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ON OPEN EXTENSIONS OF MAPS 

S. P. FRANKLIN AND J. K. KOHLI 

0, Introduction. In recent years there has been some interest in trying to 
improve the behaviour of maps by extending their domains. For example, 
in 1953 Whyburn showed that every map is the restriction of a compact 
map [17]. Similarly, Krolevec proved in 1967 that each locally perfect map can 
be extended to a perfect map [12] and in an as yet unpublished paper, 
Dickman obtained the same result for arbitrary maps [4]. In this paper we 
show that every map can be extended to an open map so that certain properties 
of the domain and range are preserved in the new domain. These results are 
then used to obtain analogues and improvements of recent theorems of 
Arhangel'skiï, Coban, Hodel, and Proizvolov. 

1. Open extensions. Let / : X —> F be a function, not necessarily con­
tinuous, from a topological space X into a topological space F. We shall call 
a point x £ X and its image/(x) £ F singular points of X and F, respectively, 
if there is an open set [/of X containing x whose image/( U) is not a neighbour­
hood of f(x). The function/ is open just in case there are no singular points 
of X (or equivalently of F). 

For each singular point x of X, let Yx be a copy of F. Let W = X © ( 0 Yx), 
where the second disjoint topological sum is taken over all singular points of X. 
By identifying each singular point x £ X (with X thought of as a subset of W) 
with its image/(x) (as a point of Yx C W), we arrive at a quotient space X* 
of W. The inclusion map i: X —» ^composes with the quotient map q: W—>X* 
to give an embedding of X into X*. Hence we may think of X* as an extension 
of X. 

Let fi: W —» F be the function whose restriction to X is / and whose 
restriction to each Yx is the identity map 1 F : Yx —» F. We leave it to the reader 
to verify that the unique function / * : X* —> F satisfying / * o q = fi is an 
open extension of / . Recapitulating, we have the following. 

1.1. There is an over space X* of X and an open function f*: X* —» F whose 
restriction to X is f; f * is continuous just in case f is. 

Since only sums and quotients were used in the construction of X*, the 
following follows at once, 

1.2. Any corefiexive property] of X and Y is preserved in X*. 

Received May 21, 1969 and in revised form, April 2, 1970. This research was partially sup­
ported by the Fleischer Foundation. 

fSee Herrlich [10] for the definition and properties of coreflective subcategories. 
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In particular, if X and Y are countably, sequentially or compactly gener­
ated,ft so is X*. If X and Y are locally connected, or are P-spaces, or are 
chain net spaces,ftt s o *s X*-

It is routine to verify the following. 

1.3. X* satisfies the separation axioms T0, Ti, T2, T3, and T3i whenever 
X and Y do. 

We shall prove only the last case, that of complete regularity. Suppose 
that F is a closed subset of X* and that p £ F. If q~l(p) C\ X = 0 (where 
q: W —> X* is the quotient map), then q~l(p) G Yx for some x. Then there 
is a real-valued function <£ on Yx which is zero at q~~l(p) and one at 
x = f(x) 6 Yx and on q~l(F) C\ Yx. Extend <£ continuously to all of W by 
taking it constantly one on X and on each Yx>, x! ^ x. This extended $ 
defines a real-valued function on X* which separates p and F. In the other 
case, if Xo 6 <T~l(P) ^ -̂ > ^et $0: ^ —> -^ be zero at x0 and one on q~1(F) C\ X. 
For each singular x, choose $x: Yx —» R which is one on g_1(-F) r\ Yx and 
such that $x(f(%)) = $o(%)> These functions combine to form one $: W —> R 
which in turn induces a real-valued function on X* separating p and F. 

X* can also be realized as an adjunction space. Let F be the closed discrete 
subset of ® Yx whose intersection with each Yx is its singular point f(x). 
The map g: F —> X which sends each f(x) to x yields the adjunction space 
® Yx \J0 X which is homeomorphic to X*. Using this representation we have 
the following. 

1.4. X* is normal, hereditarily normal, perfectly normal, collectionwise normal, 
or fully normal {i.e. paracompact) whenever X and Y are. 

The first three of these properties are preserved under sums and adjunctions. 
For the other three, the assertion follows from a theorem of Tsuda [16]. 

If x is a singular point of X, then/(x) 6 Yx and q(x) = q(f(x)). If X and Y 
are (pathwise) connected, so are their continuous images q{X) and q(Yx). 
Since each q(X) C\ q(Yx) ^ 0, \J (q(X) {\Jq (Yx)) is (pathwise) connected. 
Thus we have the following. 

1.5. X* is (pathwise) connected whenever X and Y are. 

Let X be the plane set consisting of the union of the closed intervals 
[ — 1 , 1] on the two axes. Let Y — [ — 1, 1] on one axis and l e t / be the restric­
tion to X of the projection onto this same axis. Each point on one axis, except 
the origin, is a singular point of X. This example shows the following. 

tfA countably generated space is one "determined by countable subsets" in the sense of 
Moore and Mrôwka [14]. Sequentially generated spaces are the sequential spaces [6] and 
compactly generated spaces the ^-spaces. 

fffFor the coreflexivity of local connectedness, see Gleason [9], A P-space is one in which 
each G5 is open (see [8]). A chain net is one whose underlying directed set is a chain. Chain nets 
are said to suffice if any set containing the limits of all its convergent chain nets is closed (see 
[13]). 
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1.6. X* need not preserve metrizability, either axiom of countability, weight 
or local weight, separability or density, the Lindelôf property, or (countable, 
sequential, pseudo) compactness. 

(Another open extension of a map /can be given whose domain will preserve 
many of these properties. Since the family {lx, f } separates points and also 
separates points from closed sets, the evaluation map e: X —* X X Y (given 
by e(x) = (x,f(x))) is an embedding. Hence X is homeomorphic to e(X), the 
graph of/, and the projection xF : X X Y —» F restricted to e(X) is essentially 
/ . Thus each map is the restriction of a projection map. If X is compact, f is the 
restriction of a clopen map. This is also the case if X is countably compact and 
Y is a sub space of a sequential space [5]. Clearly, any finitely productive 
property of X and Y is preserved in the domain of the projection. Hence 
most of the properties mentioned in 1.6 are preserved.) 

By imposing restrictions on the set 5 of singular points of X, X* may be 
induced to preserve many other properties. For example, we have the following. 

1.7. If the singular points of X do not accumulate, then metrizability, local 
compactness, and local weight are preserved in X*. Further, if the cardinality 
of S is not more than the larger of the weights of X and Y, then neither is the 
weight of X*. 

(Here we assume that X and Y are Ti spaces.) 
We first show that the quotient map q: W —-> X* is a closed mapping under 

the given hypothesis. Suppose that F is a closed subset of W and {pa\ is a 
net in q(F) converging to a point p in X*. Now 

q(F) =q(Fr\X)KJ(Vq(FnYx)) 

and the restriction of q to X and to each Yx is an embedding. Since q(X) and 
each q(Yx) is closed in X*, we conclude that q(F C\ X) and each q(F P\ Yx) 
is closed in X* also. Thus if {pa} is frequently in q(F C\ X) or in some 
q(F C\ Yx), p must belong to q(F), and our proof is complete. If q~l{p) = {y} 
with y Ç Yx, let U = Yx. If q~l(p) = {x}, where x is a non-singular point 
of X, let U be a neighbourhood of x in X which is free of singular points. If 
q~1(p) = {x,f(x)}, let U be the union of Yx and a neighbourhood of x in X 
which is free of singular points of X other than x. In any case, q(U) is a neigh­
bourhood of p which has a non-empty intersection with at most one q(YxC\ F). 
But {pa} is eventually in q(U), and hence is frequently in either 

q(U) H q{F C\ X) or q(U) H q(F H Yx). 

Hence g is a closed map. Since each q~l(p) is at most a doubleton, q is a perfect 
map. Since metrizability and local compactness are preserved under sums 
and perfect maps, the first two assertions of 1.7 are proved. 

Suppose that m is the larger of the local weights of X and Y. If q~l(p) = {y} 
where y G Yx\{f(x)}, then the image of a base at y under q is a base at p. If 
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Q~l(P) ~ {x\> where x is a non-singular point of X, a base can be chosen at x 
whose members contain no singular points. The image of this base under q 
is a base at p. If q~l{p) = {ocyf(x)}, choose a base 38 at x whose members 
contain only one singular point, and choose a base 'f at f(x) £ Yx, with the 
cardinality of 7^ and 38 no larger than m. The images under q of sets of the 
form B yj V with B G 38 and V 6 7^, form a base at p of cardinality no 
larger than m. 

For what remains we need only note that 

weight W — weight X -f card S • weight Y S m + m2 = m 

and that perfect maps do not increase weight. 
Example 1.6 shows that the restrictions imposed on the set S of singular 

points in 1.7 are not superfluous. By replacing one of the intervals [ — 1 , 1] in 
1.6 by a sequence converging to zero, one can easily see that these cannot be 
weakened even to 5 being a countable discrete subset. 

2. Finite-to-one mappings. In 1966, Proizvolov [15] showed that weight 
and metrizability are inversely preserved in locally compact spaces under open 
finite-to-one maps. Later that year, Arhangel'skiï [1; 2] showed that they were 
always inversely preserved under clopen finite-to-one maps. In 1967, Coban [3] 
proved that hereditary paracompactness (metacompactness, Lindelôf) are 
inversely preserved under open finite-to-one maps. (Some separation axioms 
are required for all these results.) 

If / is a finite-to-one mapping and the set S of singular points of X is finite 
(i.e., / is open except at finitely many points), then / * : X* —> Y is an open, 
finite-to-one map and hence X* will inherit properties from Y by the results 
quoted in the paragraph above. (1.3 shows that the needed separation axioms 
(see below) also lift properly.) Since these properties are all hereditary, 
X must also enjoy them. Thus we see that it is sufficient to require t h a t / be 
open except at finitely many points to arrive at the desired conclusion. For 
the convenience of the reader we list precise statements of the improved 
theorems. (Assume all spaces to be Hausdorff, and that / is continuous and 
onto.) 

2.1 (Proizvolov). If X and Y are locally compact, and f is finite-to-one and 
open except at finitely many points, then weight X g weight Y. If Y is metrizable, 
so is X. 

In the proof, 1.7 as well as Proizvolov's original theorem must be used. 

2.2 (Arhangel'skiï). If X and Y are completely regular and f is a finite-to-one 
closed map which is open except at finitely many points, then weight X g weight F. 
If Y is metrizable, so is X. 

Here, in addition to 1.3, we need only note that with S finite, / * is closed 
if and only if/ is closed. 
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2.3 (Coban). If f is finite-to-one and open except at finitely many points, 
then X is hereditarily paracompact {rnetacompact, Lindelof) whenever Y is. 

(For paracompactness, X is required to be regular.) 
Simple examples can be given to show that the conditions on the singular 

points of/ cannot simply be omitted in 2.1, 2.2, and 2.3. First let X — (3N, 
Y = {0} U [l/n\ w Ç N j C R and / : X -> Y arise from n -> 1/n. Y is 
locally compact, second countable, and metrizable. X is locally compact, has 
weight c, and is not metrizable, even though / is a perfect map. This covers 
2.1 and 2.2. 

For 2.3 let Y be as before and let X' be the ordinal compactification of N 
recently constructed by Franklin and Rajagopalan [7], i.e. X' = N VJ (coi + 1) 
with N embedded as an open dense subspace, wi + 1 embedded as a closed 
subspace, N C\ (a>i + 1) = 0, and X' compact Hausdorfï. Let X = X'\{coi} 
and define/: X —» Y by f(n) = 1/n and jf(x) = 0 otherwise. Y is hereditarily 
Lindelôf (and much more) while X fails to be rnetacompact. 

3. Dimension. In this section all spaces are assumed to be metric, and / 
is continuous and onto. In 1963 Hodel [11] showed that dimension cannot be 
lowered by open maps/such that each / - 1 (3;) is discrete. The technique of the 
last section can be used to improve this result also. 

3.1 (Hodel). If the singular points of X do not accumulate and if each f~~l(y) 
is discrete, then dim X ^ dim Y. 

For the proof we use 1.7, Hodel's original theorem, and the fact that X is a 
closed subspace of X*. 

Hodel's theorem (in both the original and the improved versions) holds true 
for not necessarily continuous / i f F is taken to be locally compact and 
separable. 

To show that some hypothesis is needed on/ , one need only look at Peano's 
map of the interval onto the square. 
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