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Introduction

This paper is the second part of our work on differential Galois theory as we
promised in [U3]. Differential Galois theory has a long history since Lie tried to
apply the idea of Abel and Galois to differential equations in the 19th century (cf.
[U3], Introduction). When we consider Galois theory of differential equation, we
have to separate the finite dimensional theory from the infinite dimensional theory.
As Kolchin theory shows, the first is constructed on a rigorous foundation. The
latter, however, seems inachieved despite of several important contributions of
Drach, Vessiot,. ... We propose in this paper a differential Galois theory of infi-
nite dimension in a rigorous and transparent framework. We explain the idea of
the classical authors by one of the simplest examples and point out the problems.
Let us consider an ordinary differential equation

(1) Fy,y,...,y" ") =y”,

. . . (n—1) . - .
where F is a polynomial in y, %’,..., ¥ and its coefficients are meromorphic

on a domain of C. The derivation is taken with respect to the variable x on C.
There are two procedures.

Received September 12, 1994.

59

https://doi.org/10.1017/50027763000006024 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006024

60 HIROSHI UMEMURA

(i) Linearization process. They replace the differential (1) by the partial linear
differential equation

@) @/6x+yd/oy+yZa/oy + - +Fly,y,..., 4" DNa/0"HY=0

satisfied by a first integral Y of (1).

(ii) Galois theory of a partial linear differential equation. They seek Galois
theory of a set of independent solutions Y, Y,,..., Y, of (2).

There are problems in each procedure. Let us try to formulate the idea in a
more precise language. First of all, as in Galois theory of an algebraic equation,
the Galois group should be attached not to a differential equation but to a field ex-
tension that a particular solution of the differential equation defines. So we must
clarify the differential base field and the particular solution. Let K be a diffrential
field of meromorphic functions over a domain of C such that the coefficients of the
polynomial F(y, ¢/, ..., y" ") are in K. Namely K is the base field of the dif-
ferential equation (1). We choose a solution y of (1) once for all and study a dif-
ferential field extension K(y, y',..., y" ") of K.

ProBLEM 1. Starting from the ordinary base field K and the solution y of (1), if
we try to pass from ordinary to partial, it is not clear at all how to choose a base field
for the partial linear diffevential equation (2).

Leaving the Problem 1 aside, we take a set of independent first integrals (=
solutions of (2)) Y3, Y,,...,Y, in the linearlization process.

PROBLEM 2. There is no canonical choice of the set of independent fivst integrals

N, 5., ¥,

Even if the Problem 1 is settled so that we have a canonical base field A for
the partial linear differential equation (2), the differential field extension # <Y},
Y,,..., Y,”> depends on the choice of the set of first integrals ¥}, ¥,,..., ¥, ie a
different choice gives a completely different partial differential field extension of
the base field . Here we denote by #<Y,, Y,, ..., Y,» the partial differential
field generated by Y}, Y,,..., ¥, over X.

In most of works, the authors simply say that Galois theory of an ordinary
differential equation is equivalent to Galois theory of a partial linear differential
equation and they limit themselves to the second procedure (e.g. [D], [V1] and [P]).
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PrROBLEM 3. In the second procedure of developing Galois theory of partial linear

differential equation, theve are obscuvities due to the lack of language.

For example Vessiot [V1] introduced an automorphic system, which is, rough-
ly speaking, a principal homogeneous space of a Lie pseudogroup. Since a Lie
pseudogroup is not a group, it requires a precision.

Inspired by a work of Vessiot [V2] in 1946, we overcome the Problems 1, 2
in the linearization process. Our setting is general. We consider an ordinary dif-
ferential field extension L/ K of characteristic 0. We canonically construct a par-
tial differential field extention € /X (cf. §3). To avoid the Problem 3, we apply the
method of [U3] to the partial differential field extension € /X in §4 and 5. We in-
terpret a Lie pseudogroup as a formal group of infinite dimension or as a group
functor on a category of rings (See §1). The idea of understanding a Lie pseudo-
group as a formal group seems to go back to Ritt [R] of 1950.

Let L/K be an ordinary differential field of characteristic 0 such that L is
finitely generated over K as an abstract field. We attach to L/ K the Galois group

Inf-gal (L/K),

which is a formal group with coefficients in L (Lie-Ritt functor on the category of
L-algebras), in general of infinite dimension, where we regard the differential field
L as an abstract field.
Here are the main properties of the Galois group.
(i) If M is a differential intermediate field of L/ K, there exists a canonical
surjective morphism Inf-gal(L/K) — Inf-gal(M/K) (Theorem 5.14).
(i) If L/K is a strongly normal extension with Galois group G, then the dif-
ferential Galois group Inf-gal(L/K) is the formal completion G of G
(Theorem (5.15)).
(iii) If L is finite algebraic over K, then Inf-gal(L/K) = 0 (Corollary
(5.22)).
(iv) If L is generated by constants over K, then Inf-gal(L/K) = 0 (Corol-
lary (5.22)).

Index of notations

N(A4) The set of all nilpotent elements of a ring A
r,(A) The group of all infinitesimal coordinate transformations of
n-variables with coefficients in A (Definition (1.1))
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rnR

(Alg/R)
(Grp)
A{S)

K<S>
(Vec/k)
(Fmod/R)
@nk

It

Kug =K
Cix=%

F orn4)

Forn (A

Inf-diff-bir,L(4)

Inf-gal(L/K)
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The Lie-Ritt functor of all infinitesimal coordinate trans-
formations of #-variables on the category (Alg/R) (Defini-
tion (1.8))

The category of R-algebras

The category of groups

Differential algebra generated by a set S over a differential
ring R

Differential field generated by a set S over a differential
field K

The category of k-vector spaces

The category of free R-modules

The k-vector space of formal vector fields (Lemma (2.3))
Differential field (L', {9/0u,, 8/0u,, ..., 8/0u,}) (§3)
Differential subfield of L*[[f11[¢™'] generated by L' and
1(K) (83)

Differential subfield of L*[[f11[t™'] generated by #(K) and
Hik (83)

The set of all infinitesimal deformations with coefficients in
an L' —algebra A of the canonical morphism € — L' [[w,
A1t (84)

The set of all infinitesimal deformations with coefficients in
an fh-algebra A of the universal Taylor morphism € —
¢ [lw, T1] (§4)

The group of all continuous differential X &®,+ Allw]]-
automorphisms of £ ®L# Al[w]] that are congruent to the
identity modulo #&®, . N[[w]] (§5)

Infinitesimal differential Galois group (Definition (5.13))

§1. Lie-Ritt functor

In this paper all the algebras, except for Lie algebras and Hopf algebras, are

commutative Q-algebras. For a commutative algebra A, we denote by N(A) the set

of all nilpotent elements of A:

N(A) = {x € A| 2" = 0 for some positive integer # depending on x}.

So N(A) is an ideal of A.
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DermNiTION (1.1). For an algebra A, we set

r,(A) =1{0= (¢, ¢3..., 0) | 0, = ¢,;(x) € Allx,, x,,..., x, ]l for 1 < i< m
such that @ = (z, x,,..., x,) mod N(4)}.

Here we mean by @ = (x, &,,..., x,) mod N(A) that
z, — ¢;(xy, Z,,..., x,) € NAIlz, x,,..., z,]]

for 1 <i<mn So geometrically @ = (¢,, ¢,,..., ¢,) is a formal coordinate
transformation of #-variables with coefficients in A that is congruent to the
identity modulo nilpotent elements. In other words @ = (¢,, ¢@,,..., ¢,) is an in-
finitesimal formal coordinate transformation of #-variables with coefficients in A.

Lemma (1.2).  Let T= (¢y, ¢ay. .., ¢,) be another element of I',(A). Then the
composite

U@ = (), (@1, Payevvs ©0) D@1, Oovevos )y Ou(Pry Oy @)

is well-determined i I",(A).

Proof. We may assume for simplicity # = 1. Let ® = (¢(x)) with
0@ =ay+ ax + ax’ + -
and ¥ = (¢(x))
o(x) = b, + bz + b’ + -+
Then
¢o@ = b, +b,(a, + ax + ax’+ )
+by(a, + ax + ax’ + )
+ e
= b, +ba, + bas + -
+ (bya, + 2b,a,a, + 3bala, + 4baia, + - )x+ -

which is a formal power series in I';(4) since a, is nilpotent.
LEmMMA (1.3). Ifwe setld = (x,, x,,..., x,), then Id-® = @-1d = O.

Proof. The assertion follows the definition.
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LemMA (1.4). For @, ¥, ©® € I',(A), we have
(-0 = Q- (V-0).

Namely the composition law ° is associative.

Proof. The element @ € I',(A) defines an A-algebra endomorphism
o*: Allx,, x,,. .., ,]1 — Allz,, z,,..., 2,11 (x,~ o(x)

continuous with respect to the (x;, Z,, ..., x,) -adic topology. We can recover @
from @ Similarly the elements ¥, 6, defines an A-algebra endomorphisms

r* 0% Allz, z,,..., x,]]1 — Allz, z,, ..., x,]].
The lemma follows from the identity

OF (¥ 0% = (0% U™ -0%,

which is the associativity law for composition of maps between sets.

LemMa (1.5). For @ € I',(A), there exists U € I',(A) such that
-9 = Id.

Namely every element of I',(A) has a left inverse.

Proof. We may assume that # = 1 for simplicity. Let ® = (¢ (x)) with
0@ =a,+ax+ ax’+ - €I,(A.

Since the composition law ° is associative by Lemma (1.4), it is sufficient to show
that

(x—a) @ =ax+ax’+ -

has a left inverse. So we may assume that @, is equal to 0. Now as is well-known,
since @, =0 and @, is invertible in A, the series ¢(x) has the (left) inverse
¢(x) in Allx]]. We denote the classes of @(x), ¢(x) mod N(A)[[x]] respectively
by @(x), ¢(x). Since the quotient ring

Allz]]/N(A) [[x]]
is isomorphic to

(A/N@A)) (=11,
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we can regard
(@), ¢(x) € (A/NA)[[21].
Then it follows from
o) = o9 =2 and @) =2xin (A/NA))[[z]]

that ¢ ° ¢@) =@ » ¢@) =2 in (A/N@A)I[[x]] and hence ¢(r) =2z in
(A/N(A))[Lx]]. Namely ¢(x) = 2 mod N(A) [[x]]. Hence ¢(x) is in I';(4) so
that @(x) has a left inverse ¢(x).

PrOPOSITION (1.6).  The set I',(A) forms a group with respect to the composition
law °.

Proof. 1f a composition law satisfies the following conditions, then it is a
group law:

(i) It is associative;

(i1) There exists a left identity;

(iii) Every element has a left inverse.

This fact is well known (cf. Chap. I, §2, p. 9 of [L] for example). Proposition
now follows from Lemmas (1.3), (1.4) and (1.5).

CoROLLARY (1.6.1). We have a canownical anti-isomorphism of groups:

I, (A) ={0 € Aut Allzx, x,,. .., 2,11 | @ is continuous with respest to the
(X1, Zsy. .., L,)-adic topology and the reduction of
@ modulo N(A) is the identity map of A/ NA) [z, x,,. .., x,]1}.

Proof. We use the notation in the proof of Lemma (1.4). For @ € I',(A), we
can find by Proposition (1.6) A € I',(A) such that we have

A-Q=0-A=1d

so that we have

Hence

o*: Allz, x,,. .., z,]]1 — Allz, z,,..., 2,1

is an A-automorphism of Allz), x,,. .., x,]]1. Since * is contravariant, the map-
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ping @ — o* gives the canonical anti-isomorphism of the groups.

Corollary (1.6.1) gives a coordinate free description of the group I',(A4). Let
R be a Q-algebra. The category of R-algebra will be denoted by (Alg/R). So we
can regard A — P,,(A) as a group functor. To make the reference algebra R clear,
we add a subscript R :

r,,:(Alg/R)— (Grp), A~ T,(4)
for an R-algebra A.

DEFINITION (1.7). We call the group functor I',, the Lie-Ritt functor of all in-
finitesimal coordinate transformations of #-variables defined over R.

For an R-algebra A the formal power series ring
Allz, z,, ..., z,1]
is a differential ring with respect to the derivations
{0/0x,, 0/0x,,..., 0/0x,}.
We consider the formal jet space. Let
Allz, z,, ..., )y, 0. .., ¥}
be a differential polynomial ring with coefficients in the differential algebra
Allz, x,, ..., z,]]1.
So as an abstract ring

[C2T5 7700 )
; 1

Allx, z,,..., 2y, vy . ..,y = Allx, ,,. .., )1y,

1<i1<n
(17 geerdpg) EN"

where the y """’ are indeterminates over the ring Allx,, z,, ..., z,]]. The de-
rivations
{0/0x,, 0/0x,,..., 3/0x,}
of Allx,, x,,..., x,]] are extended to
Allx, z,,. .., )y, v .., 4
by
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0 (yrigserosi) [C00 J DA S I B )

a_‘rl—yi =y,

for
1<4,1<n G,....,5,) EN".
We denote the formal complection
Allzy, 2y ., 210" 1<y s iens

by

Allzy, z,,. .., 21y, vor .. ., 4}
which is a differential algebra with derivations

{0/0x,, 0/0x,,..., 0/0x,}.

Let I be a differential ideal of the formal power series ring

Rllz, z,,..., z11 Uy, ty.. ., 4}
We denote by I, a differential ideal [/] of

Allzy, z,,. .., 2,11y, 4,0 . ., )}

generated by I for an R-algebra A.

67

DeriNITION (1.8). A Lie-Ritt functor defined over a Q-algebra R is a group
functor on the category (Alg/R) isomorphic to a group subfunctor G of the group

functor I',; defined by a differential ideal of

Rllz, z,,..., x,11{y, 5. .., 4}
Namely there exists a differential ideal I of

Rllz, x,,..., )1y, ¥,y .., 2}

such that we have

G) ={0eTI,A)|F(®) =0 for every F € I,} for each R-algebra A.

Here in the equation F(®) = 0 we substitute
d'e,

PP j
0x;'0x,’ -+ + 0x,” 1=1
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for

Gogseeord)
; .

Let us see some examples.

ExampLE (1.9). In the following examples (i), (ii), (iii), # = 1 and R = Q.
(i) Let us denote the additive group N(A) by G,(A4) for a Q-algebra A so
that

G.oAlg/Q — (Grp), A G,(4)
for a Q-algebra A, is a group functor. We consider a subset
G,A) = {a, + x| a, € N4}
of I';(A) is a subgroup for a Q-algebra A. Hence
A G, (A)
is a group subfunctor of the group functor FIQ. We have a functorial isomorphism
G,(4) — G4

that sends a, to a, + x for @, € G,(A). Thus the group functor GaQ is isomor-
phic to the group functor G,. Now we choose a differential ideal I = [y” — 1] of
QlLxl1{{y}}. Then the set

lp@eln@|¢@ —1=0}

coincides with the subgroup G,(A) for a Q-algebra A so that the group functor
GJQ(A) is a Lie-Ritt functor. For any Q-algebra R the restriction of the Lie-Ritt
functor G,q(A) to the subcategory (Alg/R) will be denoted by G .

(ii) Let us set

Gug@) = la€ Ala—1€ N}

so that GmQ(A) is a group by the multiplication in the ring A. We get a group
functor

Coug: (Alg/Q) = (Grp), A= Giq(D)
for a Q-algebra A. Let us consider a subset
{a,x € I''(A}

of I';(A) for a Q-algebra A. Then the subset is in fact a subgroup of I'j(A4).

https://doi.org/10.1017/50027763000006024 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006024

GALOIS THEORY OF INFINITE DIMENSION 69

Hence we get a group subfunctor G, of the group functor I} :
G.: (Alg/Q — (Grp), A~ lax € I'(A)
for a Q-algebra A. Moreover there exists a functorial isomorphism of groups
G,,,Q(A) — G, (A arazx.

So the group functor GmQ is isomorphic to G,. We consider now a differential
ideal [zy’ — y) of QIlx]1{{y}}. Then the subset {¢(x) € I'/(A) | z¢ (x) —
¢@(x) = 0} coincides with the subgroup G, (A). Hence G,,,Q is a Lie-Ritt functor
defined over Q. Similarly as for the group functor GaQ, the restriction of the
group functor GmQ to the subcategory (Alg/R) for a Q-algebra R will be de-
noted by G,,z.

(iii) We consider a subgroup

ax-l-bl(a b

cx+b'\¢ d) — I, € M,(NA), ad — bc = 1} c (A

6 = |

for a Q-algebra A. We notice here that d is invertible in A and hence

ar+b
cx+d

d N ax+b A —d'ex+ @ 'er)’ — )

is a formal power series in x. As is well-known a transformation

Hax-i—b
T r+d

is characterized by the Schwarzian derivative {y ; 2} (Let us recall
’ 2
wia = (30 /(@) -3 15 /@D,

Namely G(A) = {p(x) € I'/(A) | {¢(@) ; x} = 0}. So G is a Lie-Ritt functor.
(iv) Let us take now R = Q as above but # arbitrary. We set

. Doy, ¢5,..., 0,)
G(A) = [@ = (@1, ¢3,..., ®,) € I',(A) | The Jacobian D(xll, xz,' ) 1]

for a Q-algebra A. Then G is a group subfunctor of I', defined by the differential
equation

D(@y, 05 ..y ©,)
D(z,, x,,. .., x,)

=1.
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So G is a Lie-Ritt functor.

The Examples (1.9.i), (1.9.i), (1.9.iii) are finite dimensional. Namely the
dimension of the Lie algebra of the each group functor, which will be defined in
§2, is finite dimensional. The Examples (i) and (ii) are of dimension 1. The Exam-
ple (iii) depends on 3 parameters. In Example (iv), however the solution of the dif-
ferential equation

D((ply (021---9 (pn) — 1
D(z,, x,,..., x,)

depends on infinitely many parameters if #n = 2.

DeriNITION  1.10. We define a morphism of Lie-Ritt functors over a ring as
a morphism of group functors.
For example, we have for a Q-algebra A a functorial morphism
G, = G,qA), arexpa
of groups. So there exists a morphism
exp: G,,Q—’ GmQ
of Lie-Ritt functors. Similarly for a Q-algebra A, we have a functorial morphism
GmQ(A) - CaQ(A), ar~loga
of groups, which gives us a morphism
log : GmQ - G,,Q

of group functors. Since expe°log = Id, loge exp = Id, the Lie-Ritt functors GaQ
and GmQ are mutually isomorphic. Customarily the equivalence of Lie pseudo-
group is defined by using prolongations. Our definition seems new and quite natu-
ral.

A formal group yields an example of a Lie-Ritt functor. Let us recall the de-
finition of a formal group.

DeriviTION (1.11). A formal group over a ring R is an n-tuple F = (f)) of
formal power series

fi(u, v) € R[{u,, u,,..., u,, v, v,..., v,]1 = R[lu, v]]
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such that

(1) F(u,0) =u and FQO, v) =v
(2) Flu, Flo, w)) = F(F(u, v), w).

We know that there exists
Ow) = (6,(w), 6,w),..., 6,w) € Rl[u,, u,..., ul"

such that ©(0) = 0 and such that

F(u, ©(w)) = F(O(u), u) =0
(cf. Serre [S] LG Chap. 4, §6). Let A be an R-algebra. For

a=(a,a,...,a),b=(b,b,..., b) ENA"
we define the product of @ and b by
ab = F(a, b).

Then N(A)" is a group by this group law. The unit element is given by 0 and
O(a) is the inverse @' of a. We denote this group by N(A)%5. Hence the formal
group F defines a group functor

F:(Alg/R) — (Gnp), A~ N@AL

The group functor F is a Lie-Ritt functor. In fact let I be the differential ideal in
R[[x]11{{y}) generated by

0F(y, ©(x)) _ (& 0F(u, v) 0y, 0F (u, v) 00,
o, a <,=Zl ou; 0x; + ,zi ov; 6x>

1< i< n.

’
(u,0)=(y,6(x))

We show that the group functor F is isomorphic to the Lie-Ritt functor defined by
the ideal I. Let A be an R-algebra and

¢(l‘) = ((ph (sz- D} (pn) € FnR(A)

Assume that

(1.12) 0F(y, 6(x)) _ (2, 0F(u,v) 0y, OF (u, v) ae>

ox; a <,§1 ou, oz, * ,Zl ov, 0x;

,0)=(0(2),8(z))
for 1 < ¢ < n. The system (1.12) of equations is equivalent to
OM/0x; =0 forl<1i=<n,

where we set M = F(®(x), ©(x)). So the system (1.12) of the differential equa-
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tions is satisfied if and only if M = F(®(x), ©(x)) € A[[x]]” is constant, or
(1.13) F(o(x), 0(») = (a,, a,,..., a,)
with a, € A for 1 < { < n. If we pass to A/N(A), then @(z) is equal to

0€ (A/NWA)[[211"

and hence by (1.13) (a,, 4, ..., a,) is congruent to 0 modulo N(A). Namely the
a, € A are in fact in N(A). We have thus shown that the following conditions are
equivalent:

(1) H(®(x)) = 0 for every HE I ;
(2) OM/0x;,=0 forl <i<n;
(3) F(@(x), O(x)) = a with a € N(A)".

Now if F(@(x), O(x)) = a, then
(1.14) O(x) = F(a, x).

Therefore we proved that if we set
GA) ={oer,|H®) = 0 for every H € I},
then the mapping
7:G(A) = NA" = NA3; o —Fo@, 0) =a

is bijective. This mapping 7 is an isomorphism of groups. In fact, let now

O(x), T(x) € GA)
so that we can find by (1.14)

a, be NA"”
such that
O(x) = F(a, x), T(x) = F(b, x).
So since F is a formal group, we have
Q- U(x) = Fla, F(b, x)) = F(F(a, b), x).

Therefore

(9 ¥) = F(a, b

by the above equivalence of conditions and 7 is a group homomorphism. Since the
group isomorphism 7 is functorial in A, the group functor G is isomorphic to the
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group functor F associated with the formal group F.
Let

m
F(u, v) € R[[u,, u,,..., u,, v, v,..., v,11",

Gly, 2 € Rlly, ¥5,..., Up, 21, 23y .., 2,11"
be formal groups. A morphism f : F— G of formal groups is an #-tuple
=, f.s ) € Rluy, u,,. .., u,ll
such that £,(0) = 0 for 1 < ¢ < # and such that

f(Fu, v)) = G(f(w), f(v)).

n

The morphism of formal groups

fiF—G

induces a morphism of group functors
f:F—G.
Therefore we get a functor of the category of formal groups over R to the categ-
pry of Lie-Ritt functors over R.
LEMMA (1.15).  The functor F'— F is fully faithful. Namely we have
Hom,ymar grous (Fs G) = HOMyie pivt umcror(Fy G)

for any two formal groups over R.

Proof. We denote by O the subfunctor of N* attaching the point (0, O, . . .,
0) of N(A) to every R-algebra A. It is sufficient to show that a morphism of func-

tors
f:N"—N"
that maps 0 € N” to 0 € N” is defined by an n-tuple
(fis fore . s £) € Rlluy, u,,. .., u,ll"
such that £;(0) = 0 for 1 < { < # and such that we have
fla = (@), fil@),..., f,(@)
for

a=(a,a,..., a, € NA"
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Let us prove this under the assumption m = n = 1, the general case being treated
in the similar way. Let us set

A, = Rlx]/x” for » € N.
Then the map

f,=f(A,):NA4)— NA4,)
gives

a),a”,..., a4, €R
such that
@) = b3 a7,

I being the class of x in 4,. Since the diaigrlam

r+1

N@,,) 5 N@,,)
! !
N@4) —= N@&)

is commutative, the vertical arrows being the canonical morphism, we have

(r) (r+1) .
a” =a; " for0<i<r—1.

So a@” € R is independent of # and hence we denote it by @, € R for i € N. We
find the a, € R for ¢ € N such that we have in 4,

r—1 .
f,(@) = X ax for every r € N.
i=0
Let now A be an R-algebra and @ € N(A) so that we have @’ = 0 for an integer
# = 0. So there exists an R-morphism
o:Rlxl/x"— A, z+a.

Since the diagram
NRIzl /z)) —> N@A)
=l | 74
NRI /2)) ——= N@

is commutative, we have

fila) = gaiai.
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So the morphism
f:N—N

of functors is defined by the power series
2 ax’.

Since f(0) = 0, we have a, = 0 and the lemma is proved.

We can regard a Lie-Ritt functor as a formal group of infinite variables. Let
us take for example I',,. We assume for simplicity # = 1. Let A be an R-algebra
and let

g=a,+A+a)r+ax’+
and

g=0b,+ A +b)r+bx’+ -
be power series in I'j(A) so that a,, b; are in N(A). Then

Gep=b,+ QA+ b)a, + b, + -
+ A+ b, + a, + ba, + 2b,a,( + a) + 3b,a2(1 +a) + -z
4+ ...

So we can find formal power series
f,(u, v) € Rllu, v]1 = Rlluy, uy, ,,..., vy vy, v,,...1]
for + € N such that

¢od=f,(b,d) + 1+ £,(b, D)z + f,(b, D" + -+~

with
a= (ay, a, a,...), b= (b, b, b,...).
Then
(1.16) F(u, v) = (f,(u, v), f,(u, v), f,(u, v),...)
is a formal group of infinite variables u,, #,, #,, . ... Namely the set F(u, v) of

the power series satisfies the conditions (1), (2) of Definiiion (1.11). Now we con-
sider a group subfunctor G of I'j, and a differential ideal I of A[[x]]{y} in De-
finition (1.8) with » = 1. Let

¢=uo+(1+ul)x+u2x2+---
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be an element of R[[u,, u;, u,, .. .11[[x]]. Setting the coefficient of the power
series in & equal to 0, we can show that the condition F(¢(x)) = O for an element

Fly, ", y?,..) € Ic RIz]{y

is equivalent to a set of power series relations among #,, #;, %,,... with coeffi-
cients in R. So there exists a family of power series h,(u,, #,, #,,...) € R[lu,,
#,, Uy, . . .]] indexed by an appropriate set J satisfying the following condition.
For every R-algebra A and ¢(x) € Allx]] with ¢(x) = x mod N(A4), the follow-
ing conditions are equivalent:

1) h,(uy, uy, u,,...) =0 for every a € J ;
2) ¢ € GA).

In other words, the ideal (ho(#)),c; © R[[ul]l = Rl[uy, u,, ,, . . .]1] defines a
formal subgroup of the formal group F(u, v). This argument works also for
n = 2. So we have proved

ProposITION (1.17).  Ewvery Lie-Ritt functor over a ring R 1is vepresented by a for-

mal group scheme over R.

A formal group is equivalent to a complete commutative Hopf algebra. For ex-
ample, the set (1.16) of power series defines on the power series ring

R[[ull = R[lu,, u,, u,,...1]

a continuous comultiplication

R[[u1] = RI[[u]] ®, RI[u]]

by sending #; to f;((#) ®1,1 & (#)) so that R[[«#]] is a continuous commutative
Hopf algebra over R and the formal spectrum Spf R[[#]] is the formal group I'j.
Here the power series ring R[[#]] is a topological ring by (#)-adic topology and
we take the completion of the tensor product

R[[u]] &g RI[u]]

with respect to the ((#) @1 + 1 & (w))-adic topology.

This point of view is close to the formulation of Ritt [R], which Weifeiler [W]
and Nichols [N] later developed by introducing differential Hopf algebra. It seems
that Ritt’s trial of defining formal group originated from the infinite dimensional
differential Galois theory. We explain now their idea for the simplest case of I'j

and compare with ours. Ritt considers general functions
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@) =x+ ¢, ¢@ =zx+ ¢@)
and their composite

¢ (n) (x)

(1.18) ¢p@) =2+ ¢ +olx+ ¢@) =zx+ ¢ + ¢x) + Z o@".

If we introduce a differential indeterminate ¢ over the differential ring (C[[x]],
d/dx) and if we define on the completion

Cliz]]{{g}} = Cllzl1lg, ¢, ¢2,...1]
of the differential polynomial ring

Clll1{g} = Cll211[g, 4", 7,...]

a continuous comultiplication
(1.19) CLIz {g}) — CLIz11 {{$}) By Cllzll{{g}},
which is a differential C[[x]]-algebra homomorphism, by

1 ® ¢(n)

¢ ¢®1+1®¢+Z1 9" ®1,

(so that in general

® ¢(n)

¢‘”’r—»(¢®1+1®¢+21 PR,

for n € N, e.g.

67> GO +1®¢+ £ 18" (" @D
T A (g @ DY),
then Cllz]1{{¢}} is a continuous commutative Hopf algebra, a formal
Cllxl] [ ] -group with K = C[[x]] and k = C in the terminology of Weisfeiler

and Nichols (cf. [N] p. 971). Here the completion of the tensor product is taken

with respect to the ((¢) &1 + 1 & (¢))-adic topology. In [N] K is a field but in

this example K is a ring and the definition is easily extended to the ring case.
What is the relation between these two continuous Hopf algebras

Cllu,, #,, %,,...11 and Cllzl1([g, ¢, ¢@,...11?
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For every C-algebra A both
{f € Hom(Cl[«]], A) | f(u) € N(A) for every i € N}
and

{f € Diff-hom;, (CLIzI [[9, ¢, $“11, Allz]D) | f($) = a, + aix + ax’
+ -+ with @, € N (A) for all i € N}

give the group I'\(A) by definition. We can define a continuous R-derivation 0
on R[[u]] by

ou, = (i + Du,,, for 1€ N.

d
So Cl[u]] is a formal C[E] -group with K = k = C (loc. cit.) and there exists a

continuous C[Lz]]-isomorphism

Cllx]] ®cClluy, w,, ,,...11— Cllzl1llg, ¢, ¢*,...]]

1
sending #; to il ¢(’) of Hopf algebras with derivation. Here the tensor product is

that of differential algebras (i.e. we define (a®@b)’ ' =a @1+ 1 & b) and the
completion is taken with respect to the 1 & () -adic topology. We believe that the
continuous Hopf algebra RI[[#]] is more natural than CLLz]11[[¢, ¢, ¢*,.. .11
for the following reasons.

(1) The Hopf algebra R[[%]] is defined over Z. However the Hopf algebra

Cllz1llg, ¢%, ¢?,...11

is defined only over Q.

(2) All the Lie-Ritt functors are usual formal groups without derivation (in
general of infinite dimension).

(3) What we need in the general differential Galois theory is a formal group

without derivation.

§2. Lie algebra of a Lie-Ritt functor

For a reasonable group functor on a category of schemes, we can define its
Lie algebra by a general theory developed in Exposé II of [S.G.A.D]. In particular
a Lie-Ritt functor has its Lie algebra. It is convenient, however, to review how we
define the Lie algebra of a Lie-Ritt functor in the frame work of [S.G.A.D.].

For a k-vector space V, the direct sum k @ V has a structure of k-algebra if
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we define the product of elements of V to be 0. Namely we define the product of
two elements of k D V by

(a, w) (b, v) = (ab, av + bu) for (a, w), (b,v) ELDV.
We denote the algebra k € V by D(V). So we have a projection
p:DV)=kDV—k

which is a k-algebra homomorphism. Let G be a group functor on the category of
k-algebras. Hence we have a homomorphism

ps: G = GK)

of groups induced by the morphism p of k-algebras. We denote the kernel of py
by L (V). Therefore we get a functor

Lg;: (Vec/k) — (Set), Vw— Ly(V),
where (Vec/k) denotes the category of k-vector spaces. We set
Lie G = Ly (V)
for a 1 dimensional k-vector space V| so that we have
Lie G = Ker p,.
Here p, denotes the homomorphism of groups
y: GID(V)) = G

induced by the projection p : D(V;) — k. We show that if G satisfies a reasonable
condition, Lie G has a natural structure of Lie algebra. Usually the following nota-
tion is employed. Let k[e] (¢ = 0) be the ring of dual numbers over k so that

klel = klz) / (z?)

and the ring klel is k-isomorphic to D(V;). Under this isomorphism the projec-
tion p coincides with the k-homomorphism

q:klel—k, e~0
of algebras. Hence
Lie G = Ker ¢,

where
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qs: G(kl[e]) — G(k)

is the homomorphism of groups induced by ¢ : k[e]l — k. We refer the reader for a
general argument to [S.G.A.D.] and just illustrate the defintion of the Lie algebra
structure on Lie G for a Lie-Ritt functor G. For this reason we restrict ourselves
to the following group functors on the category (Alg/k) of k-algebras.

(1) Lie-Ritt functors. In particular the group functor I',, of all infinitesimal
coordinate transformations of # variables.

(2) The general linear group GL(W) for a k-vector space W.

Since I',(k) = 1 by definition, the morphism

by : Ty (D(V)) — I, (k)
is trivial so that we have
Ly, (V) = Ker p, = I, (D(V).
In particular we have
Liel',, =TI, (D(V)).
Hence we have

Ly :(Vec/k)— (Sef), Vr~ L, (V) =TI,(DW).

LeEmMmA (2.1). Let V, W be two k-vector spaces. Then we have a canonical iso-
morphism

Ly (V®W) = L, (V) X Ly, (W).
In other words the functor
Ly, : (Vec/k) — (Set)

transforms a product to a product.

Proof. Lemma follows from the following observation. Let
D= (¢4, ¢..., 9,) €EDVBWIlz}, 2y,. .., z,11".

Then @ € L, (V@ W) if and only if every coefficients of ¢, — z, lies in VB W
forl<i<an

CoroLLary (2.2). Lie I', = L (V) has a structure of an additive group.
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Proof. Since the functor
Ly, : (Vec/k) — (Set)
transforms a product to a product by Lemma (2.1), the addition
Ve v,—V,
which is a k-linear map, induces a map
Ly, (V) X Ly, (V) = Ly, (V,® V) = Ly, (V).

This map defines an additive group structure on Lie L, = I',(D(V))).
We have a multiplication

m,:V,—V,
for A € k, which induces a map
my, Ly (V)= Ly (V).
If we set
20 =m, (@) for @€ Ly, (V), A€k,

then Lie I', = Ly, (V) = I',,(D(V))) is a k-vector space. Now we define a pro-
duct on the k-vector space Lie I', = L, (V)) such that Lie I', is a k-Lie algebra.

LEmMA (2.3). Let ©,, be the k-vector space

kllz, z,,..., x,11"0/0x, + kllz,, x,,. .., 2,11"0/0x,
+ -+ kllx, x,,. .., x,)1°0/0x,

of all formal vector fields. Then we have a canonical isomorphism
D:lLiel''— 06,
of k-vector spaces.

Proof. Let V, be a k-vector space of dimension 1. Then the algebra D(V)) is
k-isomorphic to the ring

klel (2= 0)
of dual numbers. So

Liel', = I, (D(V)) =T, (kle]) = {®= (¢, 0,,. .., ¢ €klelllx, ,,...,x,1]"
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9, —x, € ekllx, x5 ...,2,0]1 for 1 <1<},
Hence if
D= (¢, ¢p..., ¢) € I, (klel),
then there exist
¢, € kllx, x,,. .., x,1]
such that
¢, =x; T e,
for 1 £ 1 < n. Therefore if we define a map
D:TI, (kle]) — 6,,
by
D(®) = ¢,0/0x, + ¢,0/0x, + -+ + ¢,0/0zx,,

then D is bijective. It follows from the definition of the k-vector space structure
of Lie I',, that this map D is in fact k-linear.
The above argument allows us to prove the following result.

LEMMA (2.4). Let
G:(Alg/k) —(Grp)
be a group functor. If the functor
Lg: (Vec/K) — (Set) Ve Ker p,

transforms a product to a product, then Lie G is a k-vector space.

In particular we can apply this argument to a Lie-Ritt functor to get the fol-
lowing

CoROLLARY (2.5). If G is a Lie-Ritt functor, then Lie G is a k-vector space.

Proof. We may assume that G is a group subfunctor of I',, so that G is de-
fined by a differential ideal I of

kllx, z,, ..., 21y, 0. .., 4,0}
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We show that the functor G satisfies the condition of Lemma (2.4). Let U be an
arbitrary k-vector space which we consider as a variable and

0= (¢, ¢5..., 9,) € I, (D).
So we have
o =, + ¢, with ¢, = ¢,(x) € Ullx, x,,. .., z,1]

for 1 <7< n Let

¢, (x) = > alrrtphgl e gl
Ul g ly) EN®
with
a:l,,lz,i..,l,,) e,
Since

Uu=o0
in the algebra D(U), the differential equations
F(@® =0

for every F € I is translated to a system of k-linear equations among the coeffi-
cients

alu,,I2 ..... ) U
of ¢,;. Namely there exists a system of k-linear forms
(2.5.1) H(...,a™"" ) (@€ ]
in
a:ll,lz,“.,l,,) evU
indexed by an appropriate set J such that the following conditions are equivalent:

(1) @€ L, (D) = GDW) ;
(2) F(®) =0 forevery FEI;

Updgyeenly

3) Hy (..., a; """ "..) =0 foreverya€ J.
Here of course in the linear forms

(1,09, lp)
H,( ..,a;"*""™",..) (€]
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only a finite number of the coefficients

Ug gyl
1

are involved. Furthermore since we choose the vector space U as a variable, the
system (2.5.1) is independent of the choice of a vector space U. More precisely let
U’ be another k-vector space and

o = (¢, ¢3,..., ¢,) € T, (D).
So we have
¢, =z, + ¢, with ¢; = ¢i(x) € U'llx, x,,..., z,]]
for 1 <7<z Let

_ Uy dgpenly) 1y 1 i
G@= Tl g
Uy lg.l)EN”

with
a;ul,zz,. e U
Then the following conditions are equivalent:

(1) ¢ € L (U) = GDWU;
(2) F(®) =0 forevery FEI;
(3) H (..., & ) =0 foreverya €]

Let now V and W be k-vector spaces and
O = (¢, Og..., 00 €T, (DVDW))
so that we have
o, =x;,+ ¢, with ¢, = ¢,(x) € VB Wz, x,,..., z,]]
for 1 <7< Let

0, () = > (at(ll,lz,...,ln) + biu"lz'""l”))xll‘lez . x,i”

Uplgorly) EN"
with
Uy lgpenly) Up gl
al 1:°2 n e V’ bl 1t 2 n e W.

Then it follows from the equivalence of conditions (1), (2), (3) the following condi-
tions are equivalent:

https://doi.org/10.1017/50027763000006024 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006024

GALOIS THEORY OF INFINITE DIMENSION 85

(1) PEL VB W) = GDVDW);

) Hy(. .., & )=0and H(. .., b;ll'lz """ W ..) =0 for every
a€]J;

(3) If we set

Uidgyinly) 1 1 I}

6,= z, + > a, ",
Uy lge. ) ENP

_ Uplgndy) 1 1 1

T,=x; + > R A R

Uy dgpensd ) NP
for 1 < ¢ < n and

6=(0,0,...,0), II=(r,r,...,,),
then ® € G(D(V)) and I € G(D(W)).

Hence the functor
L;: (Vec/k) — (Seb)

transforms a product to a product so that we can apply Lemma (2.4) to G.

Remark (2.5.1). Let G be a Lie-Ritt functor. It follows from the Proof of
Corollary (2.5) that the k-vector space Lie, G is isomorphic to the k-subspace of
0, defined by the linear equations

H.(..., a;“"’”""’l"),. ..) =0.
The k-vector space Lie G is isomorphic to the k-subspace

{¢,0/0x, + ¢,0/0x, + -+ +0,0/0x, € 60,,]

Aoyeesy Joyeinly)
¢, (x) = P a bl ol H (L e, ) = 0}
Uyl ENZ

Now we analyze a familiar group functor.
ExaMpLE (2.6). Let W be a k-vector space. For a k-algebra R, we denote by

GLR(R ®, W) the automorphism group of the R-module R &, W. So we get a
group functor

GL(W) : (Alg/k) — (Grp), R~ GL(RQ, W).

Since the functor GL(W) satisfies the condition of Lemma (2.4), Lie GL(W) is a
k-vector space.
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LEMMA (2.6.1). We have a canonical isomorphism
Lie GL(W) = End W
of k-vector spaces. Here we denote by End W the k-algebra of all endomorphisms of the

k-vector space W.

Proof. Let klel be the ring of dual numbers and q: kle] — k the k-algebra
homomorphism defined by g(¢) = 0. So we have

Lie GL(W) =Ker g, = {¢ € GL,, (k[e] ®, W) | g0 = 0}
= {QD € GLk[g](k[e] ®n W) I Q= I+ Egb with (/) e End W3.

Therefore we get a bijection

Lie GL(W) = End W, ¢+ ¢.
As in the proof of Lemma (2.3), it follows from the definition of the k-vector space
structure on Lie GL(W) that this bijection is an isomorphism of the k-vector
spaces.

LEMMA (2.7).  If we have a morphism of group functors
f:G,— G,
on the category (Alg/ k) of k-algebras, then f induces a map
f«:Lie G, — Lie G,.

If the functors G, G, satisfies Condition (2.4) so that Lie G,, Lie G, are k-vector
spaces, then

f.:Lie G,— Lie G,

is k-linear.
Proof. The lemma follows from the definition.

Let G be a group functor on (Alg/k) satisfying Condition (2.4) so that Lie G
is a k-vector space. Let k[e] be the ring of dual numbers. The structure morphism

k— kle]

induces a homomorphism
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i:G(k) — GkleD)
of groups. So for g € G(k), we can define
i: G(kle]) = G(kleD)
by
b i) hi(g).
Since i, leaves Lie G = Ker p,, invariant, we get a homomorphism
(2.8) G(k) — GL,(Lie G)

of groups.

So far we worked over a field k. We may however the field £ by a ring R and
a k-vector space by a free R-module. So the dimention of a k-vector space is re-
placed by the rank of a free R-module. Therefore for example Lie G is defined for
a group functor

G :(Alg/R) — (Grp)
as follows. Namely let V] be a free R-module of rank 1. Then
D(V) =RDV,
is an R-algebra if we define the product of elements of V] to be 0. Let
p:D(V)—R
be the projection which is an R-algebra homomorphism. We set
Lie G = Ker py,
where
ps: GID(V)) — G(R)

is an induced homomorphism of groups by the projection p. As in the case of the
field k, Lie G is defined using the ring R[e] of dual numbers over R. Let us de-
fine a homomorphism of R-algebra

g:Rle]—R
by g(e) = 0 so that we have a homomorphism of groups

g5 : G(R[e]) — G(R)
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induced by ¢. Then Lie G = Ker g,. To define an R-module structure on Lie G,
we have to introduce the functor L. For a free R-module V, D(V) = R@ V is
an R-algebra if we define the product of any two elements of V to be 0. We de-
note by p the projection D(V) — R which is an R-algebra homomorphism. So p in-
duces a homomorphism of groups A

04: G(D(V) = G(R).
If we set
L (V) = Ker p,,
then we get a functor
L : (Fmod/R) — (Set),

where (Fmod/R) is the category of free R-modules. The Proof of Lemma (2.4)
allows us to prove that if the functor L, transforms a product to a product, then
Lie G is an R-module. We can prove the following Lemmas as over the field k.

LEMMA (2.9). Let O, be the free R-module

Rllzx, x,,..., 2,01"0/0x, + Rllx,, x,,. .., x,11"0/ 0x,
+ -+ + Rllx,, z,,. .., 1,110/ 0x,.

of all formal vector fields. Then we have a canonical isomorphism
D:Liel',,— 0,

of R-modules.

LEMMA (2.10). For a free R-module W, we have a canonical isomorphism
Lie GL(W) = End, W

of R-modules. Here we denote by Endy, W the R-algebra of all endomorphisms of the
R-module W.

LEMMA (2.11). Let G be a Lie-Ritt functor defined over a field k. Then for a
k-algebra R, Lie Gy is a free R-module. We have a functorial isomorphism

Lie G, = R ®, Lie G.

Proof. We use the notation of the Proof of Corollary (2.5) so that G is a
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group subfunctor of I',, defined by a differential ideal I of
kllz,, z,, ..., 2,1y, ¥5. .., 9,3}

So the argument of the Proof of Corollary (2.5) allows us to prove the following.
Let U be a free R-module and

Q= (¢, Pgs..., 9,) € Ly, (V).
So that we have
o, =1x,+¢, with ¢, = ¢, € Ullz, z,,..., z,1]
for 1 <1< n Let

_ Uplypod) b Ly . Iy
¢, () 2 a z,'z, z,
Up gyl ENT

with
(020 PYIRY VB P | l
a, "ttt e UL

So by the argument of the Proof the following conditions are equivalent:

(1) @ € L, () = G ;
(2) F(®) =0 forevery FE;
(3) H,(..., a:l"lz """ W ) =0 foreverya€ ]

So as in the Proof of Corollary (2.5), the functor
Lg,: (Fmod/R) — (Set)

transforms a product to a product. Hence the Proof of Lemma (2.4) shows that Lie
G is an R-submodule of ©,, defined by H, = 0. Since the form H, is k-linear,
we have an isomorphism

Lie G, = R ®, Lie G

as R-modules (cf. Remark (2.5.1)).

The above argument allows us to prove the following result (cf. [S.G.A.D], Ex-
posé II, Proposition 3.4).

LEMMA (2.12). Let

G: (Alg/k) — (Grp)
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be a group functor. If the functor
Lg,: (Fmod/R) — (Set)

transforms a product to a product for every k-algebra R, then Lie Gy is an R-module
and we have an isomorphism

Lie G, = R®,Lie G
of R-modules.
Let now G be a Lie-Ritt functor defined over a filed k. It follows from (2.8)

interpreted over k-algebras and from Lemma (2.11) that we get a morphism of
group functors

(2.12) G— GL(Lie G).
So we get by (2.7)
(2.13) f :Lie G— GL(G) = End(Lie G).

The morphism defines a product on Lie G. We denote by f, the image of x € Lie
G by the map f in (2.13) so that

f; € End (Lie G).
Hence we get a k-linear map

f,:Lie G— Lie G.
We set

[z, y] =f,(y) forx,y€ LieG.

PropoSITION (2.14). Let
0, Ve liel’,

and

D:Liel,,— 0,
be the isomorphism of Lemma (2.3). Then we have
D(l9, ¥1) = [D(®), D(V],

the latter being equal to
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D(®)D(¥) — D(¥) D(P)
by definition. Namely the k-vector space Lie I',, forms a Lie algebra with vespect to the
product [, | which is isomorphic to the Lie algebra ©,, of all formal vector fields.
Proof. We may assume for the simplicity # = 1. Let k[e] be the ring of all
dual numbers. We prepare a copy kle’] of kle]. So let
O=zx+epl), T=x+ 9@ with o), ¢ € kl[z]].
Hence we have
D(®) = ¢(x)d/dx, D@ = ¢(x)d/dx.
Let us calculate in kle, '1[[z]]
U= (@+ep@) o(x+ ¢9@)(x+ ep@) — (x + ¢@).

We need

LEMMaA (2.15). Let f(x), g(x) € RlIx]] for a ring R. Then we have in

fle+eglx) =f@) +eg@f’ (@ inRIElZ]] *=0).

Proof of lemma. In fact since e =0, if f(x) = x", then we have
(+eg@) =z" + eg@nz"™

by the binomial expansion theorem. The lemma follows from this observation.

Repeated applications of Lemma (2.15) give us

U= (x—ep@) (x+ p@)(x+epl@) — (x+ ¢¢n)
=(@—ep@)- @+ ep@ +ePlx+ep@) — (x+ ¢a)
=(x—ep@)(x+epl@ + P + e/ @ox) — (x+ Px)
=z+epl@ + P + e @) —eplx+ cplx) + (@@

+ e @ (@) — (x + &¢x)
=z+eplx) + @) + e @) —eplx+ &Plx) + elp@
+ Y@ ex) — (x+ ¢P(n)
=zr+tepl@ +e@@) +e @e@) —eplx+ e¢x) — @+ &¢)
=zx+ep@) + P + e’ (@) ox) — epx) — e’ P(x) ¢’ (x)
— (z+ &¢)
= (@) — ¢ ¢ (1).
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Let F be a formal group over a ring R. Then
Flx,y =x+ y+ Bz, y) + terms of degree = 3

(cf. [S] LG, Chap. 4, §7). Then usually the Lie F of the formal group F is defined
as the free R-module R” equipped with the product

[z, ylr = B(z, y) — B(y, )
for z, y € R" (cf. [S] LG, Chap. 5, §1). If
f:F—G
is a morphism of formal groups over R, then
fi:Lie F— Lie G
induces a homomorphism of R-Lie algebras. Here f, is the linear part of f (cf. [S]

loc. cit.). We can also consider the Lie algebra of the associated Lie-Ritt functor F.

PROPOSITION (2.16). Let F be formal group over a commutative ring R. Then we
have a canonical isomorphism

Lie F = Lie F

of R-Lie algebras.

Proof. This follows from the Proof of Proposition (2.14) and from the formu-
la

xyx_‘ =y + [z, yl; + terms of degree = 3

where we denote F(x, y), ©(x) respectively by xy, z " (cf. [S] LG, Chap. 4, §7,
Formula 3).

§3. Construction of # and ¥

Let L/K be an ordinary differential field extension with derivation §. We
assume that the field extension L/ K satisfies the following condition.

(F.C) The field L is finitely generated over K as an abstract field.

We have the universal Taylor morphism
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i:L— L[] :ia) = i (0"a/n)t" fora €L

(cf. [U3], §1). Here as in [U3], L' denotes the abstract field structure of the dif-
ferential field L and f is an independent variable over Lh . We add & when we
want to emphasize that we consider the abstract field structure of a differential
ring.

So the power series ring L' [[]] is a differential ring with derivation d/d¢
and the universal Taylor morphism ¢ is a morphism of differential rings, i.e. we

have

. d .

i(ba) = au i(a) for every a € L.
Let {u,, u,,..., u,} (u; € L for 1 < i< n) be a transcendence basis of L over K
so that Klu,, u,, . . ., u#,] is isomorphic to a polynomial ring (here rigorously

speaking, we have to write L' , K" for L and K, which would make the notation
complicated). Hence we have the K-derivations

0/0u;: K(u,, u,,...,u,) = K, u,,...,un,) forl<i<n.
Since L is algebraic over K(u,, #,,. .., #,), each K-derivation
0/0u,: K(u,, u,, ..., u,) — Kuy, uy,...,u,) for1 <i<n

can be extended to the unique derivation L' — L' which we denote by the same
symbol 0/0u,. The field L’ endowed with the derivations 0/0u, will be denoted
by L'. Now we have in L' [[A1]1[t™'] two kinds of derivations: (i) the differentia-
tion d/dt ; (ii) the derivations 0/0u; applied on the coefficients of Laurent series.
Namely we set

(5 ad) = zg—‘; P oor £ el e L UM,
So we get a differential field
(L' (M, {d/at, 8/0u,, 8/0u,,. .., 0/0u,).
Its constant field is the algebraic closure of K'inL':
K'(cL' c L',
K'=(3 at" e L' (011t |a, € K' and a, = 0 for i # 0).

—ookn

The differential field
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@A™, (d/dt, d/0u,, 8/0u,,..., 3/0u,})

will be denoted by L*[[A1]1[¢ 1.

Let {v;, v,,..., 0} (v, € L' for 1 <i < n) be another transcendence basis
of the field extension L' /K" . So we can introduce the derivation 0/0v,: L'—
L' for 1 < i< n as above.

LEMMA (3.1).  The jacobians | 0v,/0u, |, | ou,/dv,| € L' are not equal to 0.
Proof. We know that the dimension of the L' -vector space DerK.(Lh) is
equal to the transcendence degree tr. d[L: K] = % and that
{0/0u,, 0/0u,,..., 0/0u,}
and
{0/0v,, 0/0v,,..., 0/00v,}

) . " b )
form respectively basis of the L -vector space Derg: (L ). So we can find a,; €
L such that

0 n 0

(3.2) o = 2 %)

for 1 < ¢ < n with | a;; | # 0. It follows from (3.2)

]

0v,
= = Q.
6%,» ij

so that | Gv,-/au,-’ # 0. For the same reason we conclude | Ou;/ 0v, | #+ 0.

Let us denote by
HomK»vect(L’ L)

the L-algebra of all K-linear endomorphisms of the K-vector space L. Lemma
(3.1) shows that if we consider an L' -subalgebra of

HomK~vect (Lr L)

generated by the 0/0u;, then the L' -subalgebra is uniquely determined. So the
definition of any differential L*-subalgebra of L*[[A]1[# '] is independent of the
choice of a transcendence basis of L/K. Since there is no reason to distinguish
d/dt from the other partial derivations, we may denote d/dt by 0/0t.
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DerINITION 3.3. We denote by #,, a subfield of L*I[A1[+"] generated by
L’ and 1(K), which is a differential subfield of

@'Mi™, 6/0u, 0/0u,,..., 0/0u,, d/8).

%, is a differential subfield of L'[[]1[t™'] generated by i(L) and K. We de-
note A, ,x, €,k respectively by #, £ when there is no danger of misunderstand-
ing the starting differential field extension L/ K.

ExaMpLE (3.4). Let us analyse Example (2.1) of [U2]. In this example K =
C(z) and L = K(y) with y = exp z, the derivation § of L being d/dz. So we
have y(") = y for any integer # € N. Thus since we have i(x) = x + ¢, we have

H=iK), L' =iCG@)L = L(» < L'[[A[].
It follows from the equality
(3.4.1) i(ly) =yexpt
that we have in L' [[A1[t"]

iDL" = iK@HL' = i(K) (yexpt)L" = i(K).L (expH = K (exp ).
Hence this subfield is closed under the derivations 0/0y and 0/0f and therefore
¥ = H(exp t). See Examples (3.8), (3.9) and Proposition (3.13).

Now we have the universal Taylor morphism

i, L' = L' [w, w,..., w,],
where w,, w,,..., w, are independent variables. So we get a morphism
LU =L Uwy, w,..., w, 0117

of the differential algebras with the (# + 1) derivations sending

2 a,t'to X ila)t".

—cokn —ookn
Restricting this morphism to the subfield £, we get a morphism
(3.4.2) (: 89— L' (w, w,..., w, 17

Let us see what happens in our Example (3.4). We take #, = y. Let us calculate
the image of 4(y) under the morphism ¢. Since
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() € L' [lw, 1171,
let us set ¥Y(w,, & = ¢(i(y)). It follows now from (3.4.1)
Y(w, ) = (y+w)expt € L' [[w, A1t 1.

This shows that Y{(w,, £ is nothing but the general solution of the differential
equation dy/dxr =y, if we notice that the differential equation gy’ =y is

oY _
translated into = = Y in the differential algebra L' [Lw,, 10t

Let us study a more general situation. Let K be an ordinary differential field
and L = K <y such that

(n—1)

35) y” =FQ, y,...,y"") with Fly, ¢',..., 4" ") €Kly, y,..., y" " 1.

More precisely we consider the differential equation (3.5) and we define L as a
quotient field of

K{y} /(differential ideal generated by 4™ — Fly, y/,..., y""")).

We take

_ @ _ -1 __
Y=, Y =Uy..., Y =u,.

If we set

(Gy) = Yw, ) = Yw,, w,,..., w, ) €L ([w, w,... w, 110t

then
2"Y oY "'y
(3.6) —=FY, 5,...,
at" ( ot at"'l )
and since i(ym) ) = y(i),
0'Y(u, 0) _

, v +w, € L' [lw, w,..., w]l.

ot
Namely Y(u, 0 is the generic solution of the differential equation (3.5) or is the
solution depending on the # parameters w;, w,, ..., W, The derivation 8/0w, is
really a differentiation of the solution ¥ (w, ) with respect to the initial value w;,.

Remark (3.7). In general the field @' is not of finite type over the field 7

We can construct such an example by considering a simple differential equation

y = F(y).
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ExAMPLE (3.8). The WeierstraB € -function. Let A be a differential field and
y an element of a differential overfield of A satisfying a differential equation

(3.8.1) v =4y — g’ — g
with g,, g € Cy such that
g —27g. # 0.
The equation
Y’Z=4X’— g X7*— g,7°
defines an elliptic curve E in PSCK and (1, y, ") gives us an L-valued point
g:SpecL— E

if we set L = K(y, y’). We notice that the differential equation (3.8.1) contains as
a particular case, K = C(x) and y is the WeierstraB & -function with g,, g; € C.
We denote Y/X, Z/X by u, v so that we have v* = 4u’ — g,u” — g, and the
function field of the elliptic curve E is

Cylu, v).
Let us take
X,Y, 2 =1(,0,1

as the origin of E. The L-valued point g of E defines a tangent vector dg at g and
it follows from the definition that

0w =0(g* W) =dy =y, (68 () =6(g" W) =) =y”
(cf. Example (2.15), [U2]). So we have
(3.8.2) 10g = v0/0u |-,
If we take u = u, = y, then
ity) = Y € L' [[A].
The power series Y(¢) satisfies
<6Y

2
5{) =47’ — g,V — g,

where we identify C with its image
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i(Cp c L' < L [IA™.
The points
(u, v) = (y, y), (Y, 0Y/00)

are L' [[#]]-valued point of E. We writing the addition on the elliptic curve E by
+, the sum

(X, 7,1)=(Y,aY/0t) — (y, y)

of the two points on E is an L' [[f]]-valued point of the elliptic curve E. Since
the vector field v0/0u on E is translation invariant, it follows from (3.8.2) and
from Lemma 16 of [U1] that the L' [[A11¢ " 1-valued point (X, ¥, 1) of E satis-
fies (3.8.2) too. The equation (3.8.2) is written in terms of (X, V) as a system

0X _ o
S = — 67"+ g, XY
B89 oY 1
g o~ o~ ~ ~
3},‘\: -ZZ—XY—g3X2+gZY2~ 5

Since the initial condition
X, Y0, =y, y) — (, y)

at £ = 0 is the origin (0,0,1), it follows from the equation (3.8.3) that all the coeffi-
cients of the power series X, Y are in K|l . So

H(Y,0Y/0t) = H((Y,dY/0t) — (y, y)) = H(X, D).
Since the coefficients of X, Y are in K,
0X/0y = 0Y/oy =0
and hence X (X, 1) is closed under the derivation 8/8y. Thus
H(Y,0Y/00) =KX, 1) =¢.

See Examples (3.4), (3.9) and Proposition (3.13).

ExaMpLE (3.9). Let M/K be an ordinary differential extension and
A= (a,) € M,(EK)

a square matrix of degree m. If a matrix
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Y= () € M, (M
satisfies a linear differential equation
(3.10) Y’ =AY,

where we denote by Y’ a matrix (¥,);<, ;< Then a subfield L = K(¥;) 1<, ;j<m
of the differential field M is colsed under the derivation. If we denote the matrix

(i(y,) € M, (L' (117D
by i(Y). Then if we set
Y =imy™’,
then the matrix Y(#) satisfies a differential equation

(3.11) %—Ig =i(A)7Y,
where i(4) = (i(a,)) € M,,(L" [[A10¢']). Equation (3.11) is an identity be-
tween the matrices in M,,(L " [[A1[£']). Since i(4) € M,,(K " [[A]) and ¥(0) =

1,,, we can show by induction on /, using (3.11) that the coefficients of Yin t'is in
K' forl= 0,1,2,.... Namely

Yt € M,(K' [[f1]).
Now in the field L' [[£11[¢7"], we have

(3.12) L' i) =L iE&D) = L' (K (D)
=L iE®GEDY ™) = K (PO).

Here we denote for example by L' .i(L) a subfield of L" [[f11[¢”'] generated by L
and #(L). So if we take a transcendence basis #,, #,,. .., #, of L/K and introduce
the derivations 0/0u; to obtain Lf, then by (3.12) L*,i(¥) = X (YD) is closed
under the derivations 0/0u;, 0/0t and hence coincides with £ (cf. Examples (3.4),
(3.8) and Proposition (3.13)).

In Examples (3.4), (3.8) and (3.9), the extensions L/K are G-primitive and
we have ¢ = i{(1).L" In general if we denote by K, the algebraic closure of K in
L, then the field C,, of all constants of X is th. We have the following general
result.

ProposiTiON (3.13). If L/K is a G-primitive extension, then € = i(L).L" and
L/ H is a G -primitive extension.
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Proof. 1t follows from the definition of a G-primitive extension that G is an
algebraic group scheme defined over the field Cy of all constants and that there
exists an L-valued point g : Spec L— G of the algebraic group G satisfying the
following two conditions: (1) There exists a right invariant vector field @ € Lie
Gy such that

(3.13.1) log = a;

(2) We have K(g) = L. (See [U1], p. 784 for the definition of the logarithmic dif-
ferential I0g.) Let Spec A € G be an affine neighbourhood of the image of the
L-valued point g and

A= Cylz, z,..., 2,].
So we have a Cg-morphism
g  A—L, (zmg for1<j<m

of Cg-algebras. We have by definition dg; = (I0g)z;, which is equal to a(g)z; =
(az)) (g) by (3.13.1) for 1 <j < m. Since az; € A Q, K,

a/zj(g) = jj(zl, Zyyenny Zm);

where f; is a polynomial with coefficients in K. So we have

(3.13.2) 02, = £(g, Gy &) forl<j<m.

If we pass from L to L' 4] through the universal Taylor morphism 7:L—
'

L [[t1],

(g, ilgy,..., ilg,)

gives us an #(L)-valued (hence an L[[f]]-valued) point of Spec A C G which
satisfies

Gi3n 8D i, i), i) r1<i<m,

where the polynomials
F e K'IMIZ, Z,..., Z,] (1<j<m)

are the image of f; € K[Z,, Z,,..., Z,] by the universal Taylor morphism K—
K ' [[A1]. We denote this L[[f1]-valued point of G by (g). On the other hand

] ] ]
(2, , 2 ,..., 2,)
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gives us an L —valued (hence an L' [[£]]1-valued) point of Spec A € G, which we
denote by g'1 . So i(g)gh “is an L' [[A]-valued point of G. It follows from the
construction that i(g)gh “Uis in fact an i(L).L " -valued point. Since

(3.13.4) (d/dD) (i(@g' ™) = a € Lie G, C Lie G,

by Lemma 16 of [Ul], the point i(g)g.i ! satisfies the differential equation
(3.13.3) too. Namely

i(@g" =@y &y..., &

is a power series solution of (3.13.3) and its initial condition at t =0 is 1 € G.
Hence the initial conditions

50 € C,c K for1<j<m.

Since the coefficients of the F]- are power series with coefficients in K|l , the
g,(f) are in K'[[A]. So for any D € DerK.LIz we have Dg;(f) = 0 so that

(3.13.5) IDG(@g' ™ =0
hence in particular
(3.13.6) ID(i(g)g" ™) € Lie G,,.
By (3.13.5) the subalgebra
i().L =K G@.L") =ik @eg L") =HG(@g ™

of LIIANE ] is invariant under the derivations of L' /K' . Therefore ¢ =
K (i(g).L") = i(L).L*. Now the proposition follows from (3.13.4) and (3.13.6).

A G-primitive extension is a particular case of a strongly normal extension
(cf. Kolchin [K], Chap. VI).

THEOREM (3.14). If L/K is a strongly normal extension with Galois group G,
then € /K is a strongly normal extension with Galois group GK;: Heve K, is the algeb-
raic closure of the field K in L.

Proof. 1t follows from Theorems (2.13), (3.10) of [U3] that G is an algebraic
group scheme over the field C = Cy = C, of all constants and there exists a
K-scheme X with derivation that is a model of a differential field extension L/K
such that the algebraic groups Gy operates on X and such that we have a
K-isomorphism
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(3.15) Gy Xz X=G*x ., X—= XX, X, (g, 0~ (gx, )

of schemes with derivation. We show £ = #(L).L* in L*[[11[¢#"]. Let ¥ = Spec
A be a K-affine open set of X with A = Kly,, ¢,,..., 9,]. So the subring A of the
differential field L is closed under the derivation and L = K(y,, ¢, . . ., 4,) . K,
being the algebraic closure of K in L, by the Hilbert Nullstellensatz we can find a
finite algebraic extension K, of K, such that the K-scheme Y has a K,-valued
point. We consider L' = L &y K, which is a finite algebraic extension of L’ and
is a differential field. In the Laurent series ring L' [[A11t7"], which is a differen-
tial overring of L' [[A11[¢7"], we have by Lemma (1.1), [U3]

KL =i.L" L =iK.L'®Q,. L =%®,. L",
WL =i).L'. L' =i)L'®,. L =2, L'",
eI =¢®, L.

To introduce the partial differential field L’ we take a transcendence basis
{uy, uy,y. .., u,}

of the extension L' /K" . So
{uy, uy,. .., u,}

. . b . . e

is also a transcendence basis of L /K; and thus the partial differential field
. . S . . . . .

structure L’* is defined on L’ . So since L is a field, to prove that the inclusion

i(L)L' < & is in fact an equality, it is sufficient to show that the natural morph-

ism

L'®,. L' =i ¢ =2, L'

is an isomorphism
Since we have a K,-valued point of Yy = Spech , we have a morphism A’
— K; of abstract K; ~algebras, the isomorphism

Diff-hom, (4, K, [[f]]) = Hom,. (4", K, )
of Proposition (1.4), [U3] gives us a (K; [[A], d/df) -valued point
f,:Spec K, [[A1— Y
of the scheme Y with derivation and hence a (K2|l L[], d/dD -valued point
f,:Spec K, [[A1— X

of the scheme X with derivation. Consequently we get a (L’t| [[£]1, d/dt)-valued
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point
f,:Spec L' ' [[A1— X

of the scheme X with derivation by composing the morphism f, with the inclusion
K; [[A] < L' '[[A]. Since the universal Taylor morphism i:L— L' [[]]
composed with the inclusion L'[[f]] <& L' [[f1] defines another (L' [[A],
d/db -valued point

f,:Spec L' ' [[A1]1 — X

of the scheme X with derivation. It follows from (3.15) that there exists a point

g€ G(Cpyy) =G
such that
(3.16) &=ty fi=&"f
In fact by (3.15) the K-differential morphism

(fyr £ :Spec L' [[A] — X %, X

gives a K-morphism

Spec L' ' [[f]1 = G x . X

and hence by composing with the projection to the first factor, a differential
morphism

g :Spec L' [[A1— G.

Since G is a scheme with trivial derivation, the differential morphism g, factors
through a Spec C,,(,,;-valued point yielding a morphism

go:Spec Cp vy = Spec LI'—¢G

of schemes. We translate (3.16) into the language of rings. To this end let Y,(t) be
the image of y; by the universal Taylor morphism i:L— L' [[A1(c L'" 14D
and Z,(f) € K, [[A1 < L' ' [[#]] be the image of ¥, by f, Then (3.16) shows

(3.17) L'GK), Y, Y,..,Y,)=L"GK, Z, Z,..., Z,)
in L' " [[A1. Since the Z, (1 < j < m) are in K,[[A],
0Z;/0u, =0 for 1<[<mn

and

https://doi.org/10.1017/50027763000006024 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006024

104 HIROSHI UMEMURA

iK)(Z, Z,,...,Z,)
is closed under the derivation d/d¥, the field
LK), Zy, Zy,..., Zy)
is closed under the derivation d/dt. Thus the right side of (3.17) is closed under
{d/dt, 0/0u,, 0/0u,,..., 0/0u,

and hence so is the left side. The left side of (3.17) is L’*.i(L). So L*.i(L) is
closed under

{d/dt, 0/0u,, 0/0u,,..., 0/0u,}.

Therefore we have

el =14l
in L*[[11[¢™] by definition of £, which is the
{d/dt, 0/0u,, 8/0u,,..., 0/0u,}-invariant

subfield of L*[[A1[¢ "] generated by L* and i(L). Since

K =1iK).L" = QUK ®: L,
we have thus proved

¢=4i0).L" = QUL ®:L"
so that we have

P=LQuHA.

Hence X &, A is a model of the differential field extension £ /X, which is a prin-
cipal homogeneous space of Gg & K. Namely we have an isomorphism

Gy*Xy Xy =Xy XX, (g, 2 (gz, 2
of schemes with a set of derivations

{d/dt, 3/0u,, 0/0u,,..., 0/0u,}-invariant.

Since C, = Cy, = K: , £/HK is a strongly normal extension with Galois group
GK,' by Theorem (3.10) of [U3] (only ordinary case is treated there but the result
is easily extended to partial case).
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§4. Functors 7 ,,,, and o,

Let L/K be an ordinary differential field extension satisfying the condition
(F.C) as in §3. We have introduced the differential field # and the differential
field extension /X in §3. They are differential subfield of L [[w, A1[¢™"]. For
an L' -algebra A we denote by

Diff-hom, (¥, Allw, A11t™'1)
the set of all differential morphisms
f €= Allw, 010t
that coincide with the morphism
€= L [[w, A1
in (3.4.2) when restricted to the differential subfield #. Namely the diagram
¢ 5 Allw, 01047

t 1
H — L'[lw, A1

is commutative, where the lower horizontal arrow is the canonical morphism ¢ |ﬂ

and the left vertical arrow is the inclusion, and the right vertical arrow is induced
) 8 b

from the structure morphism L — A of the L -algebra A. We say that

f € Diff-homg (¥, Allw, 11171
is an infinitesimal deformation of the canonical morphism
¢— L [[w, A1t

if the reduction of f modulo the nilpotent radical N(A) of A coincides with the
morphism ¢ in (3.4.2), i.e. if the diagram

¢ —  L'[lw, 11t
| !
Allw, A1t — A/NQAI[[w, A1t

is commutative. Here the upper horizontal arrow is the morphism (3.4.2), the low-
er horizontal arrow is the reduction modulo N(A) of coefficients and the right
vertical arrow is induced from the composite morphism

L'—A—A/N(A)
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of the structure morphism L' — A and the reduction A— A/N(A). As in our
preceding paper [U3], we introduce a functor

F gyt (Blg/L") — (Set)
by

F 4,5 (A) = (f € Diff-homg (¢, Allw, 11[¢#7']) | f is an infinitesimal
deformation of the canonical morphism ¢: % — L' [[w, A1 in (3.4.2)}.

The definition of the functor #4,,, looks dependent on the choice of the trans-
cendence basis

{uy, uyy. .., u,}
of L' /K"
ProposITION (4.1).  The functor F o, is independent of the choice of a transcend-
ence basts oth /K",
Proof. Let
{uy, uy,. .., u,t, v, 0,..., v}

be transcendence basis of L' /K" . The infinitesimal deformation functor F oy
defined by using

{uy, uy,..., u,)
and

{v,, vy,..., v,)
are respectively denoted by ¥, and ¥, We show that the functors ¥,, #, are
mutually isomorphic. Using the notation of the Proof of Lemma (3.1), we have

0/0u;, = 2 a,;0/0v,
i=1

for 1 <7 < n with (a@,;) € GL,(L). We denote the universal Taylor morphisms

(L}, {0/0u,, 3/0u,,..., 8/0u)) — L [{w, w, ..., w,]]
(L*, {0/0v,, 8/00,,..., 0/00,}) — L' [z, 2,..., 2,]]

respectively by ¢, and ¢,. We define an L' -morphism
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o:L"' [[z,, z,..., 21— L' [[w, w,..., w,]]
by
o(z) =1,(v) — v,
for 1 < i < n so that the diagram

L — L' [z, z,..., 2,]]

(4.2) I Le

L —— L'[lw, w,..., w]]

is commutative. If we define an L' -morphism
¢: L' [[wl]— L [[]]
by
dw) = i,(u;) — u,
then
@o¢ =1d, oo =1d

by the commutative diagram (4.2). Hence the morphism ¢ is an isomorphism.
Moreover if we identify

8/0u, with 3 a,d/00, (1 <i<n)
j=1
and
8/0w, with > i,(a,)d/0z (1 <i<n),
j=1

L . L Y
then the morphism in (4.2) commute with the derivations. For an L -algebra A,
the morphism ¢ induces an A-isomorphism

0, Allz, 41077 — Allw, A10¢7]

by
o) =t ¢z) =0) QA=<Li<n).

Now if

f:(&, {8/t 0/0u, d/0u,,..., 0/0u,)) — Allw, A1t
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is an infinitesimal deformation of the canonical morphism
(%, (8/0t, 3/0u,, 8/0u,,. .., 8/0u,)) — L [[w, A1,
then
o°f (£, (8/0t,0/0v,, 0/00,,...,0/0,)) — Allz, 11[t7"]
is an infinitesimal deformation of the canonical morphism
(¥, {0/0t,8/0v, 8/0v,,...,0/00,}) — L' [z, 411t "]
and a mapping
F,A—-FA, froef

gives an isomorphism of the functors %, and &%,. This proves the proposition.

We can find a differential K-subalgebra R of L that is of finite type over K
as an abstract K-algebra such that L is the quotient field of R (cf. Lemma (1.5),
[U3])). Let

Y Yoo o s Yy € L

be a generator of the K’ -algebra R' so that we have
Kly, ¥5..., 4] =R K@) 4,..., 4,) = L.

Since R is closed under the derivation, we have a system of differential equation

(43) yz/ = f;(yxy yzy- ..y ym) 1 S 2‘ S m’
iz, Z, ..., Z,) being polynomials with coefficients in K. As in §3, we may
assume that {y,, ¥,,..., 4,0 (n < m) is a transcendence basis of L/K and we use

{41, ¥5y..., ¥, to construct A and &. Let
i:L—>%— L' [[w, 410t

be the composite of the canonical morphisms. We denote i(y,) by Y;(w, #) for
1 <;j < m and identify L, € with their images in L' [[w, A1[¢™"]. In particular
y, and Y;(w, f) are identified. It follows from the construction of £ that ¥;(w, #)
is in fact in L' [[w, 11 for 1 <j < m. Now the system (4.3) of differential equa-
tions is translated into the system

(4.4) aY,(w, ) /ot =F(Y,, Y,...,Y,) 1<j<m.

Here the
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F(Vy Y., V) 1<j<m
are polynomials in the V, (1 <[ < m) with coefficients in #(K) which is a sub-
algebra of L' [[A].
LEmMA (4.5). Let
fE Fyp A
be an infinitesimal deformation of the canonical movphism
£~ L w, 211t
in (3.4.2). Then f(Y)) is in Allw, 1] for 1 < j < m and there exists
0= (¢o,(w), @, (w),..., ¢,(w)) € I, (A)
such that we have

FY) = Y,(0w), D frl<j<m.

Proof. It follows from the definition of an infinitesimal deformation
f(Y)=Y,+Z with Z, € NAI[[w, A1[¢]
for 1 <1 < m. We show
Z, € NAIlw, t].
To this end we denote by Z,_ the polar part of Z, (with respect to ¢) so that
Z,=2Z —Z_
is the regular part of Z,. Therefore we have
Z,=2_+2,, Z_<€t'NADIWI", Z,<€NAIlw, 1]
for 1 < ¢ < m. Since f is a K-morphism of differential algebras,
(f(YD, f(Yy,..., f(¥,)
satisfies the system (4.4) of differential equations:
(4.6) of(Y)(w, ) /0t = F,(f(YD, f(Y),..., f(¥,)) 1=<i<m.

The coefficients of F; are in ¢(K), hence in K[[f]] and in particular regular. We
have to show that Z,_ = 0. Assume that Z;_ # 0. Then among the Z,_ (1 <¢
< m), let Z,_ take a pole of the highest order d = 1. It follows from (4.6) that we
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have

oY, +Z_+2)/0t=FY,+ Z_+Z,,Y,+ Z,_+ Z,,...

@D oY, vz, +2z,).

We denote the ideal generated by the coefficients of Z,_ (1 <7< m) by I. So I C
N(A). Let us first assume I” = 0. Since I° = 0 and since the F; are polynomials
with regular coefficients, the left side of (4.7) has a pole of order d + 1. Whereas
the order of the pole of the right side is at most d. This is a contradiction. So we
have proved Z,_ = 0 if I’=014I"# 0, then we work over A/I? instead of A
itself to conclude that the coefficients of Z,_ (1 < i < m) are in I”. So I = I? and
consequently I = I' for every positive integer [. If the ideal I is generated by a fi-
nite number of nilpotent elements, I'=0for a sufficiently large integer [ There-
fore I =0 and hence Z;,_ =0 for 1 < ¢ < m. If the ideal I is not finitely gener-
ated, then we replace A[[w, A0t by Allw, A10¢1 /(w"). The above argument
shows that Z;_ = 0 mod w' for every | € N so that Z,_ = 0. So we have proved

f(Y) € Allw, 11 for 1 < i< m.
Let us set in L [[w, A1[¢7']
fX)w,0) —y' =¢w forl<i<m
which are in L' [[w]] and
D= (¢, @s..., ¥n).
Here we denote by y,-|I the image of y; € L by the natural morphism
L' — L [lw, A0
Since f is an infinitesimal deformation of the canonical morphism
£~ L' [[w, A
in (3.4.2), we have
Y,(w, ) = f(Y,(w, H) mod NA)[[w, 1] for 1 <i<m
and hence
Y, (w, 0) = f(Y,(w, 0)) mod N(A)[[w]] for 1 < i< m.
Since we take #; = y; for 1 < ¢ < n, we have

Y,(w, 0) = y: + w,
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by definition and consequently

w;, = ¢;(w) mod N [[w]] for 1 <i<n
by the congruence above. So

0 = (¢,(w), @, (w),. .., ¢,(w))
is an infinitesimal coordinate transformation, i.e. we have
oer, (4.

Since

L' [lw, A1 = Allw, A1 ('~ Ow), t= 1)

is a 0/0t-differential L' -morphism and since the coefficients of F,Q1<L4
<m) arein L' [[A] (< L' [[w, A1),

(Y (9(w), B, Y,(O(w), D,..., YV, (@w), 1)

is also a solution of (4.4). Since the coefficients of the system (4.6) of differential
equations are in A[[w, 1], the solution

(YD, f(Yp,..., f(¥,))

is determined by the initial condition

(F(Y)w, 0), (V) (w, 0),..., f(Y,)w, 0)).
To prove

f(Y,(w, D) = Y(Pw), D forl<i<m,
we have to show that their initial conditions coincide:

f(¥Y)w, 0) = Y (D(w), 0) for1<i<m.
In fact we have
(4.8) f¥Y)w, 0) =Y, (@w), 0 forl<i<n
by definition. To see

F(Y)(w, 0) =Y (®w), 0) forn+1<i<m,

we set

LI'=i0l) =iK)(Y,Y,...,Y,)
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which is a subfield of the ring L' [[w, #]]. Identifying the field
i(K) (€ L' L' [[w, A1)
with K' < A[[w]], we define two K-algebra morphisms
hy, hy: L' — Allwl]]
respectively by
h (Y (w, ) = f(Y)(w, 0) and h,(Y,(w, 1)) = Y,(®(w), 0)
for 1 < ¢ < m. Since the morphism
hy:L'— Allw]]
is the conposite of K-algebra morphism

fly:L'— Allw, 1]
and the A[[w]]-algebra morphism

Allw, 1] — Allwl]]

of substituting w = 0, the morphism
By L — Allwl]
is a well-defined K-algebra morphism. Similarly
hy: L'— Allw]]
is the composite morphism of the L' -algebra morphism
LcL'[[w, 01— L [[w]
of substituting { = 0 and the L' -algebra morphism
L’ [[w]] = L{[w]]

of substituting w = @(w). We have to show

LEMMA (4.9). The morphisms
hy, hy: L' — Allw]]

coincide.

Proof of Lemma. Let us set
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Ly= 1K@y, ¥,..., 4)) = iKY, V..., 1)

which is a subfield of L. Then %, and A, coincide on L, by (4.8). We show
hi(s) = h,(s) for every s € L. Let

(4.10) s'+as T+ +a,=0 (a,a,...,a, €L

be the minimal polynomial of s over L, It follows from the definition of in-
finitesimal deformation that every coefficient of the power series 2,(s) — h,(s) €
Allw]] is nilpotent. We first prove that the constant term of the power series
h,(s) — h,(s) is equal to 0. Composing the morphisms

hy, hy: L'— Allwl]]
wiht the morphism

Allw]]— A
of evaluation at w = 0, we get two K-algebra morphisms
hy, hy: L' — A

such that %, and h, coincide on L, The constant term of h,(s) — h,(s) is &,(s),
h,(s) which we denote by a. By (4.10) we have

(4.11) hy(s) + h(a)h ()™ + -+ + h(a) = 0.
Substituting &,(s) = h,(s) + a in (4.11), we get
(4.12) (hy () + @' + hy(a) (y(s) + '™ + -+ + hyla) = 0.
Since A, coincides with &, on L,, it follows from (4.12)
(4.13) (hy(s) + @' + hy(a) (y(s) + @'+ -+ + hyla) = 0.
Applying ﬁz to (4.10), we have
(4.14) 7y () + hya) ()™ + - + hy(a) = 0.
If we assume here that a® = 0, then it follows from (4.13) and (4.14) that
G (hy(s))a =0,

where we denote the polynomial

'+ )z’ + o+ hyla)

by G(x) and dG/dx by G’(x). Since we are in characteristic 0, /,(s) is a simple
root of the characteristic polynomial, G'(J1,(s)) is a non-zero element of a field
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h,(L) and hence is a unit in A. Therefore a = 0. If @ # 0, then the argument of
proving Z,_ = 0 in the proof of Lemma (4.5) shows that & = 0. By the same argu-
ment we can show that for the reductions

by, by L' — Allw]] — Allw]] / (w)*
modulo
w"* = (w, w,,..., w)"
of the morphisms h,, &, we have &,(s) = h,(s) for every non-negative integer k.

So h,(s) = h,(s). This is what we had so show.

Remark. In the argument of proving Z,. = 0, the ideal I should be finitely
generated. Since 4,(s) — h,(s) has infinitely many coefficients, we have to consid-
er the reductions modulo ()’ of the morphisms &, &,

¥ and A are differential algebras with a set

{0/0u,, 0/0u,,..., 0/0u,, 0/0t
of derivations. So we can consider the universal Taylor morphisms
¢ — (& [lw, TV, {0/0w,, 8/0w,,..., 8/0w, 8/9T})
and
H— K [w, T11, (3/0w,, 8/0w,,..., 8/0w, 8/0T}).
For example the universal Taylor morphism sends an element a € £ to

lal
_1_ a walwaz e wanTan-H
! 1 W2 n ’
a=(0;, ey, 0y, ENH a. aalulaazuz. .. aa”unaanﬂt

which is an element of the power series ring € ' [[w, T1]. For an €' -algebra A
we denote by

Diff-hom,, (¥, Allw, £1])
the set of all differential morphisms
f:¥¢— Allw, #]
such that the restriction to A of f coincides with the universal Taylor morphism
K= A w, 11— 2" [w, A1,

Namely the diagram
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¢ L Allw, M

1 1
H — £ [lw, 1]

is commutative, where the lower horizontal arrow is the universal Taylor morph-
ism, the left vertical arrow is the inclusion map, and the right vertical arrow is in-
duced from the structure morphism P > Aofthe ¢' -algebra A. We say that

f € Diff-hom, (¢, Allw, A1)
is an infinitesimal deformation of the universal Taylor morphism
¢— 2" [[w, A

if the reduction of f modulo the nilpotent radical N(A) of A coincides with the in-

dentity, i.e. if the diagram
¢ - 2w, 1]

rl !
Allw, 11 — A/NAIlw, ]

is commutative. Here the upper horizontal arrow is the universal Taylor morph-
ism, the lower horizontal arrow is the reduction modulo N(A) of coefficients and
the right vertical arrow is induced from the composite morphism

¢' - A—A/N(A)

of the structure morphism #" — A and the reduction A— A/N(A). Similarly as
we defined the functor #,,,, we introduce a functor

Ty (Alg/2") — (Seb)
by

F /(A = {f € Diff-homg (¥, Allw, f11) | f is an infinitesimal deformation of
the universal Taylor morphism £— £ [[w, A1}.

Then the argument of the proof of Proposition (4.1) shows that the definition
of the functor §,, is independent of the choice of the transcendence basis

{uy, u,,..., u,}

of L' /K' . The functor T ¢y is more natural than 4,y It has however a dis-
advantage that the reference field fﬁ is in general very big. We denote the image
of y; under the universal Taylor morphism by Y;(w, T) for 1 < ¢ < m. The argu-
ment of the proof of Lemma (4.5) allows us to prove
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LEMMA (4.15). Let f € §g 5 (A) foran £ ' —algebra A. Then there exists
@ = ((01(W), (02(1'0), L] (Pn(w)) € Fn_‘(el (A)
such that we have

(Y =Y,(0w, D forl<i<m.

In fact since we are working in the power series ring instead of the Laurent
series ring, it is easier. In the proof of Lemma (4.5), using the notation there we
had first to show that the infinitesimal deformations f(Y,) are in A[[w, £]]. But
this condition is satisfied in the case of Lemma (4.15) by definition.

Let L/K be an ordinary differential field extension and K € M C L a dif-
ferential intermediate field. We take a transcendence basis

{u,, uyy. .., 0}
of M' /K" and extend it to a transcendence basis
(g, gy ooy Uy Upryry. ., Uy
of L' /K" . So
M', {8/0u,, 0/0u,,. .., 0/0u,})
is a differential subalgebra of
(L", {8/0uy, 3/0u,,..., 0/0u,)).

By construction in §3 M = #,, 4 is a differential subfield of M*[[f]1[¢ ] and £ a
differential subfield of L*[[f11[¢7"]. So both &€ and J are differential subfields of
LIIATE™ and M is a differential subfield of €. Let A be an € -algebra and

f:¢— Allw, T1]
be an infinitesimal deformation of the universal Taylor morphism
¢— 2" lw, T1.
By restriction f induces an infinitesimal deformation
flyM— Allw, w,, ..., w, T11.
Since f|ﬂ is a differential morphism, it factors through the differential subalgebra

A[[wly wz,. L] wn'y 7‘]]
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of
Allw,, w,,..., w,, T11.
Hence f|ﬂ is an infinitesimal deformation of the universal Taylor morphism
M= A Ly, 0,y w0, TN = 27 [Lwy, Wy, Wy, T11.
If we denote the restriction of the functor
Fun: Alg/M") — (Seb
to the subcategory (Alg/ ¥ ') of (Alg/ M ) by
Swn Our ‘2 ’

we have a morphism
b

S = Sun Qur £
of functors. Namely we define
T @ = Ty @ £ (A = F gy (D
by sending
FE€E Ty A tofly €Fymd)

for an &' -algebra A.

PrROPOSITION  (4.16).  For every £ h —algebra A, the functorial morphism
T = B Qur £ () = A

18 surjective.

Proof. In Proposition (1.4) of [U3] we have proved that for an ordinary dif-
ferential ring the universal Taylor morphism is universal among the Taylor
morphisms. The same argument allows us to prove it for general case. Let f €
Sy and g € HomK(J%“ , A) be the morphism corresponding to f by the iso-
morphism

Diff-hom,, (U, Allw, T11) = Hom,. (4", A),

which is the universality of the universal Taylor morphism. Then g : "> Aisa
# ' _infinitesimal deformation of the inclusion /' — £. Namely the reduction

MY —A— A/NA)
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of g mod N(A) is the inclusion map
M — 2 (> A—>A/NA)).

It is sufficient to show that we can extend the corresponding morphism g : .
A, which is an infinitesimal deformation of the inclusion morphism M et , to
an infinitesimal deformation of the identity morphism Id: ¢' > @' To this end
it is sufficient to prove by Zorn’s lemma the following

LEMMA (4.17). Let M’ be an abstract intermediate field between M and If
the nfinitesimal deformation g : M‘ — A is extended to an infinitesimal deformation
g’ M — A of the imclusion morphism M < " then for any element u € ¢, we
can extend g : M — A to an infinitesimal deformation of the inclusion morphism

M) <P

Proof of Lemma. Maybe this is well-known: A field extension in characteris-
tic O is smooth. We briefly indicate here a proof for convenience of non-
specialists. If # is transcendental over /', then we take any element v € A (e.g.
v = u) such that

u=v modNA).

So we get an infinitesimal deformation % : '] — A of the inclusion morphism
MTu] < &' Then we can extend h: M'[u]l — A to the quotient field 4’ (x) so
that we have an infinitesimal deformation k:'(#) — A. In fact for 0 # a €

M ],
ha) =a+w=al+a'w
with w € N(A) and hence a_'w € N(A), is invertible in A:
M) =a A —a'w— @ 'w)— ).
If u is algebraic over ', then let
Fauw) =u" +au" ' +au”>+ - +a,=0,

F(x) being the minimal polynomial of # over .. We have to show that there ex-
ists an element v € A such that # = v mod N(A) and such that

(4.18) 0" 4+ g a)o" T+ g e+ - + g/(a,) = 0.

To solve (4.18) we may replace
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M by M (ay, ay...,a,)
and
A by £'lg'a), gay,..., gl

which is a subring of A, so that the ring A is of finite type over %" and hence
N(A) is nilpotent. Say N(A)* = 0 for a positive integer s. We may assume that
N(A)* = 0. For once we can solve (4.18) under the assumption that N(4)* =0,
then we can lift the canonical morphism

M [u] — A/N(A),
to an infinitesimal deformation
By M [u] — A/N(A)*

that extends the reduction

g, M — A— A/NA)*
of g” mod N(A), then to an infinitesimal deformation

hy: M'Tu]l — A/NA)°
that extends the reduction

g, M —A— A/NQA°®

of g mod N(A)° and so on by succesive approximation. If we take / = s, then the
reduction g, of g’ mod N(A)' = 0 is g itself and

b MTu]l > A/N@A) = A
is a desird extension of g”. Now if N(4)® = 0, then setting
gla)=a,+w, €A withw’ =0 forl<i<m,
we look for v = u + z with 2° = 0 satisfying (4.18):
419 @+2"+ @ +w)w+2"" + - + (a, +w,) =0.
(4.19) is equivalent to
(4.20) Fwz+ wu" " +wu”>+ - +uw,=0.

Since we are in characteristic 0 and since F is the minimal polynomial of #, we
have F'(#) # 0 and so F’(x) is invertible in £ hence in A. Thus we can solve
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(4.20)
2= — (wu" " + w7+ -+ w )F W)
For the functor &, similarly we have a morphism
8

(4.21) g’f/ﬂ—*gﬂ/ﬂ ®Ml L

of functors on (Alg/Lh). We show in §5, Corollary (5.12) that the morphism
(4.21) is surjective. More precisely the functorial morphism

(4.22) F oy (A) = F 4 Qi L' (A) = F 454

is surjective for all ¥ h -algebra A. We do not know a direct proof of the surjectiv-
ity of (4.22).

§5. Infinitesimal Galois group
We use the notations of §4. Let
f €= Allw, A11¢7]
be an infinitesimal deformation of the canonical morphism
¢— L' [w, 41171

LEmMMA (5.1). The subalgebras (&) and ALlw]] of Allw, A1[¢1 are linearly
disjoint over L.

Proof. Since the field of the constants of the differential field (£, 0/0%),
which is a differential subfield of (L*[[A1[¢™'], /1), is L* and since f is a
A -morphism, the field of the constants of (F(¥), 8/89 is L'. Hence if we consid-
er Allw, 11[+"] as a differential algebra with derivation 0/, then the lemma
follows from Lemma (1.1) of [U3].

COROLLARY (5.2). The subalgebras € and Al[w]] of Allw, 11[¢t™'1 are linearly
disjoint over L.

Proof. This is a particular case of Lemma (5.1) if we take as f the canonical
morphism

£ — Allw, 110t
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LemMa (5.3). The following conditions on an element z of QLE, Allwll]l are
equivalent

(1) z is divisible by w in QLE, Allw]l];

(2) z is divisible by w in Allw, 1171, which is an over-ring of QLL, Allw]1].

Proof. Since the condition (1) evidently implies (2), we assume the condition
(2) and prove (1). Let z = z(w, O € Ql¥, Allwll]. It follows from Corollary
(5.2)

QLE, Allwll] = £ &+ Allw]].

So we can write
(5.3.1) 2w, H = X a,(w)z;(w, D
i=1

with
a,(w) € Allw]]
and
z(w, ) €
for 1 <4 < p such that the z;(w, ) € £ are linearly independent over Lf. 1t fol-
lows from (2) that there exists 2 € A[[w, A1[¢ '] such that
v
(5.3.2) 2w, ) =2 a,wz(w, H = wz(w, D.
i=1
Differentiating successively by £, we get
v
(5.3.3) > a,(w)d’z,(w, D /ot € wAllw, 11117
i=1
for 0 < s <y — 1. Since the z;(w, #) are linearly independent over L’ which is
the field of the constants of the differential field (£, 8 /0%f), the Wronskian

l 6szi(w’ t) ‘Ogséu—l = f

11y

is not equal to 0. So the Wronskian is a unit in field € hence in Al[w, A1[¢7']. So
considering the @, as unknowns, we can solve the linear equation (5.3.3) by Cram-
er’s rule to conclude

a,(w) € wAllw, A1[t™1 for 1< i< v,
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Hence a;(w) € wA[[w]] for 1 < { < v and consequently
2w, H = 2 a,(w)z;(w, t)
i=1
is divisible by w in QL¥, A[[w]]]. So the condition (1) is satisfied.

COROLLARY (5.4) TO THE PROOF. Let f be an infinitesimal deformation of the cano-

nical morphism
¢— L [w, 41077
The following conditions on an element z of QL (L), Allwl]] are equivalent:
(1) f(2) is divisible by w in QL (L), Allw]1];
(2) f(2) is divisible by Allw, A1[t7'), which is an over-ring of QLF(2),
Allwl1].
Let
f:¢— Allw, 411t
be an infinitesimal deformation of the canonical morphism
f:€— Llw, A1,
Then if follows from Lemma (4.5) that there exists

o = (o,(w), o,(w),..., ¢,(w) € I,,.(4)

such that
fY) =Y, (@w),d for 1=<i<m.
Let us set
O = (w, + ¢,(w), w, + ¢, (w), ..., w, + ¢, (w))
and
0 = (¢i(w), ¢y(w),. .., ¢,(w))
so that
O=1d+ @.
We denote

https://doi.org/10.1017/50027763000006024 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006024

GALOIS THEORY OF INFINITE DIMENSION 123
A

for =, L,...,1,) €N".

LEMMA (5.5). For any positive number v, theve exists a number N such that if
I; > N for every 1 < 1 < n, then

o' e ().

Proof. Lemma follows from the fact that the constant terms of the ¢,(w) are
nilpotent.

LEMMA (5.6). We have a X Q.+ Allwl]-isomorphism

2 &, Allw]] = QLf (), Allw]]]

sending 2 € L to f(2). Here

¢ ®,+ Allwl]
1is the completion of

£ Q,+ Allw]]
with respect to the (1 @ w)-adic topology and

Qlf(®), Allw]l]

18 the closure of

Qlf(®), Allwl]]

in QlLw, 0101 wiht respect to the (w)-adic topology.

Proof. By Lemma (5.1) we have a # &, Al[[w]]-isomorphism
£, Allwll ~ QL (®), Allwll].

Now the lemma follows Lemma (5.4)

LeEMMA (5.7). We have

QlZ, Allw]]] = Qlf (®), Allw]]]

in Allw, 1107
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Proof. We have
f(Y) =Y(®w), ) for 1<i<m.
Since the Y;(w, #) are in
L' [[w, A1
and since
P=1d+ @ with & = (¢{(w), ¢;(w),..., ¢,(w)) € (N [[w]])",

it follows from the Taylor formula

143,
6571 f(X)=Y(@w,) =YW+, )= 3 57— 0
1eN* “* Qw
so that f(¥;) € Q[Z, A[[w]]] by Lemma (5.5). So if we set # = L{Y,, ¥,,.. .,

Y,}), then
f@ < Qle, Allwlll.

Let 0 # z € R. Then it follows from (5.7.1) and the proof of Lemma (5.5) that we
can write f(z) =z + v, where v is an element of the ideal of Allw, 11[¢™']
generated by N(A) [[w]] and

@7 = G+ =20+ 27 € QI Allwlll.
Therefore since £ is the quotient field of R,
f(®) < Qle, Allwl],
hence
QLf(®), Allwl]] < QL¥, Allwl]]

and

QLf (@), Allwlll < QL¥, Allwl1].
For the same reason, we get the opposite inclusion
QLf (@), Allwll] = QL¥, Allwll].
By Lemmas (5.6) and (5.7) we have # &, A[[w]]-isomorphism
¢ &, Allwl] ~ QIF(®), Allwll] = QL¥, Allwl]] = £ ®,+ Allw]].

The above determined # &, + Al[w]]-automorphism
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LR, Allwl] ~ £ &+ Allw]]

of {9/0w, 8/0t}-differential algebra € &, Al[w]] will be denoted by f,. It fol-
lows from the construction that the composite morphism

¢ — & Q. Allwll — £ &, Allw]] = QI¢, Allw]l]
is f, where the first morphism is the canonical morphism £ — ¥ & 1, the second
is f, and the last is the morphism in Lemma (5.6), f in the lemma being the cano-
nical morphism

DerINITION (5.8). We define a group functor

Inf-diff-bir,L: (Alg/L") — (Grp)
by

Inf-diff-bir,L(A) = {f| f is a differential # ®,: Allw]]-automorphism of
¥ &, Allw]] that is continuous with respect to the

(1 ® w) -adic topology and congruent to the identity
modulo € &, N(A) [[w]]}

for an L' -algebra A.

LemMA  (5.9).  The group functor
Inf-diff-bir,L: (Alg/L") — (Grp)

15 a Lie-Ritt functor.

Proof. We show that there exists an isomorphism
Inf-diff-bir,L = %,,,

of functors. In fact let A be an L ' ~algebra. By Lemma (5.6), € ®,+ Allwl] is iso-
morphic to Q[¥, Allw]]] which is a subalgebra of Allw, f] [t71. So fe
Inf-diff-bir(A) defines an infinitesimal deformation

£— ¢ R, Allwl] Le ®,¢ Allw]] = QI¥, Al[lwl]] < Allw, A11¢7],
where the first morphism
L— 2R, Allw]

is the canonical morphism of identifying £ with £ @ 1. We denote this deforma-
tion by f’. So we get a functorial map
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Inf-diff-bir(4) = F,,,, ()

which sends an automorphism f to f’. We have defined above the functorial map-
ping
F o4 (A) — Inf-diff-bir(4), hr h,.

We have (fy)" = f for every f € %F,,,(A) by definition. Since £ topologically
generates the algebra € & .« Allw]] over X &,+ A[[w]l] and since the two
H Q.+ Allw]]l-automorphisms f and (f’), coincide on ¥, we have ("), = f for
every

f € Inf-diff-bir(4).
We know that every element f € ¥, (4) is given by some @ € I,;.(4) :
fY(w, D) = Y, (@w), ) for 1=<i<m.
Now if we take an element
0 = (¢,w), ¢,(w),..., p,(w)) €T, .(4),

then there exists an infinitesimal deformation that sends ¥, (w, #) to Y,(®(w), ®) if
and only if the following condition is satisfied:

(5.9.1) F(Y(@, D), V,(D,D,..., Y, (@, D) =0
for every differential polynomial
Fz, z,..., 2,
with coefficients in X with respect to the derivations {0/8w, 6/0t} such that
F(1, Y,...,Y,)=0.

We notice here that not only the Z; but also the partial derivatives GMBZ,»/
ow*0t’ are involved in the differential polynomial

F(Z, Z,..., Z,).

Considering @ as a set of unknown functions in w, we expand the right side of
(5.9.1) as a power series in {:

F(Y, (0,0, Y,(®,0,..., Y, (D)) =2,.. .F.w, Ot

where F,(w, ®) € L' [[w]]1{{®)}) if we use the notation of §1. So we have
proved that
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O = (o, (w), o, (w),..., ¢,(w)) € I,;+(A)
is in
Inf-diff-bir,L(A)

if and only if F,(w, @) = 0 for every integer k and every differential polynomial
F with coefficients in 4 such that F(Y}, Y,,..., Y,) = 0. To complete the proof
of the lemma, we have to show

Jaors = Jus® fox

for any two such transformations @, ¥ € I, (A). In fact writing @ =1d + @',

we have
'Y
Y(0w), ) = Y,Ud+ 0, ) = % 5=t o
leN” ﬁw’
and so
10,
fox (V) = 2 A Q"
leN” b+ aw

by definition. Hence

Y, ’
Frelfur() = fon 2 },a ® o)

since fy+ is continuous

,,fw*(a oo

leN"
since fyy is a differential morphism, we have fy(3'Y,/0w') = 8'Y,(¥(w), 1) / 0w’
19 Y,(¥T(w), B

=3 ;2 Qe
leN” b+ ow'
by the Taylor formula
_ < 10V (¥ow), »
renn 1! ow'
= faoms (Y

as wanted. So the lemma is proved.
Let Abean L' -algebra, f € # 4, and
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h € Inf-diff-bir,L(A).
So
f:¢— Allw, 110t

is a differential #-algebra morphism and % is a # &, Al[w]]-automorphism of
the differential algebra

¢ Q,. Allwll.
We denote by Af the composite morphism

P— &R, Allwl] = ¢ ®,. Allwl] ~ QLf (@), Allwl]] < Allw, A11t7"],

where the first morphism is the canonical morphism and the third is the isomorph-
ism of Lemma (5.6). Then hf € %,,,,(A). Hence

Inf-diff-bir,L(A) X Fy,,(A) = F o, (A) (b, f) = hf

is an operation of the group functor Inf-diff-bir,L on the functor F,,,.

THEOREM (5.10). The Lie-Ritt functor Inf-diff-bir,L operates on the functor
F 4,y and (Inf-diff-birgL, 7 ,,,) is a principal homogeneous space.

Proof. We have seen above the first assertion. So it remains to prove the
second. Let 7 : ¢ — Al[w, 11[¢"'] be the canonical morphism. If we consider the

morphism
k : Inf-diff-birgL(A) = F 4, (A) f+ fi,

then k is injective by Lemma (5.6) and since hyt = h for any h € F,,,(A),
surjective.

We have seen in §4 that every result for the infinitesimal deformation functor
F 4y of the canonical morphism € — L' [[w, f11[t™"] holds for the infinitesimal
deformation functor §,, of the universal Taylor morphism £ — ¢! [[w, T]1 ex-
cept for the surjectivity of the morphism (4.22).

THEOREM (5.11).  The restriction
(Inf-diff-bir,l) ®,. ¢

of the Lie-Ritt functor Inf-diff-bir,L on the category (Alg/¥ ') operates on the
functor § g, 4, and (Inf-diff-biryL, §y,y) is a principal homogeneous space.
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Proof. We notice that if we replace the canonical morphism ¢—1L' [[w,
A10¢ "1 by the universal Taylor morphism £ — @' [lw, T1], then Lemmas (5.1),
(5.3), (5.5), (5.6), (5.7) and Corollaries (5.2), (5.3) hold. Now the theorem follows
from the proof of Theorem (5.10).

CorOLLARY (5.12). The functorial morphism (4.22) is surjective for all £ '
algebra A.

Proof. The Corollary follows from Theorems (5.10), (5.11) and Proposition
(4.16).

We had better introduce a new notation to indicate the infinitesimal Galois
group.

DerviTION (5.13). We call the Lie-Ritt functor Inf-diff-birgL the in-
finitesimal Galois group of the ordinary differential field extension L/K and we
denote it by Inf-gal(L/K).

THEOREM (5.14). Let L/K be an ordinary differential field extension satisfying
the condition (F.C) and L D M D K be a differential intermediate field. Then there ex-
ists canonical morphism

Inf-gal(L/K) — Inf-gal(M/K) ®,, L'
such that
Inf-gal(L/K) (A) — Inf-gal(M /K) ®,,. L' (A) = Inf-gal(L/K) (A)

1s surjective for every ¥ ' ~algebra A.
Proof. The theorem follows from Proposition (4.16).

If L/K is a strongly normal extension with Galois group G, what is the in-
finitesimal Galois group Inf-gal(L/K)? The answer is that Inf-gal(L/K) is
almost G.

THEOREM (5.15). If L/K is a strongly normal extension with Galois group G,
then we have

Inf-gal(L/K) = G,..

Here G denotes the formal group associated with algebraic group scheme G.
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Proof. We denote the field C,, of constants of the differential field X by €. It
follows from Theorem (3.14) that the extension £ /X is a strongly normal exten-
sion with Galois group Gg. So by Theorems (2.13), (3.10) in [U3] generalized to
partial case, there exists a model & of the differential field extension £ /X such
that G,, operates on ¥ in such a way that

Gg XX =Gy Xy X=X X, ¥ (g, 2~ (gz, 2)

is an isomorphism of schemes with derivations. In fact in the proof of Theorem
(3.14), we constructed ¥ as

X® QK QLY.
Let Abe an L' -algebra and
fE€EFy,A)
be an infinitesimal deformation of the canonical morphism
¢~ L' [Tw, 2107

so that f : ¢ — Allw, 11[¢™"] is a morphism of differential algebras. The morph-
ism f defines a differential morphism

F:¥®,. Allwll — Allw, 111171 (@ ® b~ f(a)b)
and consequently a morphism
7*:Spec Allw, 111171 — % ®,+ Allw)] = ¥ ®,, (A ®,. Allwl))

of schemes with derivations. In particular if we take the trivial deformation

(: %= L' [lw, A1t < Allw, 2107
as f, then we get

7: ¢ Qv Allwl] — Allw, 4107

and

7%: Spec Allw, 411t — ¥ @, Al[w]].
Now we denoting X &, Allw]] by B so that

¥ @, Allwl] = ¥ ®,, (K ®,. Allw]]) = ¥y,

the morphism
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(F%, ) : Spec Allw, A11[t7'] — Xz X 4 Xy
= Gy Xg Xy
=Gy XXy

composed with the projection
Gy Xg¥Xg— Gg
gives an A[[w, A1[t™"]-valued point
g,:Spec Allw, 11171 — Gy,

which is a morphism of schemes with derivations. So since Gy is a scheme with
the trivial derivation, the Al[lw, 11t ']1-valued point g, factors through an
A-valued point

g :Spec A— G,.

Since f is an infinitesimal deformation of the canonical morphism, the morphism g,
is, modulo N(A) [[w, A11[¢™1, congruent to the constant morphism

Spec Allw, 11[¢t™'1 — G,
that maps Spec Al[w, A1[t™"] to 1 of G4. Namely the composite morphism
Spec Allw, A10¢"1 /N [[w, 4111 — Spec Allw, A1[£71— G,
of the natural morphism and g, is the morphism that maps
Spec Allw, A1[t7'1/N(A) [[w, A117]

to 1. So g is also, modulo N(A), congruent to the constant morphism Spec A—
G, that maps Spec A to 1 of G,. We notice here the ring extensions

Since G operates on ¥, the A-valued point g defines a # &, A-automorphism ¢,
of the scheme

Xy Oy (H B A) =%y,
of scheme with derivations:
e Xy ¥you-
By base change, we get an automorphism

b = ¢, ®1d: Xxop ®1{®%A H ® Allwl] = ¥y @ppatn ™ X 4 @y attun-
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It follows from the construction of ¢, that we have

Since the reduction ¢, ®, A/ N(A) of @, is the identity automorphism of Xy g 4,
the reduction ¢, @, A/N(A) is the identity automorphism of ¥yg , anwn @
A/N(A). Let Spec R be an affine open set of the #-scheme . So & is a subring
of ¥ such that the quotient field Q(®) is £ and closed under the set of deriva-
tions. Since

¢, ®,A/N)
is the identity and since
¥ g, sattun Da A/ NA)
is homeomorphic to
¥y @, eatn Qs A/NA),
the automorphism ¢, leaves the open set
Spec R ®,, (X &, Al[w]]) = Spec R &, Allw]]
of ¥4 invariant. For v € R, we have
drw) =v+7€RQ,. Allw]]
with nilpotent #. In particular if 0 # v € &, then
GXw) =v+ =010+ 07D
is invertible and is an element of £ &, + A[{w]]. Thus we get a B-isomorphism
Gr % @, Allw]] — £ @+ Allw]]

such that Z=gb: > f . We have thus proved that F 4,y (A) is a principal
homogeneous space of

Gy(A) = {f€ G4,(A) | F=1mod N(A)}.

So the functor #4,, is a principal homogeneous space of G{g restricted on the
category (Alg/Lh), which is nothing but G,_.. The theorem now follows if we
notice that the # &, + Al[w]]-automorphism

Gy ¥ Q. Allwl]l — £ ®,. Allw]]

can be extended uniquely to a continuous # &+ A[[w]]-automorphism of the
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completion € &, s Al[w]].
The invariant Inf-gal(L/K) ignores algebraic extensions and extensions
generated by constants.

THEOREM (5.16). Let L/ K be an ordinary differential field extension satisfying
the condition (F.C) in §3 and L D M D K be a differential intermediate field.
(1) If the field L is algebraic over M, then Inf-gal(L/K) is canonical isomor-
phic to Inf-gal(L/K) ®,,. L" .
(2) If the field L is gemerated by constants over M, then Inf-gal(L/K) is
canonically isomorphic to Inf-gal(L/K) &, L'

Proof. The canonical morphism
(5.17) Inf-gal(L/K) — Inf-gal L/K) ®,,. L'

is surjective by Theorem (5.14). It follows from the construction of € and X that
if the field L is algebraic over K, then the field &, 4 is algebraic over £, So by
the proof of Lemma (4.5), the morphism (5.17) is injective. This proves the first
assertion of the theorem. Let us now assume that the field L is generated by con-
stants over M. The field of constants of the differential subfield ¥, of the ordin-
ary differential field (M [[£]] [+, d/db) is M Similarly the field of constants
of the differential subfield &,,, of the ordinary differential field (@' AN,
d/di) is L' . We consider (M'[[A1[t7"], d/dD) as a differential subfield of
A [[A11(t™"], d/df) and we apply Lemma (1.1) to ¥, and %y, so that €k
and L' are linearly disjoint over M" . Hence

(5.18) $ /KL =~ Q@@ L.

Since the field L is generated by constants over M, the subfield ,‘EM,K.L# of the dif-
ferential field L*[[A11(¢7'] contains i(L). As the subfield %y,.L" of the differen-
tial field L*[[11[¢ 7] is closed under the set of derivations and contains (L), we

have
(5.19) Lyl =%, ..
(5.20) Lo = Q& x Rups LY.

Similarly we have
(521) j{L/K = Q(j[M/K ®M# L#)

It follows in particular from (5.20) and (5.21) that the field ¥, is generated over
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K., by the canonical image of £, . So the canonical morphism (5.18) is injective
and the second assertion of the theorem is proved.

COROLLARY (5.22). Let L/ K be an ordinary differential field extension satisfying
the condition (F.C) in §3.
(1) If the field L is algebraic over K, then we have Inf-gal(L/K) = 0.
(2) If the field L is generated by comstants over K by constants, then we have
Inf-gal(L/K) = 0.

Proof. The corollary is a particular case of the theorem where the intermedi-
ate field M coincides with K.
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