Part (b). For this part, our assumptions are now α′ ≤ 1/2 and α′ ≥ tγp(t). Let

c1 := (d−1−k−1)/2> 0. Since α′ ≤ 1/2 and H is continuous on [0,1] and increasing on

[0,1/2], we have that

H((1− t)α′+ tα′′)≥ 1−d−1+ c1
1−k−1

H(α′) whenever t < t
(b)
0 . (36)

If α′ ≥ tγp(t) and t < t
(b)
0 , then

H(α′)≥H(tγp(t))≥ t ·γp(t) ·
(
log(1/γp(t))+ log(1/t)

)
(37)

≥ t ·γp(t) · log(1/t) = t · (log(1/t))1−p/3.

Combining (36) and (37), we obtain

f(t,α′,α′′)≥ (1−d−1+ c1)H(α′)− (1− t)(1−d−1)H(α′)− tH(α′′)

≥ c1H(α
′)− tH(α′′)

≥ c1 · t · (log(1/t))1−p/3− log2 · t
�d,k t · (log(1/t))1−p/3 if t < t

(b)
0 .

Part (c). For this part, our assumptions are now α′ ≤ 1/2 and α′′ ≥ γp(t). We may

also assume that α′ < tγp(t), for otherwise, part (b) already gives the desired bound.
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If, in addition, we have α′ ≥ α′′, then part (a) gives

f(t,α′,α′′) �d,k H(α),

and this in turn satisfies

H(α)≥H(tα′′)≥ t ·α′′ · log(1/t)≥ t ·γp(t) · log(1/t) = t · (log(1/t))1−p/3. (38)

So for the rest of this part, assume in addition that α′ ≤ α′′. Then for sufficiently small
t, we must have the ordering α′ ≤ α < 1/2, and so

(1− t)(1−d−1)H(α′)+ tH(α′′)≤ (1−d−1)H(α′)+ tH(α′′)

≤ (1−d−1)H(α)+ tH(α′′).

Therefore, in this case, it suffices to show that

(d−1−k−1)H(α)− tH(α′′) �d,k t · (log(1/t))1−p/3.

Since the second left-hand term here is O(t), this follows by another use of (38).

Part (d). For this case, we simply neglect the positive term in f entirely. If

t < t
(d)
0 , α′ < t ·γp(t) and α′′ < γp(t),

then

H(α′) �d,k t ·γp(t) · log
1

t
= t · (log(1/t))1−p/3

and

tH(α′′) =O(t) �d,k t · (log(1/t))1−p/3.

In the cases where α′ > 1− t · γp(t) or α′′ > 1− γp(t), the same estimates hold, by the

symmetry H(x) = H(1−x). Adding these estimates gives the conclusion.

Corollary 7.9. Fix K ≥ 1 and δ > 0, and let the other notation be as for Lemma 7.8. If

δ is sufficiently small in terms of d, k and K, and if

t≤Kδ and δ ·γ1(δ)≤ α≤ 1− δ ·γ1(δ),

then

f(t,α′,α′′) �d,k,K δ · (log(1/δ))2/3

(irrespective of any further bounds on α′ and α′′).

Proof. By the same symmetry as for Lemma 7.8, we may assume that α′ ≤ 1/2.
Having done so, suppose first that α′′ ≤ α′. Then part (a) of Lemma 7.8 gives

f(t,α′,α′′) �d,k H(α),

and our assumed range for α gives

H(α)≥H(δ ·γ1(δ))≥ δ · (log(1/δ))2/3, (39)

giving a lower bound of the desired form.
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So now suppose that α′ ≤ 1/2 and α′′ ≥ α′. Since t≤Kδ, it follows that

α′ ≤ α≤ (1−Kδ)α′+Kδ.

Provided δ is sufficiently small in terms of d and k, this range of possible values for α′

and α implies that

(1−d−1)H(α′)≤
(
1− d−1+k−1

2

)
H(α)

(noting that the constant in front of the entropy on the left is slightly smaller than the

constant in front of the entropy on the right). Rearranging, this implies that

(1−k−1)H(α)− (1−d−1)H(α′)≥ d−1−k−1

2
H(α)≥ d−1−k−1

2
· δ · (log(1/δ))2/3,

using again the lower bound (39). This now gives

f(t,α′,α′′)≥ d−1−k−1

2
· δ · (log(1/δ))2/3− t

(
H(α′′)− (1−d−1)H(α′)

)
≥ d−1−k−1

2
· δ · (log(1/δ))2/3− log2 ·K · δ.

This implies the desired lower bound on f for all sufficiently small δ.

Proof of Proposition 7.1. Fix K and ε and also Fi, Wi, wi and M as in the statement

of Proposition 7.1, and suppose that (25) holds. We prove the convergence to zero of the

required probabilities provided that δ is small enough in terms of d, k, ε and K.

First, assume δ is small enough that

γ1(δ)≤ ε, (40)

and also small enough in terms of d, k and K that Corollary 7.9 applies.

By Lemma 7.7, and since a small choice of δ ensures that n−wi ≥ n/2 for each i, it

suffices to show that, if δ is sufficiently small, then the negative exponent

d∑
i=1

f

(
w−wi

n−wi
,

si
n−w

,
ri−si
w−wi

)
(41)

is bounded below by a positive quantity that is independent of r ∈ kR and s ∈ S(r).
So fix r and s, and let

(ti,α
′
i,α

′′
i ) :=

(
w−wi

n−wi
,

si
n−w

,
ri−si
w−wi

)
and

αi = (1− ti)α
′
i+ tiα

′′
i =

ri
n−wi

.

For each i, this implies that

ti ≤
w

n
≤Kδ.
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Assume δ is also small enough that Kδ < min{t(a)0 ,t
(b)
0 ,t

(c)
0 ,t

(d)
0 }, so each ti is also less

than this minimum.
Classify the indices i ∈ [d] into two subsets:

I1 = {i ∈ [d] : εδ ≤ ri/(n−wi)≤ 1− εδ}
I2 = [d]\ I1.

The definition of R implies that I1 �= ∅. Consider the terms in (41) for indices in these

subsets:

• If i ∈ I1, then, by our choice of δ in (40) and since ti ≤Kδ, Corollary 7.9 gives

f

(
w−wi

n−wi
,

si
n−w

,
ri−si
w−wi

)
≥ C1 · δ · (log(1/δ))2/3

for some positive constant C1 depending only on d, k and K.
• Next, for i ∈ I2, we use that at least one of parts (b), (c), and (d) of Lemma 7.8

must hold, which gives that

max

{
0, −f

(
w−wi

n−wi
,

si
n−w

,
ri−si
w−wi

)}
�d,k ti · (log(1/ti))1/3

�K δ · (log(1/δ))1/3

provided δ is sufficiently small, and so the left-hand side is bounded above by
C2 · δ · (log(1/δ))1/3 for some positive C2 depending only on d, k and K.

We bound (41) from below by adding these estimates. At least one term has i ∈ I1, and

there are at most d−1 terms with i ∈ I2. This leaves the lower bound

C1 · δ · (log(1/δ))2/3− (d−1) ·C2 · δ · (log(1/δ))1/3.

This is positive for all sufficiently small δ, uniformly over different choices of r or s, as
required.

8. Proof of local and empirical convergence

In this section, we prove Theorem 6.1(2): we show that if (Ω′
n)n is the sequence given

by Theorem 6.1(1) and σn ∈ Ω′
n for each n, then the measures μn converge locally and

empirically in probability to the Haar measure m.

Recall Xn =Xσn
is the set of parity check codewords over σn ∈ Homunif(Γ, Sym(Vn)).

For v ∈ Vn, let

Xn,v = {Πσn
v x : x ∈Xn}

be the set of pullback names at v of all the codewords in Xn. As above, let

Loc(μn,v) = (Πσn
v )∗μn ∈ Prob(X).

Let Xn,v,r be the projection of Xn,v onto Z
Br
2 . Call a vertex v ∈ Vn r-proper if Xn,v,r =

XBr
. Otherwise, call it r-improper.
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The following lemma is a (stronger) version of [61, Lemma 3.47] for our random factor

graph model.

Lemma 8.1. For any r,ε > 0

P

(
1

|Vn|
|{v ∈ Vn : v is r-improper}| ≥ ε

)
→ 0

as n→∞.

Proof. In general, Xn,v,r is a vector subspace of XBr
. If v is r -improper, then it is a

subspace of strictly smaller dimension, so

H(Loc(μn,v)Br
)≤ log |Xn,v,r|= (dimXn,v,r) log2≤ (dimXBr

−1) log2 = H(mBr
)− log2.

(42)

With ε,r as given, pick η = ε log2
4 . By Theorem 7.4, for small enough δ > 0, if for each

n we pick a subset Rn of Vn of size �δn�, then with high probability, σn satisfies

H((μn)σBr
n ·Rn

)≥ (H(mBr
)−η) |Rn|.

Now for the sake of contradiction, suppose that

limsup
n→∞

P

(
1

|Vn|
|{v ∈ Vn : v is r-improper}| ≥ ε

)
> 0.

Then, by symmetry of the law of σn, and using that |Rn| ≥ δ|Vn|, the probability that

the fraction of r -improper vertices within Rn is at least ε
2 is uniformly bounded below

for infinitely many n. But if an ε
2 fraction of vertices of Rn are r -improper, then by (42)

and subadditivity of Shannon entropy,

H((μn)σBr
n ·Rn

)≤
(
H(mBr

)− ε
2 log2

)
|Rn|.

Combining with the above, this implies that with nonvanishing probability,

(H(mBr
)−η) |Rn| ≤

(
H(mBr

)− ε
2 log2

)
|Rn|.

But this is false by choice of η, so it must be that

limsup
n→∞

P

(
1

|Vn|
|{v ∈ Vn : v is r-improper}| ≥ ε

)
= 0,

as desired.

Lemma 8.2. Assume k ≥ 3. Then the action of Γ on (X,mX) is mixing and hence
ergodic.

Proof. We prove this using Fourier analysis on the compact Abelian group X.

Step 1. For any g ∈ Γ, let |g| be its word length in the generating set {sji : i =

1, . . . ,d, j = 1, . . . ,k−1}. The characters of X form an orthonormal basis for L2
C
(mX), and
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all non-identity characters have mean zero. It therefore suffices to prove that, for any two
non-identity characters χ1 and χ2, we have

〈χ1,χ2 ◦T g〉= 0

whenever |g| is sufficiently large.

Step 2. Every character of X is the restriction of a character of ZΓ
2 , and all of these

have the form

χU (x) := (−1)
∑

g∈U xg (x ∈ Z
Γ
2 )

for some finite subset U of Γ. In addition, the action T is by group automorphisms and

satisfies χU ◦T g = χgU . Therefore, χU · (χW ◦T g) = χU�gW for any U, W and g, where

� denotes symmetric difference.
Let E be the set of all k -cycles of the form {g,gsi, . . . ,gsk−1

i } in the Cayley graph of

Γ, where g ∈ Γ and i ∈ {1, . . . ,d}. As in the Introduction, we can regard E as the set of

k -hyper-edges of a hypergraph on Γ, and the corresponding characters χe for e ∈ E give

the parity checks that define the LDPC subgroup X. Therefore, by Pontrjagin duality,
a character χU restricts to the identity character on X if and only if there is a finite

subfamily F of E such that

1U =
∑
e∈F

1E mod 2.

Let us write X⊥ for the collection of finite subsets U that have this property. Regarded
as a subspace of Z⊕Γ

2 , this X⊥ is the linear span of the set {1e : e ∈ E}.
In these terms, we must show that if U and W are finite subsets of Γ and neither of

them lies in X⊥, then U�gW also does not lie in X⊥ whenever |g| is sufficiently large.

Fix such U and W for the rest of the proof.

Step 3. Let Br and Bs be closed balls around the identity in the right Cayley graph

that contain U and W, respectively. More specifically, in this last step of the proof, we
assume that g ∈ Γ satisfies both (i) |g|> r+s+2 and also (ii) U�gW ∈X⊥, and derive

a contradiction from these. Assumption (i) implies U and gW are disjoint, and therefore,

U�gW = U ∪ gW . Having made assumption (ii), let F be a finite subfamily of E such

that

1U�gW =
∑
e∈F

1e mod 2. (43)

To work with elements of X⊥, it helps to introduce the dual graph (E,Ẽ) of the
hypergraph (Γ,E). The vertices of the dual graph are the hyperedges in E, and two

hyperedges e1 and e2 are joined in Ẽ if and only if e1∩ e2 �= ∅.
In the dual graph, F is the union of its connected components. At least one of these must

meet both U and gW . Indeed, otherwise we could let G be the union of those connected

components of F that meet U and would then find that 1U agrees with
∑

e∈G 1e mod 2,

contradicting our assumption that U �∈X⊥.

https://doi.org/10.1017/S147474802510100X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802510100X


58 T. Austin et al.

Next, because the hypergraph (Γ,E) is a hyper-tree and we have |g| > r+ s+2, there

is a single hyperedge e0 lying ‘between’ Br and gBs in the following sense: removing this

hyperedge e0 disconnects that hypergraph into k components, one of which contains the
whole of Br (and hence U ), and a different one of which contains the whole of gBs (and

hence gW ).

As a result, if F0 is a connected component of F in the dual graph which meets both
U and gW , then F0 must contain e0. Now consider again the k connected components

of the hypergraph (Γ,E \ e0). Since k ≥ 3, at least one of them does not meet either U

or gW ; let V ⊂ Γ be one such component. Then V meets e0 in a single vertex (that is,
group element) h.

Finally, let h′ be a vertex of V ∩
⋃

e∈F e that lies at maximal distance from h. This

h′ may be equal to h, or it may lie ‘deeper inside’ the component V. However, by that

distance maximality and the hyper-tree structure of (Γ,E), h′ can be contained in only
one member of F, and because h′ ∈ V , it cannot lie in either U or gW . So at h′, the
left-hand side of (43) must equal zero, while the right-hand side must equal 1. This is the

desired contradiction with that equation.

Proof of Theorem 6.1(2). Let Loc(μn,v)Br
denote the marginal of Loc(μn,v) on

Xn,v,r.

Since Loc(μn,v)Br
is the uniform distribution on Xn,v,r and mBr

is the uniform

distribution on XBr
, local convergence in probability to μ is implied by

lim
n→∞

P

(
1

|Vn|
|{v ∈ Vn : Xn,v,r �=XBr

}|> ε

)
= 0,

which is true by Lemma 8.1.
Since (μn)n converges locally in probability to mX , which is ergodic by Lemma 8.2,

Lemma 4.1 completes the proof.

9. Proof of Theorem 1.3

Next, we prove the upper bound in Theorem 1.3, part (a). After this, part (b) of the

Theorem 1.3 is an immediate consequence of Theorems 6.1 (items 1,2) and 4.3.

9.1. Proof of the sofic entropy value

Proof of Theorem 1.3, part (a). Let σn ∼ Pn and let Ω′
n ⊆ Ωsofic

n be as in Proposi-
tion 3.2. Let Σ = {σn}∞n=1 satisfy σn ∈ Ω′

in
for some increasing sequence (in)n with k | in

for all n. It suffices to prove

hΣ(X,mX,T ) = (1−d/k) log2.

By definition,

HK(mX) = (1−d)H(WmX
(·))+ 1

k

∑
i∈[d]

H(WmX
(·; i)).
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The weight WmX
is uniform on Z2. So H(WmX

(·)) = log(2). For each i ∈ [d], the measure

WmX
(·; i) is supported on the subspace of Zk

2 which is the kernel of the homomorphism

(x1, . . . ,xk) 
→
∑

ixi ∈ Z2. This subspace has cardinality 2k−1. So

H(WmX
(·; i))≤ (k−1) log(2).

Combined with the previous formula, we obtain

HK(mX)≤ (1−d/k) log(2).

The conclusion of Proposition 3.2 now implies the upper bound

hΣ(X,mX,T )≤ (1−d/k) log2.

By Theorem 6.1(2), μn converges empirically to mX . Therefore, if O is any open

neighborhood of mX , then

1 = lim
n→∞

μn(Ω(σn,O)).

Since μn is the uniform measure on Xσn
, this implies

hΣ(X,mX,T )≥ lim
n→∞

1

in
log |Xσn

|.

We may estimate |Xσn
| by simple dimension-counting. In fact, Xσn

is the kernel of a

homomorphism from Z
in
2 to Z

din/k
2 . So

|Xσn
| ≥ 2(1−d/k)in .

This gives the lower bound

hΣ(X,mX,T )≥ (1−d/k) log2.

10. Proof of Theorems B and C

Theorem B is an immediate consequence of Theorem 6.1(3) and Corollary 5.5(2).

10.1. Expected number of low-density codewords

In this section, we derive an asymptotic formula for the expected number of low-density

codewords. Versions of this appear in [49, Formula (11.10)] and [61, Lemma 3.163]. The

authors of [49] and [61] use a configuration model instead of a permutation model. As
discussed above, these models are not contiguous (see Appendix A). Moreover, we are

able to show a stronger result than contiguity alone would imply.

For η > 0 and σ ∈Homunif(Γ, Sym(kn)), let Xη
σ denote the set of x ∈ (Z2)

kn for which
the sum around all but at most a fraction η of each of the d hyper-edges types is even.

More formally,

Xη
σ =

⋂
i∈[d]

⎧⎨
⎩x ∈ (Z2)

kn : |

⎧⎨
⎩v ∈ [kn] :

k−1∑
j=0

x(σj
i v) = 0 (mod 2)

⎫⎬
⎭|> kn(1−η)

⎫⎬
⎭ .

We can think of these as ‘approximate codewords’.
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Figure 2. Comparison of Gcw(t) (solid lines) with asymptotic in Proposition 10.1 (dashed lines) for k= 6

and several choices of d.

For t ∈ [0,1], we define the upper exponential growth rate of the expected number of

approximate codewords of density t by

Gcw(t) = inf
ε,η>0

limsup
n→∞

1

kn
logEσ∼Pkn

|{x ∈Xη
σ : 1

kn |x| ∈ (t− ε, t+ ε)}|.

Proposition 10.1. For any d,k,

Gcw(t) =
1

2
t
(
d log(k−1)−d+2+(d−2) log(t)

)
+O(t2).

In particular, for k ≥ 2, this is negative for small t > 0 if and only if d > 2.

The ‘O(t2)’ term here is a power series convergent on some neighborhood of t= 0 with

lowest-order term t2.
Figure 2 compares exact plots of Gcw(t) (created using parametric plots in the

parameter s of Lemma 10.2) with plots of this approximation.

The proof of Proposition 10.1 is based on the following lemma.

Lemma 10.2. For any k,d and any t ∈ [0,1],

Gcw(t) = (1−d)H(t)+
d

k
(−kt logs+logZ),

where s and Z are related to t via

t= s
(1+s)k−1− (1−s)k−1

(1+s)k+(1−s)k
and Z =

1

2

(
(1+s)k+(1−s)k

)
.
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Proof of Lemma 10.2. Here, let A= Z2. We also let W denote the set of weights which
have edge weights that are cyclically invariant and supported on configurations with even

parity. The terminology of weights was defined in Section 3.2.

We first show that, for every t ∈ [0,1],

Gcw(t) = sup
W∈W :W (1)=t

HK(W ). (44)

First, suppose W ∈W has W (1) = t. For every ε,η > 0, if δ > 0 is small enough, then
we always have

{x ∈ (Z2)
kn : ‖Wσ,x−W‖< δ} ⊆ {x ∈Xη

σ : 1
kn |x| ∈ (t− ε,t+ ε)}.

By Proposition 3.1, this implies that HK(W ) ≤ Gcw(t), which gives one half of Equa-
tion 44.

For the converse inequality: Given ε,η > 0, let Wε,η be the set of cyclically-invariant

weights with |W (1)− t| < ε and each W (·; i) giving mass at least 1− η to even-parity
configurations.

Given δ > 0, by Proposition 3.1 for each weight W, there is some rW > 0 which satisfies

limsup
n→∞

1

kn
logEσ|{x ∈ (Z2)

kn : ‖Wσ,x−W‖< rW }| ≤HK(W )+ δ.

By compactness, there is a finite set S ⊂Wε,η such that the balls centered at W ∈ S of

radius rW cover Wε,η. Then we have

{x ∈Xη
σ : 1

kn |x| ∈ (t− ε,t+ ε)} ⊆
⋃

W∈S
{x ∈ (Z2)

kn : ‖Wσ,x−W‖< rW }.

Therefore,

limsup
n→∞

1

kn
logEσ|{x ∈Xη

σ : 1
kn |x| ∈ (t− ε,t+ ε)}|

≤ max
W∈Wε,η

limsup
n→∞

1

kn
logEσ|{x ∈ (Z2)

kn : ‖Wσ,x−W‖< rW }|

≤ max
W∈Wε,η

HK(W )+ δ.

Taking ε,η and then δ to 0 gives the other half of Equation 44.

Now any weight achieving the supremum in 44 must have all edge weights equal: to

maximize HK under the constraint W (1) = t, whichever W (·; i) maximizes the edge term
in the definition of HK(W ) should be used for all i ∈ [d].

We can specify such a weight by a single probability vector p∈Prob(AZk/Zk) recording

the edge weight. We use a probability measure on AZk/Zk rather than AZk because
the edge weights must be invariant under cyclic permutations. Let Wp be the weight

with edge weights specified by p, and write α(p) = Wp(1). The Kikuchi entropy

of Wp is
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HK(Wp) = (1−d)H(α(p))+
d

k

⎛
⎝H(p)+

∑
[a]∈AZk/Zk

p([a]) log |[a]|

⎞
⎠,

where |[a]| is the number of elements of the equivalence class [a] ∈ AZk/Zk.

Now, we are interested in estimating

Gcw(t) = max
p :α(p)=t

HK(Wp),

where the maximum is also constrained to p supported on equivalence classes of even-

parity configurations. Since α(p) is fixed to be t, we really just need to maximize

H(p)+
∑

[a]∈AZk/Zk

p([a]) log |[a]|

subject to the constraints∑
[a]

p([a])α([a]) = kt and
∑
[a]

p([a]) = 1,

where α([a]) is the number of 1’s in any representative of [a]. So we get two Lagrange
multipliers λ1,λ2 so that a maximizer on the interior of the constraint region is given by

p([a]) = |[a]| ·eλ1α([a])+λ2−1

for [a] ∈ AZk/Zk with even parity and 0 otherwise. We rewrite this as

p([a]) = |[a]| · s
α([a])

Z
,

where Z is determined by the normalization constraint and s is determined by the density-

t constraint. Since the objective function is strictly concave, the critical point given by
these Z,s is in fact the unique maximum. The corresponding HK-maximizing weight W

therefore satisfies

W (a; i) =
sα(a)

Z

if α(a) (the number of 1’s in a) is even and W (a; i) = 0 otherwise.

Note that

Z =
1

2

(
(1+s)k+(1−s)k

)
(45)

since

Z =
∑
a∈Ak

α(a) even

sα(a) =

k∑
m=0

m even

sm
(
k

m

)
=

1

2

(
k∑

m=0

sm
(
k

m

)
+

k∑
m=0

(−s)m
(
k

m

))
.
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The constraint
∑

[a]p([a])α([a]) = kt gives the relation between t and s :

kt=
∑

[a] even

|[a]|s
α([a])

Z
·α([a]) = s

dZ
ds

Z
= sk

(1+s)k−1− (1−s)k−1

(1+s)k+(1−s)k
.

Finally, we can calculate

H(W (·; i)) =−
∑

a even

sα(a)

Z
α(a) logs+logZ =−kt logs+logZ,

which gives the claimed formula.

This lemma does not give an explicit formula for Gcw(t): we have t as a function of s,

but we do not have an explicit formula for the inverse function. Still, we can use it to

prove Proposition 10.1.

Proof of Proposition 10.1. Expanding the formula for t as a power series centered at

s= 0, we get t= (k−1)s2+O(s4) so, by Lagrange inversion [75, §7.32], there is a power

series for s2 on some interval around 0 of the form

s2 =
t

k−1
+O(t2).

Hence,

t logs=
1

2
t log

t

k−1
+O(t2)

and

logZ =
1

2
k(k−1)s2+O(s4) =

1

2
kt+O(t2).

The estimate for Shannon entropy

H(t) =−t log t+ t+O(t2)

completes the proof.

10.2. Proof of Theorem 6.1(3)

Recall that μ has totally shattered microstate spaces along (σn)n if there exists a δ > 0 for

which the following holds: For every ε > 0 there exist a weak∗ neighbourhood U of μ and

a positive integer n0 such that for any n ≥ n0 and any two microstates x,y ∈ Ω(σn,U),

we have either d(Vn)(x,y)≥ δ or d(Vn)(x,y)< ε.

Proof of Theorem 6.1(3). Given k ≥ 2 and d > 2, by Proposition 10.1, there is some

δ > 0 such that Gcw(t)< 0 for t ∈ (0,δ). We will use this δ to establish totally shattered

microstates.

For any fixed ε > 0,

inf
η>0

limsup
n→∞

1

n
logE|{x ∈Xη

n : 1
n |x| ∈ [ε,δ]}|= sup{Gcw(t) : t ∈ (ε,δ)}< 0.

https://doi.org/10.1017/S147474802510100X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802510100X


64 T. Austin et al.

Pick some η such that the expression in the infimum is negative, and let Uη ⊂Prob(ZΓ
2 ) be

the set of all probability measures whose marginal on every hyper-edge gives probability

greater than 1−η to labelings with even parity. Then Uη is a weak∗ neighborhood of mX

and

Xη
n =Ω(σn,U

η),

so

limsup
n→∞

1

n
logE|{x ∈ Ω(σn,U

η) : 1
n |x| ∈ [ε,δ]}|< 0,

and there are subsets Ωε
n ⊂ Ωsofic

n with Pn(Ω
ε
n) → 1 and such that for all large enough

n, if σn ∈ Ωε
n, then {x ∈ Ω(σn,U

η) : 1
n |x| ∈ [ε,δ]} = ∅. Now if x,y ∈ Ω(σn,U

η/2), then

x+y ∈ Ω(σn,U
η), so

d(Vn)(x,y) = 1
n |x+y| /∈ [ε,δ].

We can then get a single sequence Ω′
n that works for every ε by picking one for each

ε= 1
2,

1
3, . . . and then using a diagonal argument.

10.3. Proof of Theorem C

Theorem C is an immediate consequence of Corollary 5.5(3) and Theorem 6.1(3).

11. Directions for further study

A probability measure-preserving action Γ�(X,μ) is anti-Pinkser if it has positive

entropy but does not have any nontrivial direct Bernoulli factors. We are being

deliberately vague here by not specifying whether ‘positive entropy’ refers to sofic, Rokhlin
or some other notion of entropy.

11.1. Possible anti-Pinsker actions of other groups

1. Are there explicit anti-Pinsker actions of a free group? One candidate is the frozen
model associated to independent sets [25].

2. Do all non-amenable groups admit anti-Pinsker actions? Here, it might be necessary

to use Rokhlin rather than sofic entropy.

3. Given a positive number h and a non-amenable group Γ, does there exist an
uncountable family of pairwise non-measurably conjugate ergodic pmp actions of Γ

which are anti-Pinsker, have completely positive sofic entropy and have sofic entropy

h (with respect to some fixed sofic approximation)? Starting from the example of the
present paper, one place to look might be among its ‘typical’ compact extensions.

11.2. Open problems for the parity-check subshift

Let (X,mX,T ) be the system in Theorem A.

1. Does there exist a sofic approximation Σ to Γ with respect to which (X,mX,T ) does

not have completely positive sofic entropy?
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2. Is (X,mX,T ) finitely determined? This would mean that if ({0,1}Γ,μ,T ) is another

system for which μ is close to mX both in sofic entropy and in the weak∗ topology,

then there is a joining of these two systems under which the identity coordinates
agree with high probability. This property characterizes those processes isomorphic

to Bernoulli shifts over amenable groups [58], but little is known about it for non-

amenable groups.

3. Formally, the family of equations that defines our LDPC shift X can be used to

define a system of algebraic origin inside AΓ for another compact Abelian group A,

such as a finite cyclic group or the continuous circle R/Z. For which such A (and

which values of d and k) is the resulting system still anti-Pinsker? If there are such
examples with A= R/Z, do these have infinite sofic entropy?

A. A failure of contiguity

Let V be a vertex set of size n divisible by k, let E be a set of size dn/k, and let P̃n be the

measure on k -uniform d -regular factor graphs on (V ,E) that is constructed in Section 6.3.
In addition, let P

unif
n be the uniform distribution on all such k -uniform d -regular factor

graphs on (V ,E) produced without respect to a partition E =
⊔

i∈[d]Ei.

Proposition A.1. Let k > d≥ 3, and let

Un := {H ⊂ V ×E : ∃E′ ⊆ E with every v ∈ V adj. to exactly two elements of E′} .

Then P̃n(Un) = 1 for all n, but Punif
n (Un)→ 0 as n→∞. As a result, the models P̃n and

P
unif
n are not contiguous.

Note that the definition of Un ensures that the contiguity also fails for the associated

multi-hyper-graph models with unlabeled hyper-edges.

Proof. If H arises from P̃n, then let i,j ∈ [d] be distinct and let E′ =Ei∪Ej . Then every

vertex is adjacent to exactly one check node in each of Ei,Ej , and in particular to exactly

two check nodes in E′.
However, the very precise calculations in [51] show that, with high probability according

to P
unif
n , the transposed parity-check matrix associated to H has kernel that is either

trivial (if d is odd) or one-dimensional (if d is even, in which case, the all 1’s vector is
in the kernel). In either case, there can be no E′ as promised by the event Un, since it

would give an additional nontrivial element of the kernel.
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[27] Elek G and Szabó E (2004) Sofic groups and direct finiteness. J. Algebra 280(2),
426–434.

[28] Feller W (1968) An Introduction to Probability Theory and Its Applications, vol. I, 3rd
edn. New York-London-Sydney: John Wiley & Sons, Inc.

[29] Fu Y and Anderson PW (1986) Application of statistical mechanics to NP-complete
problems in combinatorial optimisation. J. Phys. A 19(9), 1605–1620.

[30] Gallager RG (1963) Low-Density Parity-Check Codes. PhD thesis, MIT.
http://www.inference.org.uk/mackay/gallager/papers/ldpc.pdf.

[31] Gallager RG (1962) Low-density parity-check codes. IRE Trans. IT-8, 21–28.
[32] Gamarnik D (2021) The overlap gap property: A topological barrier to optimiz-

ing over random structures. Proc. Natl. Acad. Sci. 118(41). Available online at
arXiv.org:2109.14409.

[33] Gamarnik D and Sudan M (2017) Limits of local algorithms over sparse random graphs.
Ann. Probab. 45(4), 2353–2376.

[34] Greenhill C, Janson S, Kim JH and Wormald NC (2002) Permutation pseudographs
and contiguity. Combin. Probab. Comput. 11, 273–298.

[35] Gromov M (1999) Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc.
(JEMS) 1(2), 109–197.

[36] Hayes B (2016) Fuglede-Kadison determinants and sofic entropy. Geom. Funct. Anal.
26(2), 520–606.

[37] Hayes B (2017) Mixing and spectral gap relative to Pinsker factors for sofic groups.
In Proceedings of the 2014 Maui and 2015 Qinhuangdao Conferences in Honour of
Vaughan F. R. Jones’ 60th Birthday. Canberra: Australian National University, Centre
for Mathematics and Its Applications, 193–221.

[38] Hayes B (2021) Relative entropy and the Pinsker product formula for sofic groups. Groups
Geom. Dyn. 15(2), 413–463.

[39] Kerr D (2013) Sofic measure entropy via finite partitions. Groups Geom. Dyn. 7(3),
617–632.

[40] Kerr D and Li H (2016) Ergodic Theory. Springer Monographs in Mathematics. Cham:
Springer. Independence and dichotomies.

[41] Kieffer JC (1975) A generalized Shannon-McMillan theorem for the action of an
amenable group on a probability space. Ann. Probab. 3(6), 1031–1037.

[42] Kikuchi R (1951) A theory of cooperative phenomena. Phys. Rev. 81, 988–1003.
[43] Kolmogorov AN (1958) A new metric invariant of transient dynamical systems and

automorphisms in Lebesgue spaces. Dokl. Akad. Nauk SSSR (N.S.) 119, 861–864.
[44] Kolmogorov AN (1959) Entropy per unit time as a metric invariant of automorphisms.

Dokl. Akad. Nauk SSSR 124, 754–755.
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