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Abstract

We introduce and study the notion of a generalised Hecke orbit in a Shimura variety.
We define a height function on such an orbit and study its properties. We obtain lower
bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this
height function, assuming the ‘weakly adelic Mumford–Tate hypothesis’ and prove the
generalised André–Pink–Zannier conjecture under this assumption, using Pila–Zannier
strategy.
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1. Introduction

In this paper, we study the generalised André–Pink–Zannier conjecture for all Shimura varieties,
whose statement is as follows.

Conjecture 1.1 (Generalised André–Pink–Zannier). Let S be a Shimura variety and Σ a subset
of a generalised Hecke orbit in S. Then the irreducible components of the Zariski closure of Σ
are weakly special subvarieties.

We refer to [Del71, Del79] for notions and notation concerning Shimura data and Shimura
varieties. We refer to [UY11, Definition 2.1] for definitions and properties of weakly special
subvarieties. We refer to Definition 2.1 or § 1.1 for the notion of generalised Hecke orbits.

1.1 Main result
Let (G,X) be a Shimura datum, let K ≤ G(Af ) be a compact open subgroup, and let S =
ShK(G,X) = G(Q)\X ×G(Af )/K be the associated Shimura variety. Let x0 ∈ X and denote
by M ≤ G its Mumford–Tate group. Let s0 := [x0, 1] ∈ S.

The generalised Hecke orbit of x0 in X (see § 2.1) is the setH(x0) of the φ ◦ x0, where φ : M →
G ranges through the morphisms of Q-algebraic groups such that φ ◦ x0 ∈ X. The generalised
Hecke orbit of s0 in S is H(s0) := G(Q)\H(x0)×G(Af )/K ⊆ S. For a sufficiently large field E
of finite type over Q we have the following (see § 3.1): S and s0 are defined over E and there
exists a Galois representation ρx0 : Gal(E/E)→M(Af ) ∩K such that

∀σ ∈ Gal(E/E), g ∈ G(Af ), σ([x0, g]) = [x0, ρx0(σ) · g].

The main result of this paper is the following.
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Theorem 1.2. We consider the above situation. We assume the weakly adelic Mumford–Tate
hypothesis (see § 6.3), which states that, with U := ρx0(Gal(E/E)) ⊆M(Af ) ∩K:

∃C > 0, ∀ p, [K ∩M(Qp) : U ∩M(Qp)] ≤ C. (1)

Then, for any subset Σ ⊆ H(s0), every irreducible component of ΣZar is weakly special.

Our ‘weakly adelic Mumford–Tate hypothesis’ is weaker than the adelic form of the
Mumford–Tate conjecture [Ser94b, 11.4?] stated by Serre. Here are some instances in which
above Theorem 1.2 implies Conjecture 1.1 unconditionally.

Combining Theorem 1.2 with Lemma 6.12, one recovers the following.

Theorem 1.3 [EY03, KY14]. Conjecture 1.1 is true if Σ contains a special point.

Combining Theorem 1.2 with with [CM20, Theorem A (i)] we have the following, which
strictly contains a 2005 result of Pink [Pin05, § 7] (and [CK16, Theorem B]).

Theorem 1.4. Conjecture 1.1 is true if S is of abelian type, and Σ contains a point s which
satisfies the Mumford–Tate conjecture (at some �, in the sense of [UY13]).

The assumptions of Theorem 1.4 are satisfied in the case where S = Ag and Σ contains a
point [A], where the abelian variety A satisfies the Mumford–Tate conjecture (at some prime �).
Examples of such abelian varieties are: when dim(A) ≤ 3; or when dim(A) is odd and End(A) 
 Z.
More examples were given in [Pin98], and many examples are mentioned in [Lom16, § 2.4].

The assumptions of Theorem 1.4 are also satisfied for ‘most’ points in S(Q) (with S of abelian
type) in the following sense. The subset consisting of the s ∈ S(Q) such that s does not satisfy the
Mumford–Tate conjecture is thin in the sense of [Ser97, § 9.1]: this uses a combination of [Ser94a,
§ 1], [Ser97, § 9] and [CM20, Theorem A (i)] and Theorem 6.18.

For arbitrary Shimura varieties, the hypotheses of Theorem 1.2 are satisfied in the situation
of Theorem 6.18. In a sense, our results apply unconditionally to ‘most’ nonalgebraic points of a
Shimura variety. The following are two special cases of Theorem 6.18.

Theorem 1.5. Conjecture 1.1 is true if Σ contains a Q-Zariski generic point s of a special
subvariety Z ⊆ S, namely: for every proper subvariety V � Z defined over Q, we have s �∈ V (C).

Theorem 1.6. Conjecture 1.1 is true if Mad is Q-simple and Σ contains a point s in S(C) �

S(Q).

1.2 History of Conjecture 1.1
Conjecture 1.1 is a special case1 of the Zilber–Pink conjecture, which has been and continues to
be a subject of active research.

Conjecture 1.1 was first formulated (in a special case) in 1989 by André in [And89, Chapter X,
§ 4.5] (Problem 3). Zannier has considered questions of this type in the context of abelian schemes
and tori in [Zan12]. It was then stated in the introduction to the second author’s 2000 PhD
thesis [Yaf00, bottom of p. 12],2 following discussions with Bas Edixhoven. Pink, in his 2005
paper [Pin05], has formulated and studied this question.

These authors consider the classical Hecke3 orbit as in Definition 2.14.
Pink proves the André–Pink–Zannier conjecture for ‘Galois generic’ points of Ag. These points

are Hodge generic, by [CK16, Proposition 6.2.1]. Pink’s method uses equidistribution of Hecke

1 We refer to [Orr15], proof of Lemma 2.2, for the argument, which applies to our generalised setting.
2 The statement there uses the terminology ‘totally geodesic subvarieties’ instead of ‘weakly special’, but Moonen
had proved in [Moo98] that the two notions are equivalent.
3 Where André uses G(Q), Pink uses Aut(G)(Q) instead of G(Q) in Definition 2.14.
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points (by Clozel, Oh, and Ullmo: [COU01]; cf. also [EO06]). This was generalised to Galois
generic points in arbitrary Shimura varieties in 2016 [CK16]. This was also contained in the first
author’s 2009 thesis under a weaker assumption [Ric09, Ch. III § 7, p. 59, Corollary 7.1].

In the case of generalised4 Hecke orbits of special points, the articles [EY03, KY14] use a
method of Edixhoven. This method is inapplicable in more general cases, for instance the case of
the Hecke orbit of a Hodge generic point.

A real breakthrough on this problem was the introduction of the Pila–Zannier strategy which
uses o-minimality and functional transcendence. It has now become the most powerful approach
to all problems of Zilber–Pink type. This method was applied by Orr in [Orr15], who considered
the case of curves in Ag, the moduli space of principally polarised abelian varieties. His approach
relies on Masser–Wüstholz isogeny estimates. Therefore, it is limited to Shimura varieties of
abelian type, and cannot be applied to generalised Hecke orbits. For Shimura varieties of abelian
type, Orr was able to prove the conjecture for ‘S-adic Hecke orbits’5 for a finite set of primes S,
and for points which are Hodge generic (without the Galois generic assumption).

In the case of S-adic Hecke orbits, a stronger form of the conjecture, involving topological
closure and equidistribution, was proved, in the abelian case, in [RY19] using ergodic theory
approach relying on p-adic Ratner’s theorems.

1.3 Main technical results
After choosing bases of the Lie algebras m of M and g of G, we associate to φ ∈ Hom(M,G)
its ‘finite height’ Hf (φ), defined as the lowest common multiple of the denominators of the
coefficients of the matrix of dφ. More generally, for g ∈ G(Af ), we define Hf (g−1 · φ · g) as the
smallest n ∈ Z≥1 such that the matrix of g−1 · dφ · g has coefficients in (1/n) · Ẑ.

1.3.1 A first crucial result is the following. We choose the bases of g and m constructed
in § 4.3. Then the function

[φ ◦ x0, g] �→ Hf (g−1 · φ · g)
is well defined on the generalised Hecke orbit, and Gal(E/E)-invariant.

1.3.2 Our most important technical result is an estimate on the size of Galois orbits in a
generalised Hecke orbit.

The following definition is used throughout this article.

Definition 1.7. Let A be a set and f, g : A→ R≥0 two functions.

(i) We say that f polynomially dominates g, and write g � f , if there exist a, b, c ∈ R>0 such
that

∀x ∈ A, g(x) ≤ c+ af(x)b.

(ii) We say that f and g are polynomially equivalent, and write f ≈ g, if f � g and g � f .

As functions on the generalised Hecke orbit H(s0), we have the polynomial equivalence

#Gal(E/E) · [φ ◦ x0, g] ≈ Hf (g−1 · φ · g).

4 They used a generalised notion of Hecke orbit, formulated using auxiliary linear representations; but using
Proposition 2.15 and Theorem 2.4, this leads to a statement equivalent to our Conjecture 1.1.
5 He considers Hecke correspondences whose level has only prime factors in S. This corresponds to isogenies of
abelian varieties whose degree has prime factors only from S.
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1.3.3 Another essential technical result, from § 5, is the following. See the introduction in § 5
for the importance of this result in our approach to Conjecture 1.1.

Denote by φ0 the inclusion monomorphism M ↪→ G. Let W be the conjugacy class G · φ0 ⊆
Hom(M,G), viewed as an algebraic variety over Q. The usual height of the matrix of dφ defines
an affine Weil height function HW on W (Q) (cf. (15) and (18)). Let S ⊆ G(R) be a finite union
of Siegel sets and S · φ0 be its image in W (R).

The main result 5.16 of § 5 is that, as functions of φ ∈W (Q) ∩S · φ0, we have

Hf (φ) ≈ HW (φ).

We note that every point of the geometric Hecke orbit can be written as [φ ◦ x0, g] with g ∈ G(Af )
and φ ∈W (Q) ∩S · φ0, provided S ⊆ G(R) is a fundamental set.

1.4 Outline of the strategy
The proof of Theorem 1.2 is given in § 7. The technical results of § 1.3 play a crucial role in our
approach. Let us outline our approach.

We reduce Conjecture 1.1 to the case where V := Σ = {s0; s1; . . .} is irreducible, G is adjoint
and V is Hodge generic in S. We rely on functoriality properties (§ 2.2) of geometric and gen-
eralised Hecke orbits.6 Theorem 2.4 allows us to use geometric and generalised Hecke orbits
interchangeably. We also rely on the functoriality properties (see § 6.3) of the assumption (1).

The final objective of the proof is to apply the geometric part of the André–Oort conjec-
ture [Ull14] (or [RU24]), and use induction on the number of simple factors of Mad. For every n
large enough, we construct a weakly special subvariety Zn ⊆ V of non-zero dimension such that
sn ∈ Zn. Then [Ull14, RU24] describes

⋃
Zn, and we deduce Conjecture 1.1.

In order to construct the non-zero-dimensional Zn, we use the Pila–Zannier strategy. By (3),
we identify H(s0) with a subset of W (Q) where W = G · φ0 
 G/ZG(M) is the algebraic variety
of § 1.3.3.

Let π : G(R)→ X → S be the uniformisation map, and S ⊆ G(R) is a finite union of Siegel
sets such that S = π(S). The goal is to apply the variant Theorem 7.1 of Pila–Wilkie theorem,
after constructing many rational points of small height in the set

Ṽ =
( −1
π (V ) ∩S

)
/ZG(R)(M) ⊆W (R),

which is definable in the o-minimal structure Ran,exp.
Let E be field of definition of V . Then V contains the Galois orbits Gal(E/E) · sn.
We introduce

Qn := {φ ∈ S · φ0 ∩W (Q) : [φ ◦ x0 : 1] ∈ Gal(E/E) · sn} ⊆ Ṽ .
Denote by p the map G(R) · φ0 → X, where G(R) · φ0 ⊆W (R). Each point s′ ∈ Gal(E/E) · sn

lifts to a rational point s̃′ ∈ Ṽ ∩W (Q). We have surjections Qn → p(Qn)→ Gal(E/E) · sn. Thus,
#Qn ≥ #Gal(E/E) · sn.

By § 1.3.1, the value of Hf is constant as φ ranges through Qn. By § 1.3.3, we also have
Hf (φ) ≈ HW (φ). By § 1.3.2, we have #Qn ≥ #Gal(E/E) · sn ≈ Hf (s̃n) ≈ HW (s̃n).

Thus, Ṽ contains #Qn ≈ HW (s̃n) points of height ≈ HW (s̃n).
By Theorem 7.1, for sufficiently large n, there exist φn in Qn such that p(φn) ∈ Zalg, with

Z = p(Ṽ ). By the Ax–Lindemann–Weierstrass theorem [KUY16], it follows that s′n = [φn, 1] ∈
Zn ⊆ V , for a non-zero-dimensional weakly special subvariety Zn. Using Galois action, we may
assume s′n = sn.

This concludes the proof of Theorem 1.2.

6 This avoids one difficulty in the approach [Orr15] of Orr.
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1.5 Summary of the sections
In § 2, we introduce and study generalised and geometric Hecke orbits. In § 3, we recall prop-
erties of the representations ρx0 : Gal(E/E)→M(Af ), and we relate Galois orbits to orbits of
U = ρx0(Gal(E/E)). In § 4, we make precise and prove § 1.3.1. Section 5 deals with § 1.3.2. In
§ 6, we introduce and study the weakly adelic Mumford–Tate hypothesis, and establish the esti-
mates from § 1.3.3. This relies on general estimates on adelic orbits, given in the appendices. The
content of § 7 was outlined in § 1.4.

2. Generalised and geometric Hecke orbits

In this section we define the notions of generalised Hecke orbit and of geometric Hecke orbit, and
study their properties. The heart of this section is Theorem 2.4, which implies, in particular,
that generalised and geometric Hecke orbits can be used interchangeably in the statement of
Conjecture 1.1.

These notions are naturally compatible with various operations on Shimura data. In partic-
ular, we prove several statements which will be important in reducing Conjecture 1.1 to the case
where the Shimura variety is of adjoint type and Σ is Hodge generic in S.

Finally, § 2.5 compares our notions to different notions of generalised Hecke orbits found in
the literature.

2.1 Definitions
Let (G,X) be a Shimura datum. We always assume, as in [UY14], that our Shimura datum is
normalised so that G is the generic Mumford–Tate group of X.

Let x0 be a point of X and let M ≤ G be the Mumford–Tate group of x0. Recall that x0

is a morphism S := ResC/R(GL(1)) −→ GR and that M = x0(S)Zar,Q is the smallest Q-algebraic
subgroup of G containing x0(S). In the rest of the paper we denote the identity monomorphism
M ↪→ G by φ0.

In the following definition Hom(M,G) denotes the set of algebraic group morphisms defined
over Q.

Definition 2.1 (Generalised Hecke orbit). We define the Generalised Hecke orbit H(x0) of x0

in X as

H(x0) := X ∩ {φ ◦ x0 : φ ∈ Hom(M,G)}.
LetXM = M(R) · x0 ⊂ X. Then (M,XM ) is a Shimura datum, and φ ∈ Hom(M,G) such that

φ ◦ x0 ∈ X are precisely those giving rise to a morphism of Shimura data (M,XM )→ (G,X). In
particular, φ(XM ) ⊆ X.

Let K be a compact open subgroup of G(Af ) and ShK(G,X) be the Shimura variety
associated to these data. There is a natural map

X ×G(Af ) −→ ShK(G,X)

and we denote the image of a point (x, g) by [x, g].

Definition 2.2. We define the generalised Hecke orbit H([x0, g0]) of [x0, g0] in ShK(G,X) by

H([x0, g0]) := {[x, g] : x ∈ H(x0), g ∈ G(Af )}.
Let W = G · φ0 be the conjugacy class of φ0 which we view as an algebraic variety defined

over Q. Denoting by ZG(M) the centraliser of M in G, we will identify G/ZG(M) 
W . The
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set W (Q) is the G(Q)-conjugacy class of φ0 in Hom(M
Q
, G

Q
), and the points in W (Q) are the

Q-defined homomorphisms φ ∈ Hom(M,G) which are conjugated to φ0 by elements of G(Q).
In Definition 2.1, if we replace Hom(M,G) by its subset W (Q), we obtain a more restrictive

definition: that of a geometric Hecke orbit.

Definition 2.3. We define the geometric Hecke orbit Hg(x0) of x0 by

Hg(x0) = X ∩ {φ ◦ x0 : φ ∈W (Q)} ⊂ H(x0)

and the geometric Hecke orbit of [x0, g0] by

Hg([x0, g0]) = {[x, g] : x ∈ Hg(x0), g ∈ G(Af )}.
The main result of this section is the following.

Theorem 2.4. The generalised Hecke orbit H(x0) is a union of finitely many geometric Hecke
orbits.

Lemma 2.5. Let φ, φ′ ∈ Hom(M,G) (defined over Q) be such that φ ◦ x0 = φ′ ◦ x0.
Then φ = φ′.

Proof. One can check directly that

H := {m ∈M(C) : φ(m) = φ′(m)}
is a subgroup of M(C) (it is the ‘equaliser’ of φ and φ′). It is algebraic and defined over Q because
φ and φ′ are. It contains the image x0(C) by hypothesis. But M is the Mumford–Tate group of
x0: there is no proper Q-algebraic subgroup of M containing x0(C). Therefore, H = M . Thus,
φ = φ′. �

The algebraic variety W is our central object in this article. We will use the notation

W (R)+ = G(R)/ZG(M)(R)

= {φ ∈W (R) : φ ◦ x0 ∈ X} (2a)

and

W (Q)+ = W (R)+ ∩W (Q)

= {φ ∈W (Q) : φ ◦ x0 ∈ Hg(x0)}. (2b)

The subset W (R)+ ⊂W (R) is a union of some connected components of W (R). With this
notation, Lemma 2.5 implies that we have a bijection

W (Q)+ ∼→ Hg(x0)

φ �→ φ ◦ x0.
(3)

2.2 Functoriality of generalised and geometric Hecke orbits
2.2.1 Restriction to special subvarieties. The following is a set-theoretic tautology.

Proposition 2.6. Let (G′, X ′) be a Shimura datum with M ≤ G′ ≤ G and XM ⊂ X ′ ⊂ X, and
define K ′ = G′(Af ) ∩K.

(i) Let H′(x0) be the generalised Hecke orbit of x0 viewed as a point of X ′.
Then

H′(x0) = H(x0) ∩X ′.
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(ii) Let H′([x0, 1]) be the generalised Hecke orbit of [x0, 1] viewed as a point of ShK′(G′, X ′),
and S′ the image of

f := Sh(ι) : ShK′(G′, X ′)→ ShK(G,X)

where ι : G′ → G is the inclusion. Then

H([x0, 1]) ∩ S′ = f(H′([x0, 1])) and H′([x0, 1]) =
−1
f (H([x0, 1])).

The following corollary can be deduced by combining Lemma 2.5 with Theorem 2.4 (it can
also be deduced from [Ric67]).

Corollary 2.7. We keep previous notation. Then

Hg(x0) ∩X ′

is a finite union of geometric Hecke orbits in X ′.

Accordingly,
−1
f (Hg([x0, 1])) is the image of finitely many geometric Hecke orbits in

ShK′(G′, X ′).

2.2.2 Compatibility to products. A useful property of geometric Hecke orbits is the compati-
bility with respect to products of Shimura data.

Lemma 2.8. Let (G,X) be an adjoint Shimura datum, and factor G = G1 × · · · ×Gf as a prod-
uct of its Q-defined simple normal subgroups, and assume K = K1 × · · · ×Kf for compact open
subgroups Ki ≤ Gi(Af ). We use X = X1 × · · · ×Xf to denote the corresponding factorisation,
and choose x0 = (x1, . . . , xf ) ∈ X1 × · · · ×Xf . We use Hg(xi) to denote the geometric Hecke
orbit of xi with respect to the Shimura datum (Gi, Xi).

With respect to the corresponding factorisation of Shimura varieties

ShK(G,X) = ShK1(G1, X1)× · · · × ShKf
(Gf , Xf ),

we have

Hg(x0) = Hg(x1)× · · · × Hg(xf ).

It follows from Lemma 2.8 that, at the level of Shimura varieties,

Hg([x0, 1]) = Hg([x1, 1])× · · · × Hg([xf , 1]).

Proof. Since G is adjoint, we have a factorisation

X = X1 × · · · ×Xf .

Let M be the Mumford–Tate group of x0 and let φ0 = (φ1, . . . , φf ) : M → G = G1 × · · · ×Gf be
the inclusion. As the conjugacy class in a product is the product of conjugacy classes, we have

G · φ0 = G1 · φ1 × · · · ×Gf · φf .

The Mumford–Tate group of xi is Mi := φi(M). Because x0(S) is Zariski dense over Q in M so
is xi(S) in Mi. Let φ′i : Mi → Gi be the identity map. We can identify Gi · φi 
 Gi · φ′i, and have

Hg(xi) = {g · φ′i ◦ xi : g ∈ Gi} ∩Xi = {g · φi ◦ xi : g ∈ Gi} ∩Xi.

The rest follows from the definition of geometric Hecke orbits. �
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2.2.3 Passing to the adjoint Shimura datum. The following property is used to reduce the
proof of Conjecture 1.1 and Theorem 1.2 to the case where G is adjoint.

Lemma 2.9. Let ad : (G,X)→ (Gad, Xad) be the map of Shimura data7 induced by the natural
morphism ad : G→ Gad and choose a compact open subgroup Kad ≤ Gad(Af ) containing ad(K).
Let ad : x �→ xad := ad ◦ x be the map X → Xad and

Sh(ad) : ShK(G,X)→ ShKad(Gad, Xad)

the corresponding morphism of Shimura varieties.
Let x0 ∈ X. Recall that Hg(x0) and Hg(xad

0 ) denote the geometric Hecke orbit of x0 and xad
0

with respect to G and Gad.
We have

ad(Hg(x0)) ⊆ ad(X) ∩Hg(xad
0 ). (4)

Lemma 2.9 implies the inclusion

ad(Hg(x0))×G(Af ) ⊆ Hg(xad
0 )×Gad(Af ).

Passing to the quotient, we obtain the following.

Corollary 2.10. We have Sh(ad)(Hg([x0, 1])) ⊆ Hg([xad
0 , 1]).

We now prove Lemma 2.9.

Proof. Choose x ∈ Hg(x0). Clearly x′ := ad(x) ∈ ad(X) ⊂ Xad.
The Mumford–Tate group of x′0 := ad(x0) is M ′ := ad(M). We denote by φ′0 : M ′ → Gad

the natural injection. We can write x = φ ◦ x0 with φ = gφ0g
−1 and g ∈ G(Q). Then φ′ :=

ad(g)φ′0ad(g)−1 is defined over Q because the map G · φ0 → Gad · φ′0 between conjugacy classes is
a morphism of varieties defined over Q. One computes x′ = ad(gx0g

−1) = ad(g)ad(x0)ad(g)−1 =
φ′ ◦ x′0, where x′0 ∈ Xad, and φ is defined over Q and conjugated to φ′0 over Q; that is,
x′ ∈ Hg(x′0). �

Remarks. In (4), the reverse inclusion is also true, but it is not used in this paper, and its
proof is left to the interested reader. The inclusion (4) and the proof we have given also applies
to general morphisms of Shimura data (G,X)→ (G′, X ′) instead of just (G,X)→ (Gad, Xad).

2.3 Rational conjugacy of linear representations
The following notable fact will be used at several places in this article. We believe this property
is also of independent interest.

Theorem 2.11 [BT65, § 12.3, third paragraph]. For any algebraic group M over Q, any two
representations φ, φ′ : M → GL(n) which are defined over Q and conjugated under GL(n,Q) are
actually conjugated under GL(n,Q).

It follows from the theory of linear representations for which references are for example
[Hum75, Chapter XI] for Q and [BT65, § 12] over Q. We will only need the case where M
is connected and reductive, and this case can be found, for instance, in [BT65, § 12.3, third
paragraph]. They give a Galois cohomology argument, and the same Galois cohomology argument
works in general with a reference to [Kne69, 1.7 Example 1, p. 16] instead. For reductive groups,
it is also possible to reduce the result to Skolem–Noether theorem. For tori, it can be reduced to
the fact that any matrix is rationally conjugated to its canonical companion form.

7 Where (Gad, Xad) is as in [EY03, Proposition 2.2].
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2.4 Proof of the finiteness Theorem 2.4
The strategy will combine an argument for semisimple groups and another for algebraic tori.

Proposition 2.12. Let M be a semisimple algebraic group over Q (respectively, Q).

(i) For all d ∈ Z≥0, the set of linear representations defined over Q (respectively, Q)

Hom(M,GL(d))

is a finite union of conjugacy classes under GL(d,Q) (respectively, under GL(d,Q).)
(ii) Let G be a reductive linear algebraic group over Q (respectively, Q). Then the set of

homomorphisms defined over Q (respectively, Q)

Hom(M,G)

is contained in (respectively, is equal to) a finite union of G(Q)-conjugacy classes.

For simplicity, we will only give an argument which assumes M is Zariski connected, which
is the case considered in the proof of Theorem 2.4.

Proof. We prove the first assertion. By virtue of Theorem 2.11, it is enough to treat the case
where everything is defined over Q.

Because M is connected it is enough to prove that there are finitely many conjugacy classes of
Lie algebra representations m→ gl(d). Equivalently, there are finitely many isomorphisms classes
of linear representations of m of dimension d. For this,8 we refer to [Hal03, § 7].

For the second assertion we treat the case where everything is defined over Q, which implies
the case where everything is defined over Q. It is deduced from the first part by using [Ric67,
Theorem 3.1]. �

We prove Theorem 2.4 combining [UY14, Lemma 2.6] with Proposition 2.13.

Proof. We identify G with its image by a faithful representation G→ GL(d), and we let
Σ = {φ ∈ Hom(M,G) : φ ◦ x0 ∈ X}.

Thanks9 to [UY14, Lemma 2.6], we may use Proposition 2.13, and deduce that Σ = {φ ∈
Hom(M,G) : φ ◦ x0 ∈ X} is contained in finitely many GL(d)-conjugacy classes. Using [Ric67],
we conclude that Σ is contained in finitely many G(Q)-conjugacy classes, thus proving
Theorem 2.4. �
Proposition 2.13 (Bounding conjugacy classes). Let M be a connected reductive Q-group,
Mder its derived subgroup and T = ZM (M)0 its connected centre.

A subset Σ ⊆ Hom(M,GL(d)) is contained in finitely many GL(d)-conjugacy classes if and
only if: there is a finite set of characters F ⊂ X(T ) such that for every ρ ∈ Σ, all the weights of
the representation ρ �T : T → GL(d) belong to F .

Proof. Because the set of characters is invariant under conjugation, the condition is necessary.
We prove that this condition is also sufficient.

We know that two representations of a torus T are conjugated if and only if they have the
same weights, with same multiplicities. As the weights belongs to F , and the dimension d is fixed,
there are only finitely many possibilities for these weights and multiplicities. Hence, {ρ �T : ρ ∈ Σ}
8 These representations are sums of irreducible representations. By the theorem of the highest weight [Hal03,
§ 7.2, Theorem 7.15], the irreducible representations are parametrised by dominant weights. The dimension of
irreducible representations are given by Weyl dimension formula [Hal03, § 7.6.3, Theorem 7.43], from which lower
bounds for dimensions are easily derived: there are finitely many isomorphism classes of irreducible representations
of bounded dimension.
9 This is where the property φ ◦ x0 ∈ X is used. This also needs that the image of x0 is Q-Zariski dense in M .
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is contained in at most finitely many conjugacy classes GL(d) · ρ1 �T , . . . , GL(d) · ρc �T . Without
loss of generality we may assume that there is only one conjugacy class, say GL(d) · ρ1 �T .

We want to prove that

there are finitely many ρ ∈ Σ, up to GL(d)-conjugation. (5)

Possibly after conjugating, we may assume ρ �T = ρ1 �T . Because M is connected, one has M =
Mder · T . Thus,

ρ is determined by ρ �Mder and ρ �T . (6)

As Mder and T commute with each other, ρ �Mder : Mder → GL(d) factors through G′ :=
ZGL(d)(ρ1(T )). As T is reductive, so is G′.

By Proposition 2.12, these ρ �Mder belong to finitely many conjugacy classes G′ · ρ1,1 �Mder

, . . . , G′ · ρ1,e �Mder . Possibly after conjugating ρ by some g ∈ G′, which does not change ρ �T , we
have

ρ �T = ρ1 �T and ρ �Mder∈ {ρ1,1 �Mder ; . . . ; ρ1,e �Mder}.
In light of (6), this proves (5) and the conclusion follows. �

2.5 Relation to other notions of Hecke orbits
The following is not used in the rest of this article, however it clarifies the relation between
different notions of Hecke orbits and we believe it to be of independent interest. We compare
our generalised and geometric Hecke orbits to the classical Hecke orbits and another notion of
‘generalised Hecke’ orbit found in the literature.

2.5.1 Relation to the classical definition of Hecke orbit. Let us recall the notion of the classical
Hecke orbit.

Definition 2.14 (classical Hecke orbit). Define the classical Hecke orbit of x0 as follows:

Hc(x0) = {φ ◦ x0 ∈ X : φ ∈ G(Q)/ZG(M)(Q)} ⊂ H(x0)

and the classical Hecke orbit of [x0, 1] as

Hc(x0) = {[x, g] : x ∈ Hc(x0), g ∈ G(Af )}.
We have a chain of inclusions:

Hc(x0) ⊂ Hg(x0) ⊂ H(x0) (7)

Hc(s0) ⊂ Hg(s0) ⊂ H(s0). (8)

In general, Hg(x0) is not a finite union of classical Hecke orbits, even when G is of adjoint type.

Hecke correspondences. Recall that the classical Hecke orbit can be described using Hecke
correspondences. For g ∈ G(Q), the points s0 = [x0, 1] and sg = [g · x0, 1] have a common inverse
image by the left, respectively, right, finite map in

ShK(G,X)
Sh(Ad1)←−−−−− ShK∩gKg−1(G,X)

Sh(Adg)−−−−−→ ShK(G,X),

where Sh(Adg) the right map is the Shimura morphism associated to the map of Shimura data
ADg : (G,X)→ (G,X) induced by the conjugation ADg : G→ G and Sh(Ad1) is induced by
the identity map AD1 : G→ G.
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Likewise generalised Hecke orbits can be interpreted using finite correspondences between
Shimura varieties. For a point φ ◦ x0 ∈ H(x0), the point s0 and sφ = [φ ◦ x0, 1] have a common
inverse image in

ShK(G,X)
Sh(φ0)←−−−− Sh

K∩
−1
φ (K)

(M,XM )
Sh(φ)−−−→ ShK(G,X).

This time the correspondence is induced by a correspondence from the image of Sh(φ0) to that
of Sh(φ). These are also the smallest special subvarieties containing s0, respectively, sφ.

2.5.2 Relation to the usual definition of the generalised Hecke orbit. We compare our notion
of generalised Hecke to the ‘generalised Hecke orbits’ used in [KY14] and [EY03, Pin05, Orr15,
UY13]. The latter is defined in terms of linear representations.

For any faithful representation ρ : G→ GL(N) over Q, let the ‘ρ-Hecke orbit’ be

Hρ(x0) := {φ ◦ x0 ∈ X : φ ∈ Hom(M,G)(Q), ρ ◦ φ ∈ GL(N,Q) · ρ ◦ φ0}.
By Theorem 2.11, we also have

Hρ(x0) = {φ ◦ x0 ∈ X : φ ∈ Hom(M,G)(Q), ρ ◦ φ ∈ GL(N,Q) · ρ ◦ φ0}.
Proposition 2.15. The ρ-Hecke orbit Hρ(x0) is contained in the generalised Hecke orbit H(x0).

The ρ-Hecke orbit Hρ(x0) is a finite union of geometric Hecke orbits Hg(x0) ∪ · · · ∪ Hρ(xk).

The first statement is clear from the definition of Hρ(x0). The second statement follows from
the second definition of Hρ(x0) and [Ric67].

The number of geometric Hecke orbits is bounded independently from ρ thanks to
Theorem 2.4. It is unclear whether we can achieve Hρ(x0) = H(x0) for a sufficiently general
representation ρ.

3. Galois functoriality on the generalised Hecke orbit

In §§ 3.1 and 3.2 we state known definitions and properties for the convenience of the reader.
Details can be found, for instance, in [UY13]. In § 3.3 we relate cardinality of Galois orbits and
cardinality of orbits in adelic groups. This is essential to our approach to the estimates of § 1.3.2
through adelic methods.

3.1 Galois representations
Our statements will use the following terminology.

Definition 3.1 (Galois representations). Let (M,XM ) be a Shimura datum, let x0 be a point
in XM , and let E ≤ C be a subfield containing the reflex field E(M,XM ).

We say that a continuous homomorphism

ρ = ρx0 : Gal(E/E)→M(Af ) (9)

is a Galois representation (defined over E) for x0 (in XM ) if: for any compact open sub-
group K ′ ≤M(Af ), denoting [x0, 1]′ the image of (x0, 1) in ShK′(M,XM ), we have [x0, 1]′ ∈
ShK′(M,XM )(E) and

∀σ ∈ Gal(E/E), σ([x0, 1]′) = [x0, ρx0(σ)]′. (10)

In the important case of moduli spaces of abelian varieties, a representation ρx0 can be directly
constructed from the linear Galois action on the Tate module (see [UY13, CM20]).

Here we only need the existence of a ρx0 .
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Proposition 3.2 (Existence of Galois representations). Let [x0, 1] ∈ ShKM
(M,XM )(E′) be a

point defined over a field E′ ≤ C in a Shimura variety.
Then there exist a finite extension E/E′ and a Galois representation defined over E for x0

in XM .

The main ingredient in this proposition is the following, which is part of the definition of
canonical models: for any [x0,m0], any m ∈M(Af ) and σ ∈ Aut(C/E(M,XM )),

if σ([x0,m0]) = [x′,m′] then σ([x0,m0 ·m]) = [x′,m′ ·m]. (11)

The continuity of ρx0 is used in the following lemma.

Lemma 3.3. Let K be an open subgroup of M(Af ). Then, after possibly replacing E by a finite
extension, we have

ρx0(Gal(E/E)) ≤ K. (12)

Proof. Such an extension corresponds to the open subgroup −1
ρx0 (K) ≤ Gal(E/E). �

Comments. If K is sufficiently small so that K ∩ ZG(M0)(Q) = {1}, for instance if K is neat
then (see [KY14, § 4.1.4]) for any field E ≤ C, there is at most one Galois representation ρx0

satisfying (12).

3.2 Functoriality of the Galois representation
In the next statement we denote by E(G,X) the reflex field of a Shimura datum (G,X). It is a
number field over which Sh(G,X) (and, hence, all the ShK(G,X)) admits a canonical model.

Proposition 3.4 (Functoriality). Let φ : (M,XM )→ (G,X) be a morphism of Shimura data,
and x0 a point in XM .

If ρx0 is a Galois representation defined over a field E for x0, then

φ ◦ ρx0 |Gal(E/E·E(G,X))

is a Galois representation defined over E · E(G,X) for φ(x0) in X.

This follows from the definition and the identity

σ([φ ◦ x, φ(g)]) = [φ ◦ x′, φ(g′)] for [x′, g′] = σ([x, g]),

which holds when σ ∈ Aut(C/E(M,XM )E(G,X)). Equivalently, the Shimura morphisms
induced by φ are defined over E(M,XM )E(G,X). (See [Del71, 1.14, 5.1].)

The compositum field E · E(G,X) ≤ C is a finite extension of E which does not depend on
the morphism φ. With our definition, it also does not depend on the compact open subgroups.
As a consequence, Galois representations for points in the same generalised Hecke orbit can be
deduced from each other, after passing to the same finite extension E · E(G,X)/E.

For future reference we summarise the above statements as follows.

Proposition 3.5. We keep the same notation. For any σ ∈ Gal(E/E · E(G,X)), any g ∈ G(Af ),
and any γ ∈ G(Q), we have

σ([γ · φ(x0), g]) = [γ · φ(x0), ρ′(σ) · g],
where

ρ′ := Adγ ◦ φ ◦ ρx0 : σ �→ γ · φ ◦ ρx0(σ) · γ−1

is a Galois representation defined over E · E(G,X) for γ · φ(x0) in X.
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Proof. We may assume g = 1 by (11). This follows then from Proposition 3.4 applied to Adγ ◦ φ0 :
M → G→ G. �

3.3 Galois orbits versus Adelic orbits
Let U = ρx0(Gal(E/E)). By definition, we have

Gal(E/E) · [φ ◦ x0, g] = [φ ◦ x0, φ ◦ ρx0(Gal(E/E)) · g]
= G(Q)\G(Q) · ({φ ◦ x0} × φ(U) · g) ·K · /K.

The next proposition reduces the estimation of the size of the Galois orbit to that of the
φ(U)-orbit φ(U) · g ·K · /K.

Proposition 3.6. There is a real number C ∈ R>0 such that

∀ (φ ◦ x0, g) ∈ H(x0)×G(Af ),
1
C
≤ |Gal(E/E) · [x0, g]|

[φ(U) : φ(U) ∩K]
≤ 1.

After possibly passing to a finite extension of E, we may choose C = 1.

Proof. We want to bound the cardinality of the fibres of the map

φ(U) · g ·K/K → G(Q)\G(Q) · ({φ ◦ x0} × φ(U) · g) ·K · /K. (13)

We first describe the fibres. Let Zφ := ZG(φ(M)). The classical description of Hecke orbits
gives an identity

G(Q)\G(Q) · {φ ◦ x0} ×G(Af ) 
 Zφ(Q)\{φ ◦ x0} ×G(Af )


 {φ ◦ x0} × Zφ(Q)\G(Af ).

(This follows from G(Q) ∩ StabG(R)(φ ◦ x0) = Zφ(Q) in G(R). We have embedded Zφ(Q) in G(A)
in the first line, and in G(Af ) in the second line.)

Define

Γ = Zφ(Q) ∩ φ(U).

The map (13) can be written as a quotient map

φ(U) · g ·K/K → Γ\(φ(U) · g ·K/K).

It will suffice to bound the order |Γ|.
The group Zφ(Q) is discrete in G(Af ) because Zφ(R) is compact modulo Z(G)(R) and

Z(G)(Q) is discrete in G(Af ) (see [UY13, Appendix Lemma 5.13]), where Z(G) is the centre
of G. As usual, we assume that G is the generic Mumford–Tate group on X. Therefore, Γ is
compact and discrete, and thus is finite.

We will realise Γ as a finite arithmetic group. We choose a faithful representation G→ GL(N)
defined over Q, and identify M and G with their images in GL(N).

We let K[m] = ker(GL(N, Ẑ)→ GL(N,Z/(m)) for m ∈ Z.
There is a maximal compact subgroup K ′ of GL(N,Af ) which contains K. In GL(N,Af )

all maximal compact subgroups are conjugated: K ′ is of the form h ·GL(N, Ẑ) · h−1 with h ∈
GL(N,Af ). We may even choose h ∈ GL(N,Q) (this is a consequence of the fact that the class
number of GL(N)/Q is one).
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Conjugating the representation by h−1 we may assume h = 1: we have

U ≤ K ≤ GL(N, Ẑ).

If m = 3 we pass to the finite extension of E corresponding to the subgroup −1
ρx0 (U ∩K[m]) of

Gal(E/E). In any case we may assume

U ≤ K ∩K[m] ≤ K[m].

From Proposition 3.5, we know that φ = γφ0γ
−1 for some γ ∈ GL(N,Q). It follows that

φ(U) ≤ γK[m]γ−1,

and, thus,

Γ = Zφ(Q) ∩ φ(U) ≤ GL(N,Q) ∩ γK[m]γ−1.

Conjugating by γ−1 yields

γ−1 · Γ · γ ≤ γ−1GL(N,Q)γ ∩K[m]

= GL(N,Q) ∩K[m]

=

{
GL(N,Z) if m = 1,
ker(GL(N,Z)→ GL(N,Z/(3))) if m = 3.

Recall that |Γ| = |γ−1Γγ|. We may thus conclude by applying the following lemma to γ−1 · Γ · γ.
It follows that for m = 1, |Γ| is bounded independently of φ and for m = 3, |Γ| = 1. �

Lemma 3.7. For every N , there is a real number C(N) such that, for every finite subgroup
Γ ≤ GL(N,Z) we have

|Γ| ≤ C(N),

and if Γ ≤ ker(GL(N,Z)→ GL(N,Z/(3))), then Γ = 1.

Proof. From [PR94, Lemma 4.19.(Minkowski), p. 232] the kernel has no nontrivial torsion. This
implies the second assertion.

This also implies that the reduction map GL(N,Z)→ GL(N,Z/(3)) is injective on Γ, thus
inducing an embedding of Γ in GL(N,Z/(3)). The first conclusion follows with

C(N) = |GL(N,Z/(3))| =
N−1∏
i=0

(3N − 3i). �

4. Invariant heights on Hecke orbits

4.1 Height functions
4.1.1 Local affine height functions over R or Qp. Let W be an affine variety over K = R or

K = Qp. For every affine embedding defined over K

ιK : W → AN
K

there is an associated affine local Weil height function HιK : W (K)→ R≥0 given by

HιK (w) = max{1; |w1|K ; . . . ; |wN |K}, (14)

where |−|K is the standard absolute value on K.
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4.1.2 Affine height functions over Q. When W and ι := ιK are defined over Q, we can define,
for w ∈W (Q),

Hι(w) = Hι⊗R(w) ·Hι,f (w), (15)

with Hι,f (w) =
∏
p

Hι⊗Qp(w). (16)

We define more generally, for w = (wp)p ∈W (Af ),

Hι,f (w) =
∏
p

Hι⊗Qp(wp). (17)

When W and the embedding ιR, respectively, ιQp , respectively, ι are clear from the context,
we will simply write

HR = HιR
, Hp = HιQp

, HW = Hι and Hf = Hι,f . (18)

Then (15) becomes
HW = HR ·Hf . (19)

4.2 Polynomial equivalence and functoriality of heights
We recall the functoriality properties of heights. See [Ser97] or [BG06] for corresponding
statements about projective Weil heights. See Definition 1.7 for the symbols � and ≈.

Theorem 4.1 (Functoriality of heights). Let φ : V → V ′ be a morphism of affine varieties over
R, respectively, Qp, respectively, Q, and let

ιR : V → AN
R , respectively, ιQp : V → AN

Qp
, respectively, ι : V → AN

Q

be an affine embedding of V , and let ι′R : V ′ → AN ′
R , respectively, ι′Qp

: V ′ → AN ′
Qp

, respectively,
ι′ : V ′ → AN ′

Q be an affine embedding of V ′.
Then, as functions on V (R), respectively, V (Qp), respectively, V (Q) and V (Af ),

Hι′
R
◦ φ � HιR

, respectively, Hι′
Qp
◦ φ � HιQp

,

respectively, Hι′ ◦ φ � Hι and Hι′,f ◦ φ � Hι,f .

Corollary 4.2. Let V be an affine algebraic variety over R, respectively, Qp, respectively, Q.
Let

ιR : V → AN
R and ι′R : V → AN ′

R ,

respectively, ιQp : V → AN
Qp

and ι′Qp
: V → AN ′

Qp
,

respectively, ι : V → AN
Q and ι : V ′ → AN ′

Q

be affine embeddings of V ′.
Then, as functions on V (R), respectively, V (Qp), respectively, V (Q) and V (Af ),

Hι′
R
≈ HιR

, respectively, Hι′
Qp
≈ HιQp

, respectively, Hι′ ≈ Hι and Hι′,f ≈ Hι,f .

4.3 Galois invariant height on the Hecke orbit
Let S = ShK(G,X) and x0 be as in § 1.1 and ρx0 : Gal(E/E)→M(Af ) be as in (9). Let
W = G · φ0 ⊆ Hom(M,G) be the algebraic variety defined in § 2.1. We have W 
 G/ZG(M).
Let Hom(m, g) be affine algebraic variety of linear maps m→ g. As M is connected, we have an

2546

https://doi.org/10.1112/S0010437X2400722X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400722X


Heights and generalised the André–Pink–Zannier conjecture

embedding
φ �→ dφ : W ↪→ Hom(m, g).

As M is reductive, the image is closed, by [Ric67].
We choose a lattice gZ ≤ g such that

gZ ⊗ Ẑ ≤ g⊗ Af

is stable under the action of K ≤ G(Af ). We define mZ = gZ ∩m. We choose a basis of g which
generates gZ and a basis of m which generates mZ. This choice induces an isomorphism

j : Hom(m, g) ∼−→ Qdim(M)·dim(G).

This induces an affine embedding

ι := j ◦ d : W = G · φ0 ↪→ Hom(m, g)→ A
dim(M)·dim(G)
Q

by first mapping φ to dφ and then to its matrix with respect to the bases we have chosen.
We denote byHf : W (Af )→ Z≥1 andH ′

f : Hom(mAf
, gAf

)→ Z≥1 the functions given by (17)
with respect to the embeddings ι and j.

Proposition 4.3 (Galois invariance). Let φ1, φ2 ∈W (Q) be such that s1 = [φ1 ◦ x0, g1] and
s2 = [φ2 ◦ x0, g2] define points in Hg(s0), where g1, g2 ∈ G(Af ), and assume that there exists a
σ ∈ Gal(E/E) such that

σ(s1) = s2. (20)

Then
Hf (g1−1φ1g1) = Hf (g2−1φ2g2).

We first remark, from the formula

∀ψ ∈ Hom(mAf
, gAf

), H ′
f (ψ) = min{n ∈ Z≥1 : n · ψ(m

Ẑ
) ⊂ g

Ẑ
}, (21)

that for every Ẑ-module automorphism u : m
Ẑ
→ m

Ẑ
and k : g

Ẑ
→ g

Ẑ
, we have

H ′
f (k ◦ ψ ◦ u) = H ′

f (ψ). (22)

When ψ = dφ, and k = adk′ : g→ g with k′ ∈ K and u = adu′ : m→ m with u′ ∈ K ∩M(Af ),
this gives, with ADk′ ◦ φ ◦ADu′ : m �→ k′φ(u′mu′−1)k′−1,

Hf (ADk′ ◦ φ ◦ADu′) = Hf (ψ). (23)

Proof of Proposition 4.3. We define u = ρx0(σ) ∈M(Af ) ∩K. From (20) and the functoriality
of Galois action Propositions 3.4 and 3.5, we have

[φ1 ◦ x0, φ1(u) · g1] = [φ2 ◦ x0, g2].

Hence, there exists γ ∈ G(Q) and k ∈ K such that

(γ · φ1 ◦ x0, γ · φ1(u)g1k) = (φ2 ◦ x0, g2).

By Lemma 2.5, we also have γ · φ1 · γ−1 = φ2. Thus,

g2
−1φ2g2 = (k−1g1

−1φ1(u)−1γ−1) · (γ · φ1 · γ−1) · (γ · φ1(u)g1k)

= k−1g1
−1φ1(u−1) · φ1 · φ1(u)g1k.

We have

∀m ∈M(Af ), φ1(u)−1 · φ1(m) · φ1(u) = φ1(u−1mu) = φ1 ◦ADu−1(m)
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and, hence,

k−1g1
−1φ1(u)−1 · φ1 · φ1(u)g1k = ADk−1 ◦ (g1−1 · φ1 · g1) ◦ADu−1 .

We finally have, using (23),

Hf (g2−1φ2g2) = Hf (ADk−1 ◦ (g1−1 · φ1 · g1) ◦ADu−1) = Hf (g1−1φ1g1). �

4.3.1 Height function on the generalised Hecke orbit H([x0, 1]). The function H ′
f on

Hom(mAf
, gAf

) induces, at the level of the ShK(G,X), a function Hs0 on the generalised Hecke
orbit H(s0) of s0 := [x0, 1], given as follows. For φ ∈ Hom(mQ, gQ) such that φ ◦ x0 ∈ X and
g ∈ G(Af ), we define

Hs0([φ ◦ x0, g]) = H ′
f (d(g−1φg)).

The function Hs0 depends on the choices we have made, but different choices will produce the
same function, up to a bounded factor.

The case σ = 1 of Proposition 4.3 implies that Hs0 is well defined. Proposition 4.3 can then
be rephrased as follows.

Lemma 4.4. For every σ ∈ Gal(E/E) and s ∈ H(s0) we have

Hs0(σ(s)) = Hs0(s). (24)

5. Height comparison on Siegel sets

The main result of this section, Theorem 5.16, compares, for rational points of W = G/ZG(M)
contained in a given Siegel set (as in Definition 5.11), the global height HW of (4.1.2), with its
factor Hf in (19) (coming from the finite places). The height HW is that appearing in our variant
(Theorem 7.1) of the theorem of Pila–Wilkie, and Hf is the height appearing in our Galois bounds
(see Theorem 6.4).

Our Theorem 5.16 extends a result of Orr, in [Orr18], which is only applicable to elements
in G(Q). We work with elements of W (Q) instead. This is crucial to us as, in our strategy § 1.4,
we are working with geometric Hecke orbits.10

This section develops different arguments than those of [Orr18]. They are more flexible, which
allows us to obtain a more general result.

5.1 Polynomial equivalence and archimedean height
We use Definition 1.7.

Lemma 5.1. Let A ⊂ Rn be a semialgebraic subset, and let f, g : A −→ R≥0 be semialgebraic
and continuous functions. Assume that f is a proper map.

Then
g � f.

Proof. We claim that the following function

h : ] inf
A

(f),∞[→ R≥0

t �→ sup{g(a) : a ∈ A, f(a) ≤ t}

10 In general, when ZG(M) �= {1}, the height of an element g ∈ G(Q) is not bounded by the height of its image
gφ0g

−1 in W (Q) and not every element of W (Q) is the image of an element of G(Q).
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is well defined. Fix an arbitrary t be in ] infA(f),∞[. The set {a ∈ A : f(a) ≤ t} is compact
since f is proper. It is nonempty since t > infA(f). As g is continuous, {g(a) : a ∈ A, f(a) ≤ t}
is compact and nonempty, and its maximum belongs to R≥0, which proves the claim.

The function h is also semialgebraic (see [BCR98, Proposition 2.2.4.]). By [vdDri98, § 4.1
‘Notes and comments’ and references therein], h is polynomially bounded. The conclusion
follows. �

The following uses Lemma 5.1 for f and g, and again after swapping f and g.

Corollary 5.2. On a semialgebraic subset A ⊂ Rn, two proper semialgebraic continuous
functions f, g : A→ R are polynomially equivalent.

We will also encounter the following situation.

Lemma 5.3. Let A ⊂ Rn and B ⊂ Rm be semialgebraic subsets, and f : A→ R≥0 and g : B →
R≥0 be two proper semialgebraic continuous functions, and p : A→ B be a proper and continuous
semialgebraic function. Then g ◦ p ≈ f .

Proof. We note that g ◦ p is proper and continuous because g and p are. We can apply the
Corollary 5.2 to f and g ◦ p. �
Lemma 5.4. Let V be an affine algebraic variety over R. Let φ : V → AN , and φ′ : V → AM be
two closed embeddings, and let Hφ and Hφ′ be defined as in (14).

Then Hφ and Hφ′ are semialgebraic continuous proper functions, and

Hφ ≈ Hφ′ .

Proof. The real algebraic map V (R)→ RN induced by the Zariski-closed embedding φ is a closed
embedding for the real topology. The functions ‖ ‖∞ : RN → R≥0 and t �→ max{1; t} : R≥0 −→ R≥0

are semialgebraic continuous proper maps. The composite map Hφ, and likewise Hφ′ , are thus
semialgebraic continuous and proper on V (R). We conclude with Corollary 5.2. �
Lemma 5.5. Let p : U → V be a morphism of affine algebraic varieties over R, and φU : U → AN

R

and φV : V → AM
R be closed embeddings. Let HφU

and HφV
be defined as in (14).

Let A ⊂ U(R) be a semialgebraic subset such that p|A : A→ V (R) is proper. Then, as
functions A→ R≥0,

HφU
|A ≈ HφV

◦ p|A.
Proof. We know that HφU

and HφV
are proper continuous and semialgebraic. As p|A is proper,

ι : A ↪→ U(R) is closed. It follows that HφU
|A = HφU

◦ ι is continuous, proper and semialgebraic.
We apply Lemma 5.3 with A = U(R), B = V (R), and p|A as p, and f = HφU

|A and g = HφV
. �

5.2 Comparison of archimedean and finite height
Lemma 5.6. Let ι : V → AM be a closed embedding with V = Gm

N . Then Hι,R � Hι,f on Q×N ,
where HR and Hf are as in § 4.1.2 (see (18)).

Proof. Thanks to Corollary 4.2, we may substitute ι with the closed embedding

ιN : Gm
N (t1,...,tN ) �→(t1,t1−1,...,tN ,tN

−1)−−−−−−−−−−−−−−−−−−−−→ A2N . (25)

We start with the case N = 1. We write an element t ∈ Q× as a reduced fraction n/m. We
can compute

Hι1⊗R(t) = max{|t|; |1/t|} and Hι1,f (t) = |n ·m|.
It follows Hι1⊗R(t) ≤ Hι1,f (t).
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For general �t = (t1, . . . , tN ) ∈ Q×N there is some 1 ≤ i ≤ N such that

HιN⊗R(�t ) = max{|t1|; |1/t1|; . . . ; |tN |; |1/tN |} = max{|ti|; |1/ti|}.
By the previous computation we have

HιN⊗R(�t ) = Hι1⊗R(ti) ≤ Hι1,f (ti).

We conclude by observing that
Hι1,f (ti) ≤ HιN ,f (�t),

as can be seen prime by prime. �
Lemma 5.7. For V = GN

m ⊂W = AN , and affine embeddings ιV : V → AM , respectively, ιW :
W → AM ′ , we have HιV ,f � HιW on Q×N .

Proof. By Corollary 4.2, we may assume that ιV is ιN of (25), and that ιW is the identity map.
We can again reduce the problem to the case N = 1. We write ti = n/m as an irreducible fraction
and then we have

HιV ,f (n/m) = |n ·m| ≤ max{|n|, |m|}2 = HιW (n/m)2. �
Corollary 5.8. Let C ∈ R>0. We have

HιV ,f � HιW ,f on (Q× ∩ [−C;C])N .

Proof. In Lemma 5.7, we decompose HιW = HιW⊗R ·HιW ,f . By hypothesis, HιW⊗R ≤ C, hence
HιW � HιW ,f on (Q× ∩ [−C;C])N which allows us to conclude. �

We establish the following.

Proposition 5.9. Let W be an affine variety over Q and let p : W −→ Ar be an algebraic map
and S ⊂W (R) be a semialgebraic closed subset such that:

(i) we have p(S) ⊆ (R×)r;
(ii) the restriction p|S : S −→ R×r is a proper map;
(iii) the image p(S) is bounded in Rr.

We fix an affine embedding ι of W and use notation (18). Then

HR|S∩W (Q) � Hf |S∩W (Q).

In particular,
HW |S∩W (Q) ≈ Hf |S∩W (Q).

Proof. We denote by Gm
r ⊂ Ar the affine open subset on which every coordinate is invertible.

We fix affine embeddings ιW of W , and ιGm
r of Gm

r and ιAr of Ar.
Because p|S is continuous real algebraic, and (as a function to Rr) is proper, by Lemma 5.5

we have
HιW⊗R|S ≈ HιGmr⊗R ◦ p|S. (26)

By functoriality of heights, Theorem 4.1, we have, on W (Q),

HιAr ,f ◦ p � HιW ,f . (27)

As p(S) is bounded in Rr, we have, by Lemma 5.6,

HιGmr⊗R � HιGmr ,f . (28)
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By hypothesis (iii) we can use Corollary 5.8 and get

HιGmr ,f |p(S)∩Q×r � HιAr ,f |p(S)∩Q×r . (29)

Combining these we get, using (26), (28), (29), and then (27),

HιW⊗R|S∩W (Q) ≈ HιGM
r⊗R ◦ p|S∩W (Q)

� HιGM
r ,f ◦ p|S∩W (Q) � HιAr ,f ◦ p|S∩W (Q) � HιW ,f |S∩W (Q). �

5.3 Construction of Siegel sets
We start by recalling some facts about parabolic subgroups and Siegel sets. A general reference
is [BJ06].

Let GQ be a semisimple Q-algebraic group of adjoint type. We fix a minimal Q-defined
parabolic11 subgroup PQ. Let GR and PR be the corresponding R-algebraic groups.

Let X be the associated symmetric space,12 and choose x ∈ X and let Θ : GR → GR be
the Cartan involution associated with x. The orbit map g �→ g · x induces the identification
G(R)/K 
 X where K is the maximal compact subgroup {g ∈ G(R) : g = Θ(g)}. We denote
by K∞ = K+ the neutral component.

We let NQ be the unipotent radical of PQ: thus PQ/NQ is the maximal reductive quotient of
PQ. The R-algebraic group

L := PR ∩Θ(PR)

is a maximal R-algebraic reductive subgroup of PR (cf. [BJ06, § III.1.9]), not necessarily defined
over Q, and the map L→ PR → (PQ/NQ)R is an isomorphism. We denote by A′

Q the maximal
central Q-split torus of PQ/NQ, and define A ≤ L as the inverse image of AR in L. We denote by
A+ = A(R)+ the neutral component as a real Lie group.

We denote by Φ the set of non-zero weights of the adjoint action of A on g⊗ R (the ‘(relative)
roots’), and Φ+ the subset of weights of the action on n⊗ R (the ‘positive’ ones). The eigenspaces
are not necessarily defined over Q. There exists a unique subset Δ = {α1; . . . ;αr} ⊂ Φ+ such
that α1, . . . , αr is a basis of X(A) = Hom(A,GmR) and Φ+ ⊂ α1 · Z≥0 + · · ·+ αr · Z≥0. The αi

are known as the (relative) simple roots, and r is equal to the Q-rank of GQ.
The positive Weyl chamber in A+ is

A+
≥0 = {a ∈ A+ : ∀ 1 ≤ i ≤ r, αi(a) ≥ 1}. (30)

We define
HP :=

⋂
χ∈X(PQ)

ker(χ2). (31)

We note that, for every one-dimensional representation Q · η of HP , we have

∀h ∈ HP (R), h · η ∈ {+η;−η}. (32)

We first define Siegel sets in GQ(R).

Definition 5.10 (Siegel set). A Q-Siegel set S in GQ(R) with respect to PQ and x is a subset
S ⊆ G(R) of the following form.

11 Non-necessarily proper: we have PQ = GQ when GQ is of Q-rank zero.
12 The space X in this section is of the form G(R)/K with K a non-necessarily connected maximal compact
subgroup. This G(R)/K is connected and is a quotient of the space X = G(R)/K∞ from other sections of this
article: when x is the image of x0 ∈ G(R)/K∞, we have K∞ = K+, where for simplicity we assume G is of
adjoint type. The point x0 determines and is determined by a Hodge cocharacter h : S → GR, and the image point
x ∈ G(R)/K determines and is determined by the corresponding Cartan involution Θ = Adh(i).
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There is a nonempty open and relatively compact subset Ω ⊆ PQ(R) and an element a ∈ A+

such that
S = Ω ·A+

≥0 · a ·K∞.

We will always assume that Ω ⊆ HQ(R) and that Ω is semialgebraic.

Usually Siegel sets are defined in GQ(R) or in X = GQ(R)/K. Working with geomet-
ric Hecke orbits as defined in Definition 2.3, we use the variety W (R)+ = G(R)/ZG(M)(R).
We can view W (R)+ as an intermediary space in the sequence of maps G(R)→W =
G(R)/ZG(M)(R)→ X. The following definition allows us to work with Siegel sets in a greater
generality.

Definition 5.11. Let Z be a compact subgroup of K, and W = GR/Z. We define a Q-Siegel
set SW with respect to PQ and x in W+ := GR(R)/Z(R) to be the image of Q-Siegel set S in
GQ(R) with respect to PQ and x.

We note that if Z is defined over Q then so isW and we can consider the subsetW+(Q) ∩SW .

5.4 Divergence in Siegel sets
In the rest of this section we use the notation G = GQ.

5.4.1 We say that an infinite sequence, in an appropriate topological space, is divergent if
it does not contain an infinite convergent subsequence. A continuous map is proper if it maps
divergent sequences to divergent sequences.

5.4.2 We will use the closure of a Siegel set.

Proposition 5.12. Consider S = Ω ·A+
≥0 · a ·K∞ as in Definition 5.10.

Then its closure in G(R) is given by

S = Ω ·A+
≥0 · a ·K∞. (33)

and S is contained in a Q-Siegel set S′ in G(R) with respect to P and x.

Proof. The set S is obviously dense in the right-hand side of (33). It is the image of the proper
map in Lemma 5.13, and thus it is a closed subset in G(R). This proves the first assertion.
Let U be a nonempty relatively compact semialgebraic open neighbourhood of 1 in H(R), for
instance a small euclidean open ball in a faithful representation H → GL(N). Then Ω′ = U · Ω
is an open relatively compact semialgebraic open neighbourhood of Ω in H(R), and the Siegel
set Ω′ ·A+

≥0 · a ·K contains S. �
We used the following.

Lemma 5.13. The map

(ω, a, k) �→ ω · a · k : Ω×A+
≥0 · a×K → G(R)

is proper.

Proof. It suffices to prove that the image of every divergent sequence in the left-hand side is not
a convergent sequence in the right-hand side. We prove the contrapositive.

Let (ωn, an, kn)n∈Z≥1
be a sequence in the left-hand side such that (ωn · an · kn)n∈Z≥1

is a con-
vergent sequence in G(R). Because Ω and K are compact, after possibly extracting a subsequence
we may assume that (ωn)n∈Z≥1

and (kn)n∈Z≥1
are convergent sequences. It follows that (an)n∈Z≥1
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is a convergent subsequence. We recall that (α1, . . . , αr) : A+ → R>0
r is an isomorphism. It fol-

lows that A+
≥0 is closed in A+. Because A(R) is a closed subgroup of G(R), that A+ is a closed

subgroup of A(R), this A+
≥0 is closed in G(R). One deduces that A+

≥0 · a is closed in G(R) and
that the limit of (an)n∈Z≥1

in G(R) belongs to A+
≥0 · a.

We proved that the original sequence (ωn, an, kn)n∈Z≥1
contains a convergent infinite

subsequence. Thus, it is not a divergent sequence. �
These results have the following consequence.

Corollary 5.14. A sequence (ωn · an · kn)n∈Z≥1
is divergent in S if and only if an is divergent

in A+
≥0.

Proof. Because S is closed, (ωn · an · kn)n∈Z≥1
is also divergent in G(R). It follows that the

sequence (ωn, an, kn)n∈Z≥1
contains no convergent subsequence. Because Ω and K are compact,

the projection map

Ω×A+
≥0 · a×K → A+

≥0 · a
is proper. It follows that the image sequence (an)n∈Z≥1

is divergent in A+
≥0 · a. �

5.4.3 Let P1, . . . , Pr be the maximal Q-defined proper13 parabolic subgroups of G containing
P . We denote by Ni their unipotent radicals, and ni the (Q-linear) Lie algebra of Ni. The adjoint
representation of G induces an action of G on the Q-vector space Vi =

∧dim(Ni) g. Then the
Q-vector subspace

∧dim(Ni) ni ≤ Vi is of dimension 1, and we choose a generator ηi of this Q-line.
Then the R-line R · ηi is an eigenspace of A acting on Vi ⊗ R, and this eigenspace is defined

over Q. Let χi be the corresponding eigencharacters of A: we have

∀ a ∈ A(R), ∀ 1 ≤ i ≤ r, ∀a · ηi = χi(a) · ηi. (34)

For 1 ≤ i ≤ r the χi are positive multiples k1 · ω1, . . . , kr · ωr of the (relative) fundamental
weights14 ω1, . . . , ωr ∈ X(A)⊗Q. In particular,

∀α ∈ A+
≥0,∀ 1 ≤ i ≤ r, χi(α)−1 ≤ 1. (35)

One knows that the fundamental weights are positive Q-linear combinations of αi and that
they form a basis of X(A)⊗Q. The same holds for χi. We deduce the following.

Lemma 5.15. Let (an)n∈Z≥0
be a sequence in A+

≥0 · a. Then the sequence is divergent (no infinite
subsequence is convergent) if and only if

lim
n→∞ min

1≤i≤r
χi(an)−1 = 0. (36)

Proof. If (an)n∈Z≥0
contains a convergent infinite subsequence, then the sequence

(min1≤i≤r χi(an)−1)n∈Z≥0
contains a convergent infinite subsequence in R>0 and we cannot

have (36).
This proves one implication and we now prove the other.
Assume that (36) fails. Equivalently,

L := lim sup
n→∞

min
1≤i≤r

χi(an)−1 > 0.

13 There are none if r = 0.
14 The ‘weights lattice’ ω1 · Z + · · · + ωr · Z ⊃ X(A) can be identified with X(Ã) where Ã is the torus in a simply
connected cover G̃R → GR which maps onto A.
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After possibly extracting a subsequence, we have

lim
n→∞ min

1≤i≤r
χi(an)−1 = L �= 0. (37)

Because the an belong to A+
≥0 · a we have supn∈Z≥0

αi(an)−1 ≤ αi(a)−1 for every 1 ≤ i ≤ r.
Because the χi are positive linear combination of the αi, the χi(an)−1 are bounded above. Accord-
ing to (37) they are bounded below in R>0. Because the χi form a basis of X(A)⊗Q, the αi are
linear combination of the χi. Hence, the αi(an) are bounded above and below in R>0. Equivalently
(an)n∈Z≥0

is bounded in A+. Hence (an)n∈Z≥0
is not divergent.

This proves the other implication. �

5.5 Height on Siegel sets
The following statement is the main objective of § 5.

Theorem 5.16. Let SW as in Definition 5.11 with Z defined over Q, let ι : G/Z → AN
Q be an

affine embedding and let HW = HR ·Hf be as in (19). Then, as functions SW ∩W (Q)→ R≥0

we have

HW ≈ Hf .

This will be deduced from Proposition 5.9. We first construct the map p to which we apply
the proposition, and then verify the assumptions of the proposition.

5.5.1 Construction of the morphism p. Let ηi ∈ Vi =
∧dim ni g and χi be as in § 5.4.3.

For each 1 ≤ i ≤ r, we choose a positive-definite quadratic form

Q′
i : Vi −→ Q.

We denote by dz the Haar probability measure on Z(R) we define the real quadratic form

Qi(v) =
∫

Z(R)
Q′

i(z · v) dz : Vi ⊗ R→ R. (38)

The following is central in our argument.

Lemma 5.17. The quadratic form Qi is invariant under Z(R), is positive definite, and is defined
over Q.

Proof. The two first properties are immediate from (38). We prove that Qi is defined over Q. Let
V be the Q-vector space of quadratic forms, as a representation of Z, and V Z be the subspace
of elements fixed by Z. As Z(R) is compact, the Q-group Z is reductive, and there is a Z-stable
Q-subspace W such that we can decompose

V = V Z ⊕W.
Let us write correspondingly

Q′
i = Q′

Z +Q′
W

with Q′
Z in V Z and Q′

W in W .
Because QZ is invariant under Z(R) and W ⊗ R is stable under Z(R),∫

Z(R)
z ·QZ dz = QZ and

∫
Z(R)

z ·QW dz ∈W ⊗ R.
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By construction,
∫
Z(R) z ·QW dz is fixed by Z(R) and, thus, it belongs to W ⊗ R ∩ V Z ⊗ R = {0}.

We compute

Qi =
∫

Z(R)
z ·Q′

i dz =
∫

Z(R)
z ·QZ dz +

∫
Z(R)

z ·QW dz = QZ + 0.

Because QZ is defined over Q, so is Qi. �
We can now define p : W → Ar

Q by

p(gZ) = (Q1(g−1 · η1), . . . , Qr(g−1 · ηr)). (39)

As the Qi are defined over Q so is p, and as the Qi are Z-invariant, p is well defined.

5.5.2 Properties of the morphism p. Our next task is to verify the assumptions of
Proposition 5.9.

(i) We have p(SW ) ⊂ (R×)r.
(ii) As a map SW → (R×)r, p|SW

is proper with respect to the real topologies.
(iii) The image p(S) is bounded in Rr.

Proof of assumption (i). Every point of SW is of the form gZ with g ∈ G(R). The vector g · ηi is
thus in Vi ⊗ R. As ηi �= 0 and g is invertible, g−1 · ηi �= 0. As Qi is positive definite by Lemma 5.17,
we have pi(g) := Qi(g−1ηi) ∈ R>0. �

We will use that there exists C ∈ R>0 such that for every 1 ≤ i ≤ r,
∀ (h, α, k) ∈ HP ×A+

≥0 ×K∞, 0 ≤ pi(h · a · α · k) ≤ C · χi(α)−2. (40)

Proof of (40). We write σ = h · a · α · k. By (32), we have h−1 · ηi = ±ηi. Thus,

σ−1 · ηi = ±k−1 · α−1 · a−1 · ηi = ±k−1 · χi(α)−1 · ηi.

Because K is compact there exists a K-invariant euclidean norm ‖−‖ on Vi ⊗ R. The two norms√
Qi and ‖−‖ on Vi ⊗ R are comparable: there is Ci ∈ R>0 such that for any v ∈ Vi ⊗ R,

Qi(v) ≤ Ci · ‖v‖2.
We deduce (40) with C = maxi∈{1;...;r}Ci · ‖a−1 · ηi‖2 from

pi(σ) = Qi(σ−1 · ηi)

≤ Ci · ‖±k−1 · χi(α)−1 · a−1 · ηi‖2

= Ci · ‖±χi(α)−1 · a−1 · ηi‖2

= Ci · χi(α)−2 · ‖a−1 · ηi‖2 ≥ 0. �
Proof of assumption (ii). For a divergent sequence σn = ωna · αnkn in SW , Corollary 5.14 and
Lemma 5.15 imply that min1≤i≤r χi(αn)→ 0. Using (40), we deduce that

min
1≤i≤r

pi(ωnanakn)→ 0 (41)

and, thus, p(ωnankn) is divergent in R×r. This proves the properness. �
Proof of assumption (iii). For σ = h · α · a · k ∈ S, we have 0 ≤ χ1(α), . . . , χr(α) ≤ 1 by (35),
and deduce from (40) that

max
1≤i≤r

|pi(ωnanakn)| ≤ C. �

We now use Proposition 5.9 with S = SW . This concludes the proof of Theorem 5.16.
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6. Weak adelic Mumford–Tate hypothesis and lower bounds on Galois orbits

This section is central to the proof of the André–Pink–Zannier conjecture under our assump-
tions (Theorem 1.2). In this section, we state a precise form of the ‘weak adelic Mumford–Tate
hypothesis’.

We then translate lower and upper bounds on adelic orbits of Appendices B and C into esti-
mates for sizes of the Galois orbits in terms of the height functions of § 4 (when the Mumford–Tate
hypothesis holds).

For simplicity in the following we refer to the ‘Mumford–Tate hypothesis’ or simply ‘MT
hypothesis’.

Finally, we provide some natural functoriality properties of the Mumford–Tate hypothesis,
which will be needed for the reduction steps in the proof of our main theorem.

6.1 The Mumford–Tate hypothesis
We start with a property applicable in more general situations.

Definition 6.1. Let M be a linear algebraic group over Q, let KM ≤M(Af ) be a compact open
subgroup, and let U ≤M(Af ) be a compact subgroup.

We say that U is MT in M if the indices

[KM ∩M(Qp) : U ∩KM ∩M(Qp)] (42)

are finite and uniformly bounded as p ranges through primes, where M(Qp) ≤M(Af ) is
understood as a factor subgroup of M(Af ).

Note that the definition does not depend on the choice of KM , as any two compact open
subgroups are commensurable. We may always enlarge KM so that it takes the product form
KM =

∏
pKp in which case the indices become

[Kp : U ∩Kp].

Likewise if U ′ ≤M(Af ) is a compact subgroup commensurable to U , then U is MT in M if and
only if U ′ is MT in M . Note (and this is very important) that the condition that U is MT in M
does not imply that U is open in M(Af ).

The following observation is an immediate consequence of the definition.

Lemma 6.2. In the Definition 6.1, let

Up := U ∩KM ∩M(Qp) and U ′ =
∏
p

Up ≤
∏
p

M(Qp). (43)

Then U is MT in M if and only if U ′ is MT in M .

We specialise the above definition to the context of images of Galois representations.

Definition 6.3. Let (G,X) be a Shimura datum, let x0 ∈ X and let M be the Mumford–Tate
group of x0, let ρx0 be a Galois representation for x0 defined over a field E in the sense of
Definition 3.1, and let U = ρx0(Gal(E/E)) ≤M(Af ) be the image of ρx0 .

(i) We say that x0 satisfies the MT hypothesis, if U is MT in M .
(ii) Let K ≤ G(Af ) be a compact open subgroup, and s0 = [x0, 1] ∈ ShK(G,X). We say that s0

satisfies the MT hypothesis if U is MT in M .
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6.2 Lower bounds for Galois orbits in terms of finite heights under the
MT hypothesis
The following statement is an essential ingredient in the proof of the main theorem (see § 7). We
also believe it to be of independent interest.

Theorem 6.4. Let M be a connected reductive group over Q and U ≤M(Af ) be a compact
subgroup which is MT inM in the sense of Definition 6.1. We use the notation of Definition 1.7.

(i) Let φ0 : M → GL(N) be a representation over Q, and let W be the GL(N)-conjugacy
class of φ0. We consider an affine embedding ι : W → AN

Q and the corresponding function
Hf : W (Qf )→ Z≥1 defined by (17). Then, as φ ranges through W (Af ), we have

[φ(U) : φ(U) ∩GL(N, Ẑ)] ≈ Hf (φ). (44)

(ii) Let φ0 : M → G be a morphism of algebraic groups over Q and let W be the G-conjugacy
class of φ0. We consider an affine embedding ι : W → AN

Q and the corresponding func-
tion Hf : W (Qf )→ Z≥1 defined by (17). We also consider an open compact subgroup
K ≤ G(Af ). Then, as φ ranges through W (Af ), we have

[φ(U) : φ(U) ∩K] ≈ Hf (φ). (45)

First, let us reduce the second assertion to the first.

Proof. We identify G with its image by a faithful representation G→ GL(N). We may replace
K by a commensurable group, and assume K is a maximal compact subgroup of G(Af ). For any
maximal compact subgroup K ′ of GL(N,Af ) such that K ≤ K ′ ≤ GL(N,Af ), we then have

K = K ′ ∩G(Af ). (46)

We choose such a K ′, and, possibly conjugating by an element of GL(N,Q), we may assume
K ′ = GL(N, Ẑ).

Consider φ : M → G in (45). From φ(U) ≤ G(Af ) and (46), we deduce

[φ(U) : φ(U) ∩K] = [φ(U) : φ(U) ∩K ′] = [φ(U) : φ(U) ∩GL(N, Ẑ)]. (47)

We have identified the left-hand side of (47) with the left-hand side of (45).
It will be enough to identify the right-hand sides. We will show that a height function Hf on

the GL(N)-conjugacy class of φ, when restricted to the G-conjugacy class, is a height function
on this G-conjugacy class.

If Hf : GL(N,Af ) · φ→ Z≥1 is associated to ι : GL(N) · φ→ AN
Q , then its restriction to

GL(N,Af ) · φ is associated to ι′ : G · φ→ GL(N) · φ→ AN
Q , provided ι′ is a closed embedding.

It is equivalent to proving that G · φ ⊆ GL(N,Af ) · φ is Zariski closed.
To do this, we choose the map

ι : GL(N) · φ φ′ �→dφ′
−−−−→ Hom(m, gl(N)).

By assumption, M is Zariski connected. This map is thus injective. As M is reductive, accord-
ing to [Ric88, Theorem 3.6], the image of G · φ is closed in Hom(m, gl(N)), and thus G · φ ⊆
GL(N,Af ) · φ is Zariski closed. �

We now reduce the first assertion to Corollary B.2, Theorems B.1 and B.4.

Proof. Writing K = GL(N, Ẑ) for short, we may rewrite the left-hand side of (44) as

[φ(U) : φ(U) ∩K] = |φ(U) ·K/K| = |U/
−1
φ (K)| = [U :

−1
φ (K)].

Theorem C.1 implies [φ(U) : φ(U) ∩K] � Hf (φ). We now prove Hf (φ) � [φ(U) : φ(U) ∩K].
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It is enough to obtain a lower bound after replacing U by the smaller group U ′ ≤ U as in
Lemma 6.2: without loss of generality we may assume U = U ′. We thus assume that U =

∏
p Up

as in (43).
The left-hand side is the product of Kp = GL(N,Zp), hence we have

[φ(U) : φ(U) ∩K] =
∏
p

[φ(Up) : φ(Up) ∩Kp].

We apply Definition 6.1 for KM = M(Ẑ) = M(Af ) ∩GL(d, Ẑ): the upper bound C =
supp[M(Zp) : Up] is finite. Using (B.6) we have

[φ(M(Up)) : φ(M(Up)) ∩GL(N,Zp)] ≥ Hp(dφ)
c · C . (48)

As in the proof of (B.1) of Theorem B.1, we can deduce

[φ(U) : φ(U) ∩GL(N, Ẑ)] ≥ 1
(c · C)ω(Hf (dφ))

·Hf (dφ). (49)

Arguing as in the proof of (B.2) and (B.3) of Corollary B.2, we obtain

HW,f (φ) ≈ Hf (dφ) � [φ(U) : φ(U) ∩GL(N, Ẑ)]. (50)

�

6.3 Functoriality properties of the MT hypothesis
The following uses general properties of adelic topologies on algebraic groups. A good reference
is [PR94].

Lemma 6.5. Let φ : M → G be a morphism of connected linear algebraic groups over Q, and let
U ≤M(Af ) be a compact subgroup.

(i) If U is MT in M , then φ(U) is MT in φ(M).
(ii) If φ is an isogeny onto its image (i.e. ker(φ) is finite), then U is MT in M if φ(U) is MT in

φ(M).
(iii) We assume M is reductive. Let adM : M →Mad = M/ZM (M) be the adjoint map, and

abM : M →Mab = M/[M,M ] be the abelianisation map. Then U is MT in M if and only
if adM (U) is MT in Mad and abM (U) is MT in Mab.

The proof of Lemma 6.5 will rely on the following.

Theorem 6.6. Let φ : H → G be an epimorphism of Q-algebraic groups and C be the number
of components of ker(φ) for the Zariski topology.

(i) Let K ≤ H(Af ) and K ′ ≤ G(Af ) be compact open subgroups of the form
∏

pKp and
∏

pK
′
p.

Then
∀ p� 0, φ(Kp) ≤ K ′

p and [K ′
p : φ(Kp)] ≤ C.

(ii) If C = 1, then the map p : H(Af )→ G(Af ) is open: for any open subgroup K ≤ H(Af ), the
image φ(K) is open in G(Af ).

The second assertion, which is [PR94, p. 296, § 6.2, Proposition 6.5], is a corollary of the first
assertion. The first assertion follows from [PR94, p. 296, § 6.2, Proposition 6.4] and [PR94, p. 296,
§ 6.2, Proposition 6.5] (using their exact sequence (6.9) under conditions of their Lemma 6.6).

Let us prove Lemma 6.5(i).
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Proof. We choose a maximal compact subgroup KM ≤M(Af ), and a maximal compact subgroup
K ′ ≤ φ(M)(Af ) containing φ(KM ). By maximality, they have a product form KM =

∏
pKp and

K ′ =
∏

pK
′
p. According to Definition 6.1, there exists c ∈ R>0 such that for all primes p, we have

c ≥ [Kp : Up ∩Kp]. Applying φ we deduce

c ≥ [φ(Kp) : φ(Up ∩Kp)] ≥ [φ(Kp) : φ(Up) ∩ φ(Kp)].

Let C ∈ R>0 be given by Theorem 6.6. Using natural inclusions φ(Up) ⊆ φ(U)p and φ(Kp) ⊆ K ′
p,

we have

[K ′
p : φ(U)p ∩K ′

p] ≤ [K ′
p : φ(Up) ∩ φ(Kp)]

= [K ′
p : φ(Kp)] · [φ(Kp) : φ(Up) ∩ φ(Kp)] ≤ C · [φ(Kp) : φ(Up) ∩ φ(Kp)]. (51)

Thus, for every prime p, we have [K ′
p : φ(U)p ∩K ′

p] ≤ c · C. �
We now prove Lemma 6.5(ii).

Proof. We write KM =
∏
Kp and K ′ =

∏
K ′

p as before.
We choose a set of generators φ(u1), . . . , φ(uk) for φ(U)p and let U ′ ≤ U be the compact

subgroup topologically generated by ui. Let us prove that k can be chosen independently of p. �
Proof. For a fixed p we use assertion (i) of Lemma 6.8 with V = φ(U)p. For large p, the group
V ′ := exp(pφ(mZp)) and the reduction map M(Zp)→M(Fp) are well defined and, by asser-
tion (iii) of Lemma 6.8, we have V ′ ≤ V ≤M(Zp). Applying the remark from the proof of
Proposition 6.7 to the exact sequence 1→ V ′ → V →M(Fp), it follows from Proposition 6.7
for the image of V and assertion (ii) of Lemma 6.8 for V ′. �

Let F be the kernel of φ. This is a finite algebraic group by hypothesis. We define U ′
p =

U ′ ∩M(Qp). Then U ′
p is also the kernel of the map

U ′ ↪→
−1
φ

(
φ(M(Af ))

)→−1
φ

(
φ(M(Qp))

)
→

−1
φ

(
φ(M(Qp))

)
/M(Qp)

∼←− F (Af )/(F ∩M)(Qp). (52)

The last group is a commutative group isomorphic to a subgroup of (Z/(C))∞ where C = |F (Q)|.
Because U ′ is generated by k elements, the size of the image of U ′ is bounded by Ck.

We deduce

[φ(U)p : φ(Up)] ≤ [φ(U ′) : φ(Up)] ≤ [φ(U ′) : φ(U ′
p)] ≤ [U ′ : U ′

p] ≤ Ck. (53)

�
Proposition 6.7. For all N ∈ Z≥0 there exists k = k(N) such that for every prime p and every
subgroup U ≤ GL(N,Fp), there exist u1, . . . , uk in U which generate U .

Proof. We fix N . There exists p(N) ∈ Z≥0 such that p ≥ p(N), so that Nori applies [Nor87].
For p ≤ p(N) we have #U ≤ #GL(N,Fp) ≤ p(N)N2 and we take k(N) = p(N)N2 .
We assume that p ≥ p(N) and apply Nori theory [Nor87].
According to Jordan theorem [Nor87, Theorem C] there exist normal subgroups U+ ≤ U ′ ≤ U

with U+ generated by the unipotent elements of U , and U ′/U+ abelian of order prime to p, and
[U : U ′] ≤ d(N), where d(N) is as in [Nor87, Theorem C]. According to [Nor87], there exists
Ũ ≤ GL(N)Fp such that Ũ(Fp)+ = U+. Define U ′′ = Ũ(Fp) ∩ U . Moreover, one knows15 that
there exists an injective morphism U ′/U ′′ ↪→ GL(N ′,Fp), where N ′ is bounded in terms of N .

15 See [Ser98, no. 134, p. 25 and no. 137, p. 38–39, bottom of p. 44].
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We will use the following remark. For every exact sequence 1→ K → G→ Q→ 1, if K and
Q are generated by kN and kQ elements, then G is generated by kK + kQ elements. Thus, in
order to bound the size of a generating subset of G, it suffices to do it for K and for Q.

Using the remark, it will be enough to prove that U/U ′, U ′/U ′′, U ′′/U+ and U+ can be
generated by k1(N), k2(N), k3(N), k4(N) elements. Then the proposition will be satisfied with
k(N) = max{k1(N) + k2(N) + k3(N) + k4(N); p(N)N2}.

As #U/U ′ ≤ d(N), we can take k1(N) = d(N).
As Ũ is generated by unipotent subgroups, we can write Ũ = S̃ · Ñ where S̃ is

semisimple and Ñ is the unipotent radical. According to [Nor87, Remark 3.6, 3.6(v)],
we have S̃(Fp)/S̃(Fp)+ ≤ 2N . We deduce that #U ′′/U+ ≤ #Ũ(Fp)/Ũ(Fp)+ = #S̃(Fp)/S̃(Fp)+

≤ 2N .
We can thus take k3(N) = 2N .
The factor U ′/U ′′ is isomorphic to an abelian subgroup of GL(N ′,Fp) of order prime to p. It

is thus diagonalisable over some extension Fq. Because Fq
× is cyclic, every subgroup of (Fq

×)N ′

is generated by at most N ′ elements.
We can thus take k2(N) = N ′.
Let Ũ ≤ GL(N)Fp be the algebraic group associated to U and let ũ ≤ gl(N,Fp) be its Lie alge-

bra. By [Nor87], ũ ≤ gl(N,Fp) is linearly generated by nilpotents. Let X1, . . . , Xd, with d ≤ N2 be
a linear basis of nilpotent elements. Denote by U ′ = 〈exp(X1), . . . , exp(Xd)〉 the group generated
by their exponentials, and consider the associated ũ′ ≤ ũ and Ũ ′ ≤ Ũ . We have X1, . . . , Xd ∈ ũ′.
Thus, ũ′ = ũ and Ũ ′ = Ũ . From [Nor87, Theorem B], we get U = U+ = Ũ(Fp)+ = Ũ ′(Fp)+ =
U ′+ = U ′. Thus, U is generated by at most N2 elements exp(X1), . . . , exp(Xd).

We can thus take k4(N) = N2. �
We used the following.

Lemma 6.8. Let M ≤ GL(N) be an algebraic subgroup defined over Qp and let m ≤ gl(N,Qp)
be its Lie algebra.

(i) Let V ≤ GL(N,Zp) a compact subgroup. Then V is topologically finitely generated.
(ii) Then V ′ := exp(m ∩ 2pgl(N,Zp)) is topologically generated by at most N2 elements if p is

large enough.
(iii) Let M(Zp) := M(Qp) ∩GL(N,Zp) and V ≤M(Zp) an open subgroup such that C :=

[M(Zp) : V ] ∈ Z≥1. Then for p > C, we have

V ′ ≤ V.
Proof. The first assertion is [Ser64, Proposition 2].

Let G = exp(2pgl(N,Zp)) = 1 + 2pgl(N,Zp) and H = V ′ ≤ G. According to [DSMS99,
Theorem 5.2] the pro-p group is powerful and d(G) = N2, where d(G) is the minimal cardinality
of a set of generators for G as in [DSMS99, p. 41]. We can, thus, apply [DSMS99, Theorem 2.9].
This proves the second assertion.

As G is a pro-p group, by [PR94, Lemma 4.8, p. 138], V ′ is a pro-p group. We also have

[V ′ : V ′ ∩ V ] ≤ [M(Zp) : V ] = C.

Assume p > C and assume, by contradiction, that there exists w ∈ V ′ � V . We denote by wZ the
subgroup generated by w. Then c := [wZ : wZ ∩ V ] �= 1 and c ≤ C. But c is a power of p because
V ′ is a pro-p group: thus, c ≥ p. We deduce that C ≥ c ≥ p. This contradicts our assumptions. �

We prove assertion (iii) of Lemma 6.5. We will make use of Goursat’s lemma.
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Proof. As M is reductive, the map (adM , abM ) : M →M ′ := Mad ×Mab is an isogeny. From
assertion (ii) of Lemma 6.5 it follows that it is enough to prove that the image V of U in M ′(Af )
is MT in M ′. We may thus assume M = Mad ×Mab.

Using Lemma 6.2 we may assume U =
∏

p Up. Let

KM =
∏

KM,p =
∏
p

KMad,p ×KMab,p ≤M(Af )

be a maximal compact subgroup containing U .
By assumption, there is an upper bound C ∈ Z≥1 for [KMab,p : abM (Up)] and [KMad,p :

adM (Up)], independent of p.
Let H1 = adM (Up) and H2 = abM (Up) and Γ = (adM , abM )(Up) ≤ H1 ×H2. Let N1 = Γ ∩

H1 and N2 = Γ ∩H2. By Goursat’s lemma, N1 and N2 are normal subgroups in H1 and H2 and
there is an isomorphism (whose graph is Γ/(N1 ×N2))

H1/N1
∼−→ H2/N2. (54)

Because H2 is abelian, N1 contains the derived subgroup [H1, H1].
By the first part of Lemma 6.9, [H1 : N1] is finite for every prime p, and by the second part

of Lemma 6.9, [H1 : N1] is bounded by C(Mad) for almost every prime p.
As a result there exists C ′ ∈ Z≥1 such that [H1 : N1] ≤ C ′ for every prime p. Using (54), we

also have [H2 : N2] ≤ C ′ for every prime p.
Recall that N1 ×N2 ≤ Γ. It follows

[H1 ×H2 : Γ] ≤ [H1 : N1] · [H2 : N2] = C ′2.

By the definition of C,
[KM,p : H1 ×H2] ≤ C2.

We deduce

[KM,p : (adM , abM )(Up)] = [Kp : H1 ×H2] · [H1 ×H2 : Γ] ≤ C2C ′2.

The bound is independent of p, which concludes. �

Lemma 6.9. Let G be a semisimple algebraic group over Q, and for every prime p, let Up,Kp ≤
G(Qp) be compact open subgroups such that K =

∏
pKp ≤ G(Af ) is open. Let [Up, Up] be the

subgroup generated by commutators.

(i) For every prime p, the quotient Up/[Up, Up] is finite.
(ii) There exists C(G) ∈ Z≥1 such that, for almost all p, if [Kp : Up ∩Kp] < p then Up/[Up, Up] <

C(G).

Proof. The first assertion follows from the fact that [Up, Up] is open, because G is semisimple.
We prove the second assertion. We may replace Up by Kp ∩ Up and assume Up = Kp ∩ Up ≤

Kp. Thus, [Kp : Kp ∩ Up] = [Kp : Up] < p.
Let us identify G with its image by a faithful linear representation G→ GL(N). For p large

enough, we have Kp = G(Zp) := G(Qp) ∩GL(N,Zp).
Let G(Zp)+ and G(Fp)+ be as in Lemma 6.10 below.
Then Up ∩G(Zp)+ is an open subgroup of G(Zp)+ and,

[G(Zp)+ : Up ∩G(Zp)+] ≤ [G(Zp) : Up] < p.

(Recall the assumption [Kp : Up] < p.)
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As G(Zp)+ is generated by pro-p-groups, we have, for every subgroup L ≤ G(Zp)+,

[G(Zp)+ : L] > 1⇒ [G(Zp)+ : L] ≥ p.
Therefore, with L = Up,

[G(Zp)+ : Up ∩G(Zp)+] = 1.

At the level of derived subgroups, we have

[G(Zp)+, G(Zp)+] ⊆ [Up, Up].

We deduce

[G(Zp) : [Up, Up]] ≤ [G(Zp) : G(Zp)+] · [G(Zp)+ : [G(Zp)+, G(Zp)+]].

We note that G(Zp)+ ≤ G(Zp) is an open subgroup of index prime to p. It follows that the image
of G(Zp)+ in G(Fp) contains G(Fp)+. Thus,

[G(Zp) : G(Zp)+] ≤ [G(Fp) : G(Fp)+].

We have, by [Nor87, p. 270],
[G(Fp) : G(Fp)+] ≤ 2N . (55)

For p large enough we have:

– G(Fp) = G̃(Fp) for a connected semisimple Fp-algebraic subgroup G̃ ≤ GL(N)Fp ;
– [G̃(Fp)+, G̃(Fp)+] = [G̃, G̃](Fp)+ = G̃(Fp)+, using Lemma 6.11.

Thus, [G(Zp)+, G(Zp)+] maps surjectively onto

[G(Fp)+, G(Fp)+] = G(Fp)+.

We apply Lemma 6.10 to H = [G(Zp)+, G(Zp)+]. We deduce

[G(Zp)+, G(Zp)+] = G(Zp)+.

This implies
[G(Zp)+ : [G(Zp)+, G(Zp)+]] = 1. (56)

The second assertion of Lemma 6.9 follows from (55) and (56). �
Lemma 6.10 [CK16, Fact 2.4 and its proof]. Let G ≤ GL(N)Q be a connected semisimple alge-
braic subgroup. For every prime p, define G(Zp) := G(Qp) ∩GL(N,Zp) and denote by G(Fp) the
image of G(Zp) in GL(N,Fp). We denote by G(Fp)+ ≤ G(Fp) and G(Zp)+ ≤ G(Zp) the subgroups
generated by p-Sylow subgroups, respectively, pro-p-Sylow.

Then, for p large enough: if H ≤ G(Zp)+ maps surjectively onto G(Fp)+, then H = G(Zp).

We used the following in the proof of Lemma 6.9.

Lemma 6.11. For every n ∈ Z≥0, there exists c(n) such that the following holds. Let p ≥ c(n)
be a prime, and let G ≤ GL(n) be a semisimple algebraic group over Fp.

Then [G(Fp)+, G(Fp)+] = G(Fp)+.

Proof. Let π : Gsc → G be the simply connected cover. According to [MT11, 24.15], we have
Gsc(Fp)+ = Gsc(Fp).

It follows that π(Gsc(Fp)) ≤ G(Fp)+. Since G(Fp)+ is generated by elements of order a power
of p, we have the following alternative:
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– either π(Gsc(Fp)) = G(Fp)+;
– or #G(Fp)+/π(Gsc(Fp)) ≥ p.

Let Z = ker(π : Gsc(Fp)→ G(Fp)).
By [MT11, 24.21], we have #G(Fp)+/π(Gsc(Fp)) ≤ #Z.
On the other hand, there exists an integer c(n) (depending only on n) such that we have

#Z ≤ c(n). Thus, for p > c(n), the second case of the alternative does not happen.
By [MT11, 24.17], for p ≥ 4, the group Gsc(Fp) is perfect. It implies that its quotient

π(Gsc(Fp)) = G(Fp)+ is perfect, namely, that [G(Fp)+, G(Fp)+] = G(Fp)+. �

6.4 MT hypothesis for Images of Galois representations
We use the notation of Definition 6.3. We assume furthermore that E is of finite type over Q.
In this case, we have the following.

Lemma 6.12. If x0 is a special point (i.e. M = Mab), then x0 satisfies the MT hypothesis.

The Galois representation Gal(E/E)→Mab(Af ) is prescribed by Deligne–Shimura reci-
procity law, which is part of the definition of a canonical model [Del79, 2.2.5]. In this case, we
know that M = Mab is the Zariski closure of the image of x0. It follows that the morphism [Del79,
2.2.2.1] is an epimorphism, and we can apply Theorem 6.6.16

Using Lemmas 6.12 and of 6.5(iii) we have the following.

Lemma 6.13. The point x0 satisfies the MT hypothesis if and only if adM (x0) satisfies the MT
hypothesis.

The following is not needed but can help relate our MT hypothesis to other notions found in
literature.

Theorem 6.14. Assume M is a semisimple and simply connected algebraic group over Q. Then
a compact subgroup U ≤M(Af ) is MT in M if and only if it is an open subgroup.

Theorem 6.14 is a consequence of the following.

Lemma 6.15. Let M ≤ GL(n)Q be a simply connected semisimple Q-algebraic subgroup, and,
for every prime p, define M(Zp) := M(Qp) ∩GL(n,Zp).

There exists C such that for every prime p ≥ C, every U ≤M(Zp) satisfies

U = M(Zp) or [M(Zp) : U ] ≥ p.
Proof. This is a consequence of the following claim: for p� 0, the group M(Zp) is generated by
topologically p-nilpotent elements.

Let us prove the claim. For every prime p, every element in the kernel of the morphisms
redp : M(Zp)→ GL(n,Fp) belongs to 1 + pgl(n,Zp) and is topologically p-nilpotent. It will be
enough to prove that redp(M(Zp)) is generated by elements of order power of p. For p� 0, the
group M(Zp) is hyperspecial and the model of M induced by GL(n)Z is smooth over Zp with
semisimple fibre MFp . This implies that the map M(Zp)→MFp(Fp) is surjective. For p� 0 the
algebraic group MFp is semisimple and simply connected.17 By [MT11, 24.15] we have M(Fp) =
M(Fp)+. This proves the claim. �

16 If the kernel of μh : GL(1)E → TE is connected, then the Galois image is actually open for the topology induced
by the adelic topology on T (Af ). This is also the H-maximality condition. See [CM20].
17 This is [MVW84, § 6.5] and here is an argument. Passing to a finite extension of Q we may assume that M
is simply connected and hyperspecial at p. Applying [Tit79, § 3.5.4], we deduce that the special fibre is simply
connected. The case C − BCn of [Tit79, p. 61] is excluded in the hyperspecial case.
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This relies on strong approximation, Hasse principle, and Kneser–Tits properties for M .
See [Del71] for related discussions.

6.4.1 For moduli spaces of abelian varieties or, more generally, for Shimura varieties of
abelian type, a Galois representation associated to a point x0 ∈ X can be deduced from the
Galois representation on the Tate module of an abelian variety.

We have the following.

Theorem 6.16 [CM20, Theorem A(i)] and [HR16, Theorem 10.1]. Let S be a Shimura variety
of Hodge type, let s ∈ S be a point.

If the abelian variety A associated to s satisfies the classical Mumford–Tate conjecture at
some prime �, then s satisfies the weakly adelic Mumford–Tate hypothesis.

Using Lemma 6.13 we can deduce the following.

Theorem 6.17. Let S be a Shimura variety of abelian type, let s ∈ S be a point.
If s satisfies the Mumford–Tate conjecture at some prime � in the sense of [UY13], then s

satisfies the weakly adelic Mumford–Tate hypothesis.

6.4.2 As observed in [Bal20], the combination of a theorem of Deligne and André and with
a theorem of Weisfeiler [MVW84] and Nori [Nor87] produces, in any Shimura variety, many
examples of (non-algebraic) points for which the MT hypothesis is satisfied. With our terminology
it is stated as follows.

Theorem 6.18 [Bal20, Theorem 1.2]. Let M be the Mumford–Tate group of a point x0 ∈ X
for a Shimura datum (G,X). We decompose the adjoint datum (Mad, XMad) of (M,XM ) :=
(M,M(R) · x0) as a product

(p1, . . . , pf ) : (Mad, XMad) 
 (M1, X1)× · · · × (Mf , Xf )

with respect to the Q-simple factors Mi of Mad.
Assume that for some compact open subgroups Ki ≤Mi(Af )

∀ i ∈ {1; . . . ; f}, [pi ◦ adM (x0)] ∈ ShKi(Mi, Xi)(C) � ShKi(Mi, Xi)(Q).

Then x0 satisfies the MT hypothesis.

7. Proof of the main result

In this section we prove the Theorem 1.2, following the strategy outlined in § 1.4. We then give
in § 7.3 a variant of the Pila–Wilkie theorem.

7.1 Reduction steps
We put ourselves in the situation of Theorem 1.2 and Conjecture 1.1.

Let Z be an irreducible component of ΣZar. The aim is to prove that Z is weakly special. We
may replace Σ by H(x0) ∩ Z.

7.1.1 Reduction to the Hodge generic case. We will reduce the theorem to the case where Z
is Hodge generic in ShK(G,X). For convenience, we will assume that s0 = [x0, 1] ∈ Z. We choose
a Hodge generic point z in Z. One knows that one can choose a lift z̃ of z in X such that the
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Mumford–Tate group G′ of z̃ contains M . We write X ′ = G′(R) · z̃. We have a Shimura morphism

Ψ : ShK∩G′(Af )(G
′, X ′)→ ShK(G,X).

(The smallest special subvariety of ShK(G,X) containing Z is the image of one component of
ShK∩G′(Af )(G′, X ′).) Let Z ′ be the inverse image of Z by Ψ. It is known that Z is weakly special
if and only if any component of Z ′ is weakly special.

In the notation of Proposition 2.6, we have

Σ′ :=
−1
Ψ (Σ) = H′([x0, 1]) ∩ Z ′.

Because ShK∩G′(Af )(G′, X ′)→ Ψ(ShK∩G′(Af )(G′, X ′)) is flat, and because Z is in the image of
Ψ, we deduce that Σ′ is dense in Z ′ and, hence, dense in every component of Z ′.

Thus, in proving the conclusion of the theorem we may replace Z by a component of Z ′, and
(G,X) by (G′, X ′), and K by K ∩G′(Af ).

On the other hand, the Mumford–Tate hypothesis depends only on M , and thus is insensitive
to such substitutions.

In other words, we can, and will, assume that Z is Hodge generic in ShK(G,X).

7.1.2 Reduction to the adjoint datum. We will reduce the theorem to the case where G = Gad

is of adjoint type. Here we use geometric Hecke orbits.
Using Theorem 2.4, we write our generalised Hecke orbit

H([x0, 1]) = Hg([x0, 1]) ∪ · · · ∪ Hg([xk, 1])

as a finite union of geometric Hecke orbits. We define accordingly

Σi = Z ∩Hg([xi, 1]).

As Z is irreducible there at least one i ∈ {0; . . . ; k} such that Σi is Zariski dense in Z.
Because the Galois representations ρx1 , . . . , ρxk

of x1, . . . , xk can be deduced from ρx0 using
§ 3, the Mumford–Tate hypothesis will still be valid even if we replace x0 by xi. We assume, for
simplicity, that xi = x0.

We choose an open compact subgroup K ′ ≤ Gad(Af ) so that we can consider the Shimura
morphism

Ψ : ShK(G,X)→ ShK′(Gad, Xad).

Let Z ′ be the image of Z. One knows that Z is weakly special in ShK(G,X) if and only if Z ′ is
weakly special in ShK′(Gad, Xad).

Then Ψ(Σ0) is dense in Z ′. Denote xad
0 the image of x0 in Xad, and define

Σ′ := Hg([xad
0 , 1]).

Using § 2.2.3, we get
Ψ(Σ0) ⊂ Σ′ ⊂ Z ′

and, thus, Σ′ is Zariski dense in Z ′.
Let M ′ be the image of M by adG : G→ Gad. Then Mad 
M ′ad because ker(adG) is com-

mutative and central in G. In view of § 6, the Mumford–Tate hypothesis will still hold for
xad

0 ∈ Xad.
Thus, we can, and will, assume G = Gad.

7.1.3 Induction argument for factorisable subvarieties. The following reduction will be useful
at the very end of the whole proof.
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We recall that G is a direct product G1 × · · · ×Gf of its Q-simple subgroups.
It can be easily proved that in the Theorem 1.2 we can replace K by any other compact open

subgroup. After possibly replacing K by the open subgroup
∏f

i=1Ki :=
∏f

i=1K ∩Gi(Af ), there
are factorisations X =

∏f
i=1Xi and

ShK(G,X) =
f∏

i=1

ShKi(Gi, Xi). (57)

The factorisation (57) is defined over the reflex field E(G,X), hence over E. Consider a nontrivial
partition {1; . . . ; f} = I � J and the corresponding nontrivial factorisation of Shimura data

(G,X)
(pI ,pJ )−−−−→ (GI , XI)× (GJ , XJ)

with

(GI , XI) =
∏
i∈I

(Gi, Xi) and (GJ , XJ) =
∏
i∈I

(Gj , Xj).

By functoriality (§ 3.2) for φ = pI ◦ φ0 (respectively, φ = pJ ◦ φ0), we will have

ρpI(x0) = pI ◦ ρx0 and ρpJ (x0) = pJ ◦ ρx0 .

As explained in § 6, the Mumford–Tate hypothesis will hold for pI(x0) and for pJ(x0).
Suppose that Z factors as a Cartesian product

ZI × ZJ ⊆ ShKI
(GI , XI)× ShKJ

(GJ , XJ) (58)

in the corresponding factorisation of Shimura varieties. From § 2.2.2, we have

Hg(x0) = Hg(pI(x0))×Hg(pJ(x0))

and

Hg([x0, 1]) = Hg([pI(x0, 1)])×Hg([pJ(x0), 1]).

Recall that the partition {1; . . . ; f} = I � J is not trivial. Arguing by induction on f , we can
assume that Theorem 1.2 is proven for ZI and ZJ . Then ZI × ZJ is also a weakly special
subvariety and we are done.

Henceforth, we assume that for every nontrivial partition {1; . . . ; f} = I � J , the variety Z
is not a product of the form (58).

7.2 Central arguments
Let us recollect some of the notation and notions we will be using.

We have an irreducible subvariety Z of ShK(G,X) containing a Zariski-dense subset Σ con-
tained in the generalised Hecke orbit H([x0, 1]) of the point [x0, 1]. Let E be a field of finite type
over Q such that Z and [x0, 1] are defined over E, and passing to a finite extension we have a
Galois representation ρ : Gal(E/E)→M(Af ) ∩K as in Definition 3.1 and our main hypothesis
is that its image U := ρ(Gal(E/E)) satisfies Definition 6.3. Passing to a finite extension we also
assume that E is a field of definition for every geometric component of ShK(G,X).

We reduce Theorem 1.2 to the case where Σ is contained in a single geometric Hecke orbit.
According to Theorem 2.4 the generalised Hecke orbit is a finite union of geometric orbit, with
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φ0 : M → G the identity map,

H([x0, 1]) = Hg([x0, 1]) ∪Hg([φ1 ◦ x0, 1]) ∪ · · · ∪ Hg([φk ◦ x0, 1]). (59)

As Z is irreducible, at least one of the intersections Z ∩Hg([φi ◦ x0, 1]) is Zariski dense in Z.
From § 3.2, we obtain ρφi◦x0 = φi ◦ ρx0 and the MT hypothesis is still valid for φ(U) in φ(M) =
Mφi◦x0 . Without loss of generality, we may assume φi = φ0, that is φi ◦ x0 = x0.

We may also assume that [x0, 1] ∈ Z and, thus, that Z is contained in the image of X × {1}
in ShK(G,X).

7.2.1 Covering by Siegel sets. We choose a minimal Q-parabolic subgroup P of G and a
maximal compact subgroup K∞ of G(R)+, for instance Kx0 = ZG(R)(x0). We define

X+ = G(R)+ · x0 ⊂ X
and denote by

S+ ⊂ ShK(G,X)

the geometric component of ShK(G,X) which is the image of X+ × {1}.
See Definition 5.10 for the definition of a Siegel set associated to P and K∞. It is

known that there is a finite set {g1; . . . ; gc} ⊆ G(Q) and Siegel sets S1, . . . ,Sc associated to
g1Pg1

−1, . . . , gcPgc
−1 and K∞ such that S+ is the image of S := S1 ∪ · · · ∪Sc.

For each Si, it is assumed that Ω from Definition 5.10 is a bounded semialgebraic subset.
Let SW = S/ZG(R)(M) be the image of S in W+(R).
The maps

G(R)
g �→gZG(R)(M)−−−−−−−−−→ G(R)/ZG(R)(M)

gZG(R)(M) �→gK∞−−−−−−−−−−−→ X = G(R)/K∞

are real algebraic and, thus, semialgebraic. It follows that SW is semialgebraic, that its image
SX in X is semialgebraic and that the map

pW,X : SW → SX (60)

is semialgebraic.

7.2.2 o-minimality. We use the theory of o-minimal structures and recall that the map

πS,X : SX → S+

is definable in the o-minimal structure Ran,exp by [KUY16]. As (60) is semialgebraic, it is definable
in Ran,exp, and the following is definable in Ran,exp as well

πS,W := pW,X ◦ πS,X : SW → SX → S+.

The algebraic variety Z is definable in Ran,exp and its inverse image

Z̃W =
−1

πS,W (Z)

is definable in Ran,exp as well.
Because E is a field of definition for Z, for every σ ∈ Gal(E/E) and z ∈ Z(E) we have

σ(z) ∈ Z and, finally,
Gal(E/E) · z ⊂ Z.

Assume now that z also belongs to Hg(x0). For every

z′ ∈ Gal(E/E) · z
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we have z′ ∈ Z ⊂ S+ and we can find φz′ ∈W (Q) such that

z′ = [φz′ ◦ x0, 1].

Because SX maps onto S+ we may assume that φz′ ◦ x0 ∈ SX . Equivalently, we have

φz′ ∈ SW .

The set
Q(z) = W (Q)∩ −1

πS,W (Gal(E/E) · z)
maps onto Gal(E/E) · z and we deduce

|Q(z)| ≥ |Gal(E/E) · z|. (61)

7.2.3 Height bounds. We consider the affine embedding ι : W → Adim(M)·dim(G) of § 4.3. Let
HW and Hf be as in (18).

We can, of course, assume that Z is infinite, and because

Σ := Z ∩Hg(x0)

is Zariski dense, it is infinite as well, and we can choose an infinite sequence (zn)n∈Z≥ 1
of pairwise

distinct zn ∈ Σ. We also assume that this sequence is Zariski generic in Z.
By hypothesis, Definitions 6.1 and 6.3 apply, and thus we invoke Theorem 6.4 and, by

Proposition 3.6, use it for Galois orbits. We have

Hf (φ) � |Gal(E/E) · [φ ◦ x0, 1]| on W (Q).

Thanks to the height comparison Theorem 5.16, we have

HW (φ) � Hf (φ) on W (Q) ∩SW . (62)

It follows
HW (φ) � |Gal(E/E) · [φ ◦ x0, 1]| on W (Q) ∩SW .

More precisely, there are a, b ∈ R>0 such that

∀φ ∈W (Q) ∩SW , a+HW (φ)b ≤ |Gal(E/E) · [φ ◦ x0, 1]|.
Using (61) we deduce

a+HW (φzn)b ≤ |Q(zn)|. (63)

From Proposition 4.3 we have

∀ z′ ∈ Gal(E/E) · zn, Hf (φz′) = Hf (φzn)

and because Hf (φ) only depends on [φ ◦ x0, 1] we have

∀φ ∈ Q(zn), Hf (φ) = Hf (φzn).

We make (62) precise by choosing a′, b′ such that

∀φ ∈W (Q) ∩SW , HW (φ) ≤ a′ +Hf (φ)b′ . (64)

For φ ∈ Q(zn) ⊂W (Q) ∩SW we get

HW (φ) ≤ a′ +Hf (φ)b′ = a′ +Hf (φzn)b′ .

Writing k(n) = Hf (φzn), we deduce from the above that the subset Q(zn) ⊆ Z̃ ∩W (Q) contains
at least a+ k(n)b points of HW -height at most a′ + k(n)b′ .

2568

https://doi.org/10.1112/S0010437X2400722X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400722X


Heights and generalised the André–Pink–Zannier conjecture

Because the zn are distinct, so are the inverse images φzn , and by the Northcott theorem we
deduce that HW (φzn)→ +∞ and, thus, k(n)→ +∞.

We are ready to use the Pila–Wilkie theorem.

7.2.4 Pila–Wilkie theorem. We use the form Theorem 7.1 of the Pila–Wilkie theorem.
We denote KR∞ the real algebraic group corresponding to K∞, and XR the algebraic variety
GR/K

R∞ over R (we have X ⊂ XR(R)). We apply Theorem 7.1 to the morphism
p : W = GR/ZGR

(M)→ XR = GR/K
R∞ and the definable subset

Z̃X :=
−1
πS,X (Z) ⊂ X ⊂ XR(R).

We deduce for every n that

|Q(zn) ∩ (Z̃X � Z̃alg
X )| = (a′ +Hf (φzn)b′)o(1) = o(|Q(zn)|).

Thus, for n� 0, we have
Q(zn) ∩ Z̃alg

X �= ∅.
In other terms, for almost every n, there exist φ ∈ Q(zn), and a non-zero-dimensional semialge-
braic subset An ⊂ Z̃X , such that φ ◦ x0 ∈ An.

We will now use the hyperbolic Ax–Lindemann–Weierstrass theorem.

7.2.5 Functional transcendence. According to Ax–Lindemann–Weierstrass theorem
(see [KUY16]), that for n� 0, there exists a weakly special subvariety S′

n of S+ such that

z′n ∈ πS,X(An) ⊂ S′
n ⊂ Z.

One can check that a weakly special subvariety containing a E-valued point is defined over E.
It follows that this S′

n is defined over E, and applying σ ∈ Gal(E/E) such that σ(z′n) = zn, the
conjugated subvariety Sn = σ(S′

n) will be: weakly special, contained in Z and containing zn.
Because the sequence zn is generic in Z, the family (Sn)n≥0 is Zariski dense in Z.
Because An has non-zero semialgebraic dimension, and πS,X has finite fibers, the image

πS,X(An) has non-zero semialgebraic dimension, and S′
n has non-zero dimension as a variety,

and Sn also.
We are ready to use the so-called geometric part of André–Oort conjecture.

7.2.6 Geometric André–Oort. We reuse the notation of § 7.1.3
From the geometric part of the André–Oort conjecture from [Ull14, RU24], there exists a

partition {1; . . . ; c} = I � J , with I �= ∅, but possibly J = ∅, such that we have a factorisation

Z = S1 × ZJ ⊂ ShKI
(GI , XI)× ShKJ

(GJ , XJ),

where S1 is a geometric component of ShKI
(GI , XI), and ZJ is a subvariety of ShKJ

(GJ , XJ).
Because we assumed that Z has no nontrivial factorisation, the partition {1; . . . ; c} = I � J

is trivial. We must have J = ∅, I = {1; . . . ; c}. Equivalently, Z = S1. In other words, Z is special
and, in particular, is weakly special.

This finishes the proof of Theorem 1.2.

7.3 Refined Pila–Wilkie theorem
The following is a variant of Pila–Wilkie Theorem, which replaces the ‘block version’ of the
Pila–Wilkie theorem used by Orr. We believe this variant is easier to understand and use, and
will be of independent interest.
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We deduce the following from [Pil09, Theorem 1.7].

Theorem 7.1. Let W be an affine algebraic variety defined over Q, let X be an affine algebraic
variety over R and let p : WR → X be a morphism of algebraic varieties defined over R.

Let Z ⊂ X(R) be a definable subset, and denote Zalg be the union of the semialgebraic subsets
of X(R) which are contained in Z and of non-zero dimension.

We consider a height function HW on W (Q) associated to some affine embedding. Then

|(Z � Zalg) ∩ p({w ∈W (Q) : HW (w) ≤ T})| = T o(1).

Explicitly, for every ε ∈ R>0, there exists C(ε, Z) ∈ R>0, such that

∀T � 0, |(Z � Zalg) ∩ p({w ∈W (Q) : HW (w) ≤ T})| ≤ C(ε, Z) · T ε.

Comment. The theorem still holds with a semialgebraic map p : W (R)→ X(R) instead of
the real algebraic p : WR → X. This slight generalisation will not be needed.

The height function we use here is denoted by Hproj by Pila, and is not the height function
he uses in his statements. As mentioned in the introduction of [Pil09], it is possible to invoke his
statements with Hproj instead.

Proof. We choose affine embeddings

W ⊆ An and X ⊆ Am

defined over Q and R. We can then write the morphism

p(w1, . . . , wn) = (P1(w1, . . . , wn), . . . , Pm(w1, . . . , wn))

with polynomials P1, . . . , Pm ∈ R[T1, . . . , Tn]. Let E be the finite-dimensional Q-vector subspace
of R generated by the coefficients of these polynomials.

We have

p(W (Q)) ⊆ Em.

We choose an isomorphism ι : E → Qd of Q vector spaces. For every Pi, the map

ι ◦ Pi : W (Q)→ E → Qd

is polynomial with coefficients in Q. This can be checked for every monomial of Pi. The height
on Em considered in [Pil09, Theorem 1.7] can be written, with our notation,

HE = H ◦ (ι, . . . , ι)

where H is the usual height on Qd·m. It follows from the general ‘functoriality’ properties of
heights of § 4.2 that

HE ◦ p � HW on W (Q).

Explicitly, for some a, b ∈ R>0 we have

p({W ∈W (Q) : HW (w) ≤ T}) ⊆ {e ∈ Em : HE(e) ≤ a+ T b}.
We apply [Pil09, Theorem 1.7] and obtain

|(Z � Zalg) ∩ p({w ∈W (Q) : HW (w) ≤ T})|
≤ |(Z � Zalg) ∩ {e ∈ Em : HE(e) ≤ a+ T b}| = T o(1). �
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Appendix A. Exponentials of p-adic matrices

In this appendix we fix a prime p, an integer d ∈ Z≥1, and denote by Md(Qp) the space of square
matrices of size d with entries in Qp. For Z ∈Md(Qp) we denote by χZ(T ) = det(TZ − 1) ∈ Qp[T ]
its characteristic polynomial. Let | | be the normalised absolute value on Qp, extended to Qp: we
have |p| = 1/p and |1/d| ≤ d for d ∈ Z≥1. We denote the norm of Z, and the local height of Z by

‖Z‖ = max
1≤i,j≤d

|Zi,j | and Hp(Z) = max{1; ‖Z‖} = Hp(1 + Z).

We define, whenever the corresponding series converges in Md(Qp),

exp(Z) =
∑

n∈Z≥0

1
n!
· Zn and log(1 + Z) = −

∑
n∈Z≥1

(−1)n

n
· Zn.

It is well known (see [Rob00, Ch. 5. § 4.1]) that, on Cp, the series exp(T ) has radius of convergence
|p|1/(p−1) and the series log(1 + T ) has radius of convergence 1. It is also true that exp(Z),
respectively, log(1 + Z) converges if and only if the eigenvalues of Z are in the open disc of
convergence of exp(T ) respectively, log(1 + T ). (For the archimedean case, see [Hig08, § 1]. The
relevant arguments carry over to ultrametric fields.)

Proposition A.1. Let Y ∈Md(Qp) be such that log(1 + Y ) converges. Then

χY (T ) ∈ T d + pZp[T ]. (A.1)

Let Y ∈Md(Qp) be such that
χY (T ) ∈ T d + pZp[T ]. (A.2)

Then log(1 + Y ) converges and we have:

– in general,
‖log(1 + Y )‖ ≤ d ·Hp(Y )d−1; (A.3)

– and for p > d, the sharper estimate

‖log(1 + Y )‖ ≤ Hp(Y )d−1. (A.4)

We deal with the first conclusion (A.1).

Proof. Let λ1, . . . , λd be the eigenvalues of Y , with repetitions. As can be seen on a Jordan
form after passing to Cp, the series log(1 + Y ) converges if and only if every log(λ1), . . . , log(λd)
converges. As the radius of convergence of log(1 + T ) is 1, this means

∀ i ∈ {1; . . . ; d}, |λi| < 1. (A.5)

Let K = Qp(λ1, . . . , λd), let OK be its ring of integers, and mK be the maximal ideal of OK .
Then (A.5) means

{λ1; . . . ;λd} ⊆ mK .

We deduce that the non-leading coefficients of

χY (T ) =
d∏

i=1

(T − λi)

are in mK . We recall that Qp ∩mK = pZp and χY (T ) ∈ Qp[T ]. We conclude that

χY (T ) ∈ Qp[T ] ∩ (T d + mK ·OK [T ]) = T d + p · Zp[T ]. �
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We have proved (A.1) and before proving the rest of Proposition A.1, we prove an estimate
on ‖Y n‖ for n ∈ Z≥0.

Proof. We consider
A := Zp + Zp · Y + · · ·+ Zp · Y d−1.

By hypothesis, we have χY (T ) = c0 + · · ·+ cd−1T
d−1 + T d with c0, . . . , cd−1 ∈ pZp. Let us first

check that
Y A ⊆ A (A.6)

on a generating family: for 0 ≤ i < d− 1 we have Y · Y i ∈ A by construction; for i = d− 1 the
identity χY (Y ) = 0 can be rearranged into

Y d = −c0 + · · · − cd−1Y
d−1 ∈ pA. (A.7)

Repeated use of (A.6) implies that, for i ∈ Z≥0, we have Y iA ⊆ A. We deduce Y ipA ⊆ pA. But
Y d ∈ pA by (A.7), hence Y d · Y i = Y i · Y d ∈ pA. Applied to i = 0, . . . , d− 1 it implies Y dA ⊆ pA
and by induction (Y d)kA ⊆ pkA. We deduce again that Y i · (Y d)k ∈ pkA. Writing n = k · d+ i
with k = [n/d], we get the formula

Y n ∈ p[n/d]A

and the bound
‖Y n‖ ≤ |p|[n/d] · ‖A‖ where ‖A‖ := max

a∈A
‖a‖. (A.8)

Using the ultrametric inequality ‖X + Z‖ ≤ max{‖X‖; ‖Z‖} and submultiplicativity ‖X × Z‖ ≤
‖X‖ · ‖Z‖ of the norm, we get

‖A‖ ≤ max{‖Y 0‖; . . . ; ‖Y d−1‖} ≤ max{1; . . . ; ‖Y ‖d−1} = Hp(Y )d−1. (A.9)

�
We apply our estimate to the series log(1 + T ) and finish the proof of Proposition A.1.

Proof. For the series log(1 + Y ) the above (A.8) and (A.9) imply the bound∥∥∥∥(−1)n

n
· Y n

∥∥∥∥ ≤ ∣∣∣∣ 1n
∣∣∣∣ · |p|[n/d] ·Hp(|Y |)d−1.

We note that limn→∞|1/n| · |p|[n/d] = 0 which implies that log(1 + Y ) converges, and that

max
n∈Z≥1

∣∣∣∣ 1n
∣∣∣∣ · |p|[n/d] =

∣∣∣∣ 1
d− 1

∣∣∣∣ · |p|[(d−1)/d] =
∣∣∣∣ 1
d− 1

∣∣∣∣ .
By the ultrametric inequality and previous estimates,

log(1 + Y ) ≤ sup
n∈Z≥1

∥∥∥∥(−1)n

n
· Y n

∥∥∥∥ ≤ ∣∣∣∣ 1
d− 1

∣∣∣∣ ·Hp(Y )d−1. (A.10)

As we used the normalised p-adic norm, we have |1/(d− 1)| ≤ d− 1 ≤ d in general, and
|1/(d− 1)| = 1 if p ≥ d. This gives (A.3) and (A.4), respectively. �

The main statement of this appendix will require the following observation.

Lemma A.2. Let Z ∈Md(Qp) be such that exp(Z) converges and let us write exp(Z) = 1 + Y .
Then log(1 + Y ) converges and

log(1 + Y ) = Z.
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Proof. For d = 1, it is [Rob00, § 5, Proposition 3].
For d > 1, it is [Rob00, § 6.1.1] applied to (∂/∂Y )i log(1 + Y ) ◦ exp. �
The following statement is one of our main tools for proving lower bounds for Galois orbits.

Theorem A.3 (Lemma of the exponentials). Let X ∈Md(Qp) be such that exp(X) converges
and denote by exp(X)Z the subgroup generated by exp(X) in GLd(Qp).

Then:

– in general, we have
[exp(X)Z : exp(X)Z ∩GLd(Zp)] ≥ Hp(X)/d; (A.11)

– if p > d, we have more sharply

[exp(X)Z : exp(X)Z ∩GLd(Zp)] ≥ Hp(X). (A.12)

Proof. For every i ∈ Z, we know that if exp(X) converge, then exp(iX) converges as well, and
we have

exp(iX) = exp(X)i.

By Lemma A.2, with Yi = exp(i ·X)− 1, we have convergence and identity

log(1 + Yi) = i ·X.
Proposition A.1 gives

‖i ·X‖ = ‖log(1 + Yi)‖ ≤ d ·Hp(1 + Yi)d−1 (A.13)

and, if d ≤ p,
‖i ·X‖ = ‖log(1 + Yi)‖ ≤ Hp(1 + Yi)d−1. (A.14)

Assume that
i = [exp(X)Z : exp(X)Z ∩GLd(Zp)] < +∞.

Then Hp(1 + Yi) = Hp(exp(X)i) = 1, and (A.13), respectively, (A.14), specialises to

|i| · ‖X‖ ≤ d, respectively, |i| · ‖X‖ ≤ 1.

Recall that |i| ≤ 1/i as we use the normalised p-adic absolute value. The conclusions (A.11),
respectively, (A.12), follow. �

We finish with a sufficient criterion for exp(X) to converge.

Theorem A.4. Let X be a matrix in Md(Qp) and b ∈ Z≥1 be such that

χX(T ) ∈ T d + pkZp[T ] and d < k(p− 1).

Then exp(X) converges.

Proof. By the usual criterion, it is sufficient to prove that every eigenvalue λ of X is in the open
disc of convergence for exp(T ). This amounts to proving the inequality |λ| < |p|1/(p−1).

For any eigenvalue λ of X, we have χX(λ) = 0, hence λd ∈ pkZp[λ] by assumption. It follows
|λ|d ≤ |p|k, that is |λ| ≤ |p|k/d. Using the inequality d < k(p− 1), it implies |λ| < |p|1/(p−1). �

Appendix B. Heights bounds for adelic orbits of linear groups

Our bound on p-adic exponentials is combined with structure theory of linear algebraic groups
to obtain the following general lower bound. It is applied to Galois orbits in § 6.
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Theorem B.1. Let M ≤ GL(N) be a linear algebraic subgroup defined over Q, denote by φ0 :
M → GL(N) the identity morphism and W the GL(N)-conjugacy class of φ0. We define

M(Ẑ) = M(Af ) ∩GL(N, Ẑ) and m
Ẑ

= m⊗ Af ∩ gl(N, Ẑ).

We consider the standard Weil Af -height function, see (17),

Hf : Hom(m⊗ Af , gl(N)⊗ Af )→ Z≥1

given by Hf (Φ) = min{n ∈ Z≥1 : nΦ(m
Ẑ
) ⊂ gl(N, Ẑ)}.

There exists c = c(φ0) ∈ R>0 such that, as φ ranges through W (Af ), we have

[φ(M(Ẑ)) : φ(M(Ẑ)) ∩GL(N, Ẑ)] ≥ 1
cω(Hf (dφ))

·Hf (dφ), (B.1)

where ω(n) counts the number of prime factors of n.

The proof of Theorem B.1 will start in Appendix B.1. We deduce from Theorem B.1 the
following.

Corollary B.2. We have

[φ(M(Ẑ)) : φ(M(Ẑ)) ∩GL(N, Ẑ)] ≥ Hf (dφ)1−o(1), (B.2)

and, if M is reductive and connected and ι : W → Ad is an affine embedding, then, as φ ranges
through W (Af ),

Hι,f (φ) ≈ Hf (dφ) � [φ(M(Ẑ)) : φ(M(Ẑ)) ∩GL(N, Ẑ)]. (B.3)

Furthermore, for every Φ ∈ Hom(m⊗ Af , gl(N)⊗ Af ), we have

∀m ∈M(Ẑ), g ∈ G(Ẑ), Hf (g ◦ Φ ◦m) = Hf (Φ). (B.4)

Proof of Corollary B.2. One passes from (B.1) to (B.2) by recalling the known estimate
(see [HW79, 22.10])

cω(n) ≤ n|log(c2)|·((1+o(1))/(log log n)) = no(1).

As for (B.3), we know that W is affine as M is reductive, and φ �→ dφ is an affine embedding
because M is connected. Lastly, two heights functions on W are polynomially equivalent, so we
may replace HW,f (φ) by Hf (dφ) and this follows from (B.2).

The identity in (B.4) follows from the observations

m ·m
Ẑ

= m
Ẑ
, and g−1 · gl(N, Ẑ) = gl(N, Ẑ)

and the defining property we provided: we have n · g · Φ(mm
Ẑ
) ⊂ gl(N, Ẑ) if and only if

nΦ(m
Ẑ
) = nΦ(mm

Ẑ
) ⊂ g−1gl(N, Ẑ) = gl(N, Ẑ). �

The combination of Theorem C.1 (C.1) with (B.3) gives the following.

Theorem B.3. Let M ≤ GL(N) be a connected reductive linear algebraic subgroup defined
over Q, denote φ0 : M → GL(N) the identity morphism and W the GL(N)-conjugacy class of
φ0, and let ι : W → Ad be an affine embedding. Then, as φ ranges through W (Af ),

Hι,f (φ) ≈ Hf (dφ) ≈ [φ(M(Ẑ)) : φ(M(Ẑ)) ∩GL(N, Ẑ)]. (B.5)

B.1 Proof of Theorem B.1
The global theorem B.1 will follow directly from (B.6) in the analogous local theorem below.

2574

https://doi.org/10.1112/S0010437X2400722X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400722X


Heights and generalised the André–Pink–Zannier conjecture

Theorem B.4. We keep M , φ0, W , and Hf as in Theorem B.1.
For every prime p, let Hp : Hom(m⊗ Af , gl(N)⊗ Af )→ Z≥1 be given by Hp(Φ) = min{pk ∈

pZ≥1 : pkΦ(mZp) ⊂ gl(N,Zp)}.
There exists c = c(φ0) ∈ R>0 such that, for every prime p, and every φ ∈W (Qp),

[φ(M(Zp)) : φ(M(Zp)) ∩GL(N,Zp)] ≥ Hp(dφ)
c

(B.6)

and if mZp is generated over Zp by nilpotent elements and p > N ,

[φ(M(Zp)) : φ(M(Zp)) ∩GL(N,Zp)] ≥ Hp(dφ). (B.7)

Here is how to deduce Theorem B.1 from Theorem B.4.

Proof. Let us multiply the inequalities (B.6) for the ω(Hf (dφ)) primes dividing Hf (dφ) with the
trivial inequalities

[φ(M(Zp)) : φ(M(Zp)) ∩GL(N,Zp)] ≥ 1

for all the other primes. Then one can identify the product on both sides with the corresponding
sides of (B.1). �

Theorem B.4 will follow from different cases gathered in Theorem B.5.

Theorem B.5. We keep the notation from Theorem B.4. For every prime p, letKp := GL(N,Zp)
and, for any U ≤ G(Qp), let [U ]p := [U : U ∩Kp]. We writeN∗ = lcm(1, . . . , N) so that |1/N∗|p =
p[logp(N)] and |N∗|p = 1 if p > N .

(i) For every prime p we have exp(2pmZp) ≤M(Zp) and

[φ(exp(2pmZp))]p ≥ |2pN∗|p ·Hp(dφ) ≥ 1
2Np

·Hp(dφ). (B.8)

(ii) Assume that M is unipotent or more generally that mZp is generated over Zp by nilpotent
elements, then

[φ(M(Zp))]p ≥ |N∗|p ·Hp(dφ). (B.9)
(iii) Assume that M is an algebraic torus. There is c2 = c2(φ0) ∈ R>0 such that for every prime

p, and every φ ∈W (Qp),

if Hp(dφ) �= 1 then
∣∣∣∣ φ(M(Zp))
φ(exp(2pmZp)) · φ(M(Zp)) ∩Kp

∣∣∣∣ ≥ p

c2
. (B.10)

We deduce Theorem B.4 from Theorem B.5.

Proof. The bound (B.7) follows from (B.9), and the observation that |N∗|p = p[logp(N)] = p0 = 1
for p > N .

Let U be the unipotent radical of M0 and L be a reductive Levi subgroup of M0 so that
we have the Levi decomposition m = u + l. By the principle of Appendix B.1.1 we may assume
M = U or M = L.

In the first case M = U , one deduces (B.6), with c = N∗ ≥ |1/N∗|p, from (B.9).
In the second case, M = L is reductive, and thus generated by algebraic tori. By the principle

of Appendix B.1.1 we may assume that M is a torus.
Let us mention a simpler argument giving the following weaker conclusion, which is sufficient

for the purpose of this article:

[φ(M(Zp)) : φ(M(Zp)) ∩GL(N,Zp)] ≥ Hp(dφ)1/2

c2
. (B.11)
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Proof. We know that Hp(dφ) is a power pk of p. For k = 0, we may take c = 1. For k = 1 we
deduce from conclusion (iii) of Theorem B.5 that18

[φ(M(Zp))]p ≥ p/c2 = Hp(dφ)/c2. (B.12)

For k ≥ 2, we have Hp(dφ)/p ≥√
Hp(dφ) and we take c2 = 2N and use (B.8). �

We now explain how to improve upon the exponent 1/2.
We suppose that p is large enough, that p �= 2, and that the reduction TFp of the torus T = M

is a torus over Fp. Then TFp(Fp) is diagonalisable over Fp and its elements have order prime to
p and, thus, the order |TFp(Fp)| is prime to p.

From the exact sequence

0→ p · tZp

exp−−→ T (Zp)→ TFp(Fp)

we deduce that Up := exp(ptZp) ≤ T (Zp) is a topological p-group and T (Zp)/Up ↪→ T (Fp) has
order prime to p.

For any open subgroup H ≤ T (Zp), we have

[T (Zp) : H] = [T (Zp) : Up ·H] · [UpH : Up ∩H]. (B.13)

We now choose H defined by φ(H) = Kp ∩ φ(T (Zp)). We have

[T (Zp) : H] = [T (Zp)]p, [Up : Up ∩H] = [Up]p (B.14)

and

[T (Zp) : Up ·H] =
∣∣∣∣ φ(T (Zp))
φ(exp(2ptZp)) · φ(M(Zp)) ∩Kp

∣∣∣∣ . (B.15)

Substituting (B.14) and (B.15) in (B.13) yields

[T (Zp)]p = [Up]p ·
∣∣∣∣ φ(T (Zp))
φ(exp(2ptZp)) · φ(M(Zp)) ∩Kp

∣∣∣∣ . (B.16)

We now use (B.13) and (B.8) and (B.10) from Theorem B.5 and conclude

[T (Zp)]p ≥ 1
2Np

·Hp(dφ) · p
c

=
1

2cN
Hp(dφ). �

We now prove Theorem B.5.

Proof of conclusion (i). Assume for now the claim that exp converges on 2pmZp and U :=
exp(2pmZp) ≤M(Zp). Let X1, . . . , Xk be generators of mZp , then

Hp(dφ) = max{Hp(dφX1); . . . ;Hp(dφXk)}. (B.17)

As Ui := exp(2pXi)Z ≤ U for every i ∈ {1; . . . ; k} we have

[φ(U)]p = |φ(U) ·Kp/Kp| ≥ |φ(Ui) ·Kp/Kp| = [φ(Ui)]p,

and, thus,
[φ(U)]p ≥ max

i=1,...,k
[exp(2p · dφ(Xi))Z]p. (B.18)

According to Theorem A.3 for X = 2p · dφ(Xi) we have

[exp(2pdφ(Xi))Z]p ≥ |N∗|p ·Hp(2p · dφ(Xi)). (B.19)

18 The bound (B.12) is from [EY03, Proposition 4.3.9].
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We remark

Hp(2p · dφ(Xi)) = max{1; ‖2p · dφ(Xi)‖}
≥ |2p|p ·max{1; ‖dφ(Xi)‖} = |2p|p · ‖dφ(Xi)‖. (B.20)

Substituting (B.20) into (B.19) and (B.19) into (B.18), we get

[φ(Up)]p ≥ |2pN∗|p · max
i=1,...,k

Hp(dφ(Xi)) = |2pN∗|p ·Hp(dφ).

We now recall why, for 2pX ∈ 2pmZp , the series exp(2pX) converges and exp(2pX) ∈M(Zp) for
2pX ∈ 2pmZp .

Proof. We remark that exp(2pT ) ∈ Z(p)[[T ]] and recall that the p-adic radius of convergence
of exp(2pT ) is 2 · p/p1/(p−1) > 1. For 2pX ∈ 2pmZp , we have ‖X‖ ≤ 1 and so exp(2pX) con-
verges. We have exp(2pX) ∈M(d,Zp) because exp(2pT ) ∈ Zp[[X]] has Zp entries. Likewise, and
exp(2pX)−1 = exp(−2pX) ∈M(d,Zp) and we conclude exp(2pX) ∈ GL(N,Zp). �

Conclusion (i) has been proved. �

Proof of conclusion (ii). LetX1, . . . , Xk be a nilpotent basis of mZp . Then the dφ(X1), . . . , dφ(Xk)
generate dφ(mZp) and there exists an i ∈ {1; . . . ; k} such that Hp(dφ) = Hp(dφ(Xi)). Because Xi

is nilpotent, we have

exp(N∗ ·Xi) = 1 +N∗ ·Xi + · · ·+ 1
(N − 1)!

(N∗ ·Xi)N−1

and, thus, exp(N∗ ·Xi) ∈M(Zp).
Thus,

[φ(M(Zp))]p ≥ [φ(exp(N∗ ·Xi))Z]p.

Finally, by (A.11), we have

[φ(exp(N∗ ·Xi · Zp))]p ≥ Hp(dφ(N∗ ·Xi))/N.

Because Hp(dφ(N∗ ·Xi)) and [φ(exp(N∗ ·Xi · Zp))]p are powers of p, we actually have

[φ(exp(N∗ ·Xi · Zp))]p ≥ |N |p ·Hp(dφ(d∗ ·Xi)) ≥ |N∗|p ·Hp(dφ). �

Conclusion (iii) is due to [EY03] and we detail how their formulation [EY03, Proposition 4.3.9]
relates to ours.

Proof of conclusion (iii). We can discard finitely many primes and assume p is big enough so
that [EY03, Proposition 4.3.9] and its proof applies.

We first note that, in the matrix algebra M(N,Q), the subalgebra Q[T (Q)] contains t.

Proof. The inclusion of vector spaces can be checked after passing to R/Q. We know that

R[T (Q)] = R[T (R)]

because, by weak approximation, T (Q) is dense in T (R). Let t be a sufficiently small element in
t⊗ R, so that log(exp(t)) converges and log(exp(t)) = t. Then t ∈ R[exp(t)], as is seen using
Jordan forms, and exp(t) ∈ T (R). Because t⊗ R admits a basis of such elements, we can conclude.

�
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We can choose t1, . . . , tk in Q[T (Q)] so that

t ⊂ t1 ·Q + · · ·+ tk ·Q
and, thus, t1 · Z + · · ·+ tk · Z contains a lattice of t. It will hence contain n · (t ∩ gl(N,Z)) for
some commensurability index n ∈ Z≥1.

As we discard finitely many primes p, we may assume that p do not divide the denominators
of the ti and do not divide n. We will then have

t1, . . . , tk ∈ T (Z(p))

and
tZp = t ∩ gl(N,Z(p)) ⊂ t1 · Z(p) + · · ·+ tk · Z(p), (B.21)

and, applying ⊗Z(p)
Zp, we may replace Z(p) by Zp.

Let φ ∈W (Qp). Using Theorem 2.11, we can write

φ = gφ0g
−1

for some g ∈ GL(N,Qp). We assume Hp(dφ) �= 1, that is

gtZpg
−1 �⊂ gl(N,Zp),

and, by (B.21), there is at least one i ∈ {1; . . . ; k} such that

gtig
−1 �∈ gl(N,Zp).

Equivalently, gtig−1 �∈ GL(N,Zp), which also means

ti · gZd
p �= gZd

p.

As ti ∈ T (Zp), this implies, in the sense of [EY03, Proposition 4.3.9] (for WZp = gZd
p),

‘TZp does not fix {WZp}’.
Looking into the proof of [EY03, Proposition 4.3.9] we note that their lower bound is given by
a lower bound of some orbit of T (Fp), thus, in (B.12), there exists n ∈ Z≥1 such that n divides
|T (Fp)| and

[φ(T (Zp))]p ≥ n ≥ p/c.
In the factorisation (B.16) the first factor in the right-hand side is a power of p and prime to
n. Thus the inequality [φ(T (Zp))]p ≥ n comes from the second factor, i.e. we have inequality of
conclusion (iii). �

B.1.1 Subgroup principle. The following elementary lemmas were useful in passing to
subgroups in the proofs of Theorems B.1, B.4 and B.5. Proofs are left to the reader.

Lemma B.6 (Global subgroup principle). Let M1, . . . ,Mk ≤M ≤ GL(N) be algebraic groups
over Q such that m1 + · · ·+ mk = m.

(i) Then
Λ := m1 ∩ gl(N,Z) + · · ·+ mk ∩ gl(N,Z) ≤ m ∩ gl(N,Z) (B.22a)

and the index
c = [m ∩ gl(N,Z) : Λ] (B.22b)

is finite. For every prime p, we have

Λ⊗ Zp = m1 ⊗Qp ∩ gl(N,Zp) + · · ·+ mk ⊗Qp ∩ gl(N,Zp) ≤ m⊗Qp ∩ gl(N,Zp) (B.22c)
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and

[m⊗Qp ∩ gl(N,Zp) : Λ⊗ Zp] = |1/c|p (B.22d)

with |1/c|p ≤ c and |1/c|p = 1 if gcd(c, p) = 1.
(ii) Assume, moreover, that for some morphism φ : M → GL(d) defined over Q, we have

[φ(Mi(Ẑ)) : φ(Mi(Ẑ)) ∩GL(d, Ẑ)] ≥ Hf (dφ)
ci

. (B.22e)

Then we have, with c = n ·max{c1; . . . ; ck},

[φ(M(Ẑ)) : φ(M(Ẑ)) ∩GL(d, Ẑ)] ≥ Hf (dφ)
c

. (B.22f)

Lemma B.7 (Local subgroup principle). Let p be a prime and M1, . . . ,Mk ≤M ≤ GL(N) be
algebraic groups over Qp.

(i) Then

[M(Zp)]p ≥ max
i∈{1;...;k}

[Mi(Zp)]p. (B.23a)

(ii) Assume that m1 + · · ·+ mk = m, then the index

[mZp : Λ] = n (B.23b)

is a finite power of p.
(iii) With n as above, for any Qp linear map Φ : m→ gl(d,Qp), we have

1
n
Hp(Φ) ≤ max

i∈{1;...;k}
Hp(Φ|mi) ≤ Hp(Φ). (B.23c)

(iv) Assume, moreover, for some morphism φ : M → GL(N) defined over Qp that we
have (B.23c) for Φ = dφ and that

∀ i ∈ {1; . . . ; k}, [Mi(Zp)]p ≥ 1
ci
·Hp(dφ). (B.23d)

Then we have, with c = n ·max{c1; . . . ; ck},

[M(Zp)p] ≥ 1
c
·Hp(dφ). (B.23e)

Appendix C. Upper bound on Adelic orbits

In this appendix, we prove upper bounds on adelic orbits. Combined with Proposition 3.6 this
implies corresponding upper bounds on Galois orbits. This is not used in the proof of our main
result but we believe can be useful in other contexts.

Theorem C.1. Let M ≤ G be reductive groups over Q, K ≤ G(Af ) be a compact open
subgroup, and KM ≤ K ∩M(Af ) be a compact subgroup.

Let φ0 : M → G be the inclusion monomorphism, and W = G · φ0 be the conjugacy class of
φ0, as an algebraic variety.

Let ι : W ↪→ AN be an affine embedding, and let Hf be as defined in (17). Then we have, as
φ describes W (Af ),

[φ(KM ) : φ(KM ) ∩K] � Hι,f (φ). (C.1)

2579

https://doi.org/10.1112/S0010437X2400722X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400722X


R. Richard and A. Yafaev

We prove a more precise version. Let ρ : G ↪→ GL(d) be a faithful representation and let us
identify G with ρ(G). In the associative algebra End(Qd), we denote the subalgebras linearly
generated by M(Q) and G(Q) by

BM :=
∑

m∈M(Q)

Q ·m and BG :=
∑

g∈G(Q)

Q · g.

Let Φ0 : BM → BG denote the inclusion. We have M(Q) ⊆ BM , G(Q) ⊆ BG, and φ0 : M(Q)→
G(Q) is the restriction of Φ0.

For every field extension L/Q, and φ = g · φ0 · g−1 ∈W (L), with g ∈ G(L), the map

Bφ = g · Φ0 · g−1 : BM ⊗ L→ BG ⊗ L
is a L-linear extension of φ to BM ⊗ L, and is the unique L-linear extension.

We choose linear bases of BM and BG generating BM ∩ End(Zd) and BG ∩ End(Zd), respec-
tively, and we consider the corresponding isomorphism Hom(BM , BG) 
 Qdim(BM )·dim(BG). Then
φ �→ Bφ induces an affine embedding ιρ : W ↪→ Hom(BM , BG) 
 Qdim(BM )·dim(BG).

Theorem C.2. Define G(Ẑ) := G(Af ) ∩GL(d, Ẑ) and M(Ẑ) := M(Af ) ∩GL(d, Ẑ). Then, for
every φ ∈W (Af ), we have

[φ(M(Ẑ)) : φ(M(Ẑ)) ∩G(Ẑ)] ≤ Hιρ,f (φ)2+d2
.

We note that if G is of adjoint type, we can use the adjoint representation and pick
d = dim(G).

Let us prove Theorem C.2.

Proof. We endow Hom(BM ⊗Qp, BG ⊗Qp) with the norm

‖Φ‖ = min{pk ∈ pZ : ∀m ∈ BM ⊗Qp ∩ End(Zd
p), p

k · Φ(m) ∈ BG ⊗Qp ∩ End(Zd
p)}. (C.2)

We note that Hιρ,p(φ) = max{1; ‖Bφ‖}.
It suffices to prove that, for every prime p, and φ ∈W (Qp), we have

[φ(M(Zp)) : φ(M(Zp)) ∩G(Zp)] ≤ ‖Bφ‖2+d2

p . (C.3)

Let us write ‖Bφ‖p = pk. Then, in the notation of Lemma C.3, we have

φ(M(Zp)) ⊆ S(d, p, pk).

Thus, (C.3) follows from (C.4). �
We deduce Theorem C.1 from Theorem C.2.

Proof. The assumptions imply the finiteness of

CM := [KM : KM ∩M(Ẑ)] = [φ(KM ) : φ(KM ) ∩ φ(M(Ẑ))]

and
CG := [G(Ẑ) : K ∩G(Ẑ)].

We have
[φ(KM ) : φ(KM ) ∩K] ≤ CM · CG · [φ(M(Ẑ)) : φ(M(Ẑ)) ∩G(Ẑ)].

By Proposition 4.1, we have Hf ≈ Hιρ,f . Using (C.2), we conclude

[φ(KM ) : φ(KM ) ∩K] ≤ CM · CG ·Hιρ,f (φ)2+d2 ≈ Hf (φ). �
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Lemma C.3. Let p be a prime, d be in Z≥0, and k be in Z≥0.
Define S(d, p, pk) = {b ∈ End(Qd

p) : ‖b‖ ≤ pk,det(b) ∈ Z×
p }.

Then S(d, p, pk) = S(d, p, pk) ·GL(d,Zp) and

#S(d, p, pk)/GL(d,Zp) ≤ (pk)2+d2
. (C.4)

Proof. We endow End(Qd
p) with the additive Haar measure μ normalised by μ(B(1)) = 1,

where B(pk), for k ∈ Z≥1 is the ball of radius pk. One knows that the Haar measure satisfies
μ(g ·A) = |det(g)| · μ(A).

For A = B(1) and g = pk · Id this yields

μ(S(d, p, pk)) ≤ μ(B(pk)) = (pk)d2
.

For b ∈ GL(N,Qp) such that det(b) ∈ Z×
p this yields

μ(b ·GL(d,Zp)) = μ(GL(d,Zp)). (C.5)

One can also check

μ(GL(d,Zp)) =
#GL(d,Fp)
#End(Fd

p)
=

d∏
i=1

1− 1
pi

≥
∞∏
i=1

1− 1
2i
≥ 0.25 ≥ 1/p2. (C.6)

The norm multiplicativity ‖b · g‖ = ‖b‖ · ‖g‖ implies the right invariance

S(d, p, pk) = S(d, p, pk) ·GL(d,Zp). (C.7)

Equivalently, we can write

S(d, p, pk) = b1 ·GL(d,Zp) � · · · � bc ·GL(d,Zp),

with c = #S(d, p, pk)/GL(d,Zp).
Using (C.5), we deduce

#S(d, p, pk)/GL(d,Zp) = μ(S(d, p, pk))/μ(GL(d,Zp)).

Assume k = 0. Then (C.4) follows from

S(d, p, pk) = GL(d,Zp) and #S(d, p, pk)/GL(d,Zp) = 1 ≤ 12+d2
.

We may now assume k ≥ 1. Then (C.4) follows from

#S(d, p, pk)/GL(d,Zp) ≤ p2 · (pk)(d
2) ≤ (pk)2+d2

. �
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