
London Mathematical Society ISSN 1461–1570

MATCHING SIMPLE MODULES OF CONDENSED ALGEBRAS

FELIX NOESKE

Abstract

Let A be a finite dimensional algebra over a finite field F .
Condensing an A-module V with two different idempotents e
and e′ leads to the problem that to compare the composition
series of V e and V e′, we need to match the composition factors
of both modules. In other words, given a composition factor
S of V e, we have to find a composition factor S′ of V e′ such
that there exists a composition factor Ŝ of V with Ŝe ∼= S
and Ŝe′ ∼= S′, or prove that no such S′ exists. In this note, we
present a computationally tractable solution to this problem.

1. Introduction

In computational representation theory, condensation has become an indispensable
tool. In particular the Modular Atlas project [1] whose objective it is to classify
the irreducible modular representations of the almost simple groups featured in
the Atlas [2], owes its continuous progress to this method: The current open ques-
tions involving the sporadic simple groups pose challenging problems for current
generation’s computers, as the size of the representing matrices impedes a direct
application of the Meat-Axe (see [13] for an introduction).

To be precise, let A be a finite dimensional algebra over some finite field F of
characteristic p. Then given a finite dimensional A-module V , condensation refers
to the application of the restriction functor (also called condensation functor) from
mod-A to mod-eAe. In other words, instead of considering the whole, computation-
ally intractable module V , we consider the much smaller dimensional subspace V e
as a module for the unital algebra eAe.

The condensation functor possesses several useful properties (confer, for example,
[3, 14]), among which the preservation of simple modules is of great importance: If
V is a simple A-module, then V e is either 0 or a simple eAe-module, and all simple
eAe-modules arise in this manner. In fact, if all simple A-modules condense to
nonzero eAe-modules, then condensation establishes a Morita-equivalence between
the two algebras A and eAe.

In practice, owing to the size of the A-module V , a paradigm of condensation
is to avoid any explicit computation in this huge space. Therefore the availabil-
ity of idempotents yielding sufficiently small-dimensional condensed modules and
also a Morita-equivalence of algebras is limited: We need to restrict ourselves to
idempotents for which we have access to algorithms adhering to the paradigm.

Supported by the DFG grant HI 895/1-1
Received 14 September 2007, revised 22 January 2008; published 1 August 2008.
2000 Mathematics Subject Classification 20C40
c© 2008, Felix Noeske

LMS J. Comput. Math. 11 (2008) 213–222https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/11
https://doi.org/10.1112/S1461157000000577

Matching simple modules of condensed algebras

Currently, there are many available algorithms to efficiently condense a vast array
of modules for a group algebra FG, if the condensation idempotent e is chosen to be
a so-called linear idempotent, i.e., e is a central primitive idempotent corresponding
to a linear character λ of some subgroup K � G whose order is coprime to p (see
[5, 8, 10, 15] where λ is trivial, see [7, 11] where λ may be arbitrary). The common
theme of all available condensation algorithms, and the source of their efficacy, is a
special choice of basis which allows us to compute the action of a condensed group
element ege for some g ∈ G on the condensed module V e without any explicit
calculation in the whole of V . In particular, we may generally distinguish two parts
in every implementation of condensation: The first computes the images of the basis
elements of V e under the action of eg, the second projects these images onto V e
by applying the projection induced by e.

Unfortunately, choosing the subgroup K too small, invariably yields a condensed
module whose size may still not let the envisaged calculation fit within the bounds of
the available computational resources. Thus in practice, a linear idempotent which
condenses some simple A-modules to zero is often our only choice.

When determining composition series of modules via condensation, any simple
A-module which is annihilated by the condensation idempotent e is a blind spot:
The information provided by the condensed module is incomplete. To gain the full
knowledge of a composition series, we therefore condense with additional idempo-
tents, until we are sure to cover all simple A-modules, i.e., no simple A-module
condenses to the zero module under all condensation idempotents chosen.

We then face a new problem: Given two idempotents e, e′ ∈ A, a composition
factor S of V e, and a composition factor S′ of V e′, determine if there exists a
composition factor Ŝ of V such that Ŝe ∼= S and Ŝe′ ∼= S′. If such an A-module
exists, we say that we can match S to S′, and that Ŝ is an origin of S and S′.

In this note we present a new method for the matching of simple modules for two
condensed algebras. Instead of matching S and S′ by attempting the usually hope-
less task of determining their origins in mod-A, and testing these for isomorphism,
our approach ‘zig-zags’ between both algebras eAe and e′Ae′ via their common
ambient algebra A. By taking care that all major computations occur within con-
densed modules, we can adhere to the condensation paradigm formulated above.
However, as the algebra A provides the link between eAe and e′Ae′, we cannot
avoid computing within mod-A entirely. But we have taken care to reduce these
computations to a minimum, and illustrate in Sections 4 and 5 that they do not
infringe upon the method’s practical applicability.

This paper is structured as follows: We begin in Section 2 by presenting the
theoretical background. It is based on the notion due to Richard Parker of local
submodules and closely related algebra elements, called peakwords. We restate their
most important properties by citing results of [6], and present how they may be
used to solve the matching problem mentioned above. In Section 3 we formulate and
discuss an algorithm which implements the Matching Lemma of Section 2. Section 4
illustrates how our method may be applied in the case that the algebra A is a group
algebra of some finite group G. We exemplify its usability for permutation modules
and homomorphism spaces, respectively tensor products of modules. Finally, in

214https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000577

Matching simple modules of condensed algebras

Section 5 we witness the proposed algorithm in action by presenting a practical
example, namely a tensor product of simple modules for the sporadic Harada–
Norton group HN.

2. S-local submodules and matching

Closely related to the composition factors of an A-module V are its so-called
local submodules. As our approach to resolve the matching problem relies on the
properties of these submodules, we recall some basic facts about local submodules
and their relationship with peakwords as introduced in [6].

Let S be a simple A-module. An A-module is called S-local, if it possesses a
unique maximal submodule such that the corresponding factor module is isomorphic
to S. By [6, Theorem 2.3], the S-local submodules of V have the nice property
that generators for each may be obtained by condensing V with an S-primitive
idempotent, i.e., with a primitive idempotent corresponding to the simple module
S. In general it is a difficult problem to determine such an idempotent. But, as
shown in [6], it may be resolved by considering certain elements of the algebra A
called peakwords.

For an element a ∈ A, we denote the kernel, respectively the image, of the action
of a on an A-module M by kerM (a), respectively imM (a). Then, if V is a faithful A-
module and S a composition factor of V , an element a ∈ A is called an S-peakword,
if kerT (a) = 0 for all composition factors T of V which are not isomorphic to S,
and dimF (kerS(a2)) is equal to the degree of the splitting field of S.

Given an S-peakword w ∈ A for a faithful module V , the fitting decomposition
of V with respect to w, i.e., the decomposition V = kerV (wN) ⊕ imV (wN) for
some sufficiently large N ∈ N, gives rise to the condensation of V with a uniquely
determined S-primitive idempotent f via V f = kerV (wN) (see [6, Theorems 3.1
and 3.4] for details).

With the S-local submodules thus available to us, we proceed to show how they
provide the necessary means to solve the matching problem.

Keeping the paradigm of condensation in mind which we mentioned in the in-
troduction, we will not seek peakwords within the original algebra, but instead
within a condensed algebra. The key idea now is that we may lift a local submod-
ule of a condensed module to a local submodule of the original module as stated in
Lemma 2.1.

For brevity, we will subsequently write kerM (w∞) to denote the stable kernel of
some power of a word w on a module M .

Lemma 2.1. Let V be a faithful A-module, S a simple A-module, and e ∈ A an
idempotent with Se �= 0. Furthermore let w ∈ eAe be an Se-peakword and 0 �= v ∈
kerV e(w∞). Then vA is an S-local submodule of V .

Proof. We have that kerV e(w∞) = V ef for some Se-primitive idempotent f ∈ eAe.
Therefore ef = fe = f , and feAef = fAf is local. Hence f is primitive as an
idempotent of A, and since 0 �= Sef = Sf , it is S-primitive. Thus vA is an S-local
submodule of V .

215https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000577

Matching simple modules of condensed algebras

The local submodules also provide us with a natural criterion to determine if a
chosen condensation idempotent annihilates a particular simple module.

Lemma 2.2. Let v ∈ V such that vA is S-local, and e ∈ A an idempotent. Then
veA = vA if and only if Se �= 0.

Proof. As the A-module generated by v+rad(vA) is isomorphic to S, we have that
ve ∈ rad(vA) if and only if Se = 0. Hence veA is a proper submodule of vA if and
only if Se = 0, and conversely veA = vA if and only if Se �= 0.

Combining the two previous lemmas, we may now formulate our solution to the
matching problem.

Lemma 2.3 (Matching Lemma). Let V be a faithful A-module, S a simple A-module,
and e, e′ ∈ A idempotents with Se �= 0. Furthermore let w ∈ eAe be an Se-peakword,
and 0 �= v ∈ kerV e(w∞).

We have ve′eAe = veAe, if and only if Se′ �= 0.

If Se′ �= 0, then ve′Ae′ is an Se′-local module.

Proof. Let ve′eAe = veAe. Then ve′ /∈ rad(vA), as otherwise ve′A is a proper
submodule of vA, which implies (vA)e � (ve′A)e � ve′eAe = veAe = (vA)e under
the hypothesis, and by Lemmas 2.1 and 2.2. Therefore ve′A = vA, and Lemma 2.2
gives Se′ �= 0. Finally, since ve′Ae′ = vAe′, and as Se′ �= 0, the module ve′Ae′ is
Se′-local, of course.

For the converse observe that by Lemma 2.2 both ve′ and ve fulfill ve′A = vA =
veA. Since therefore ve′ generates an S-local module, applying the lemma again,
we obtain ve′eA = ve′A = vA, which is veA.

From Lemma 2.3 it is now clear how we may match two simple modules for
the condensed algebras eAe and e′Ae′: If the condition of Lemma 2.3 is met, we
obtain a link between the simple eAe-module Se and the simple e′Ae′-module Se′

by determining the head of the Se′-local e′Ae′-module generated by ve′. On the
other hand, if the condition is not fulfilled, we may conclude that Se cannot be
matched to any simple e′Ae′-module.

3. From theory to practice: An algorithm

Let V be a faithful A-module, and e, e′ idempotents in A.
In practice we are given V e and V e′ in terms of matrices representing the action

of generators of eAe and e′Ae′ on V e and V e′, respectively. Therefore a run of
the Meat-Axe will provide us with the composition factors of V e, respectively V e′.
Let S be a composition factor of V e. Then in order to match S to a composition
factor S′ of V e′, it is clear from Lemma 2.3 that we may apply Algorithm 1 whose
practical implementation we scrutinize in the following.

The first step in the algorithm presented is to determine a peakword for the
simple module S. Its practical realization is straightforward (see also [6, Section
5]): We conduct a peakword search in the algebra eAe by pseudo-randomly gen-
erating words in eAe, and checking, if one of them fulfills the defining properties
of a peakword. It then needs to be evaluated on the whole condensed module V e.

216https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000577

Matching simple modules of condensed algebras

Algorithm 1 Matching a composition factor.
Input: A composition factor S of V e and a database DB of isotypes of composition

factors of V e′.
Output: The S′ in DB which matches S, or fail if no match is possible.
1: Determine an S-peakword w ∈ eAe and compute the the kernel of its action on

V e, i.e., kerV e(w).
2: Embed any 0 �= v ∈ kerV e(w) into V .
3: Project v onto V e′, obtaining ve′ ∈ V e′.
4: Embed ve′ into V .
5: Project ve′ onto V e, giving ve′e ∈ V e.
6: if dimF (ve′eAe) = dimF (veAe) then
7: Compute the head H of ve′Ae′.
8: Find the module S′ in DB isomorphic to H .
9: return S′.

10: else
11: return fail.
12: end if

Note that, since by Lemma 2.3 any arbitrary nonzero vector in the stable kernel of
a peakword is sufficient for our matching purposes, it is not necessary to compute
the full stable kernel.

As the computation of the kernel kerV e(w) is conducted within the condensed
module V e, the nonzero kernel vector v chosen in Line 2 is given with respect
to a basis of the condensed space V e. Therefore to embed v into V , we have to
uncondense it. This is done by choosing a preimage v̂ ∈ V of v under the projection
epimorphism onto V e induced by the right-multiplication with e.

In Line 3 of Algorithm 1 we project the uncondensed vector v̂ ∈ V through
right-multiplication with the idempotent e′. This can be achieved while eschewing
an explicit application of e′ in the usually huge space V , by applying the projection
part of the algorithm used to condense V to V e′. As indicated in the introduction,
the efficacy of condensation algorithms usually depends an a special basis of V .
Therefore in preparation of this projection step, we need to change the basis with
respect to which v̂ is given to the special basis of V underlying the condensation
algorithm. Hence, it is inevitable that we do one, albeit comparatively small, cal-
culation explicitly in V . For practical applications it is therefore crucial that this
calculation may be realized. We illustrate in the following section that this obstacle
can be overcome for a large class of problems encountered in practice.

In Lines 4 and 5 we complete our zig-zag approach by repeating the procedures
of Lines 2 and 3 with the roles of the idempotents e and e′ interchanged.

The remaining Lines 6 to 12 rely only on standard Meat-Axe functionality. To
verify the condition that the dimensions of both spaces ve′eAe and veAe are equal,
it suffices to construct bases of both eAe-modules using the Meat-Axe’s spinning
algorithm. As we work with modules of the condensed algebra eAe, we can expect
their dimensions to be computationally manageable. If we are able to verify equality
of dimensions, we proceed to compute the head of ve′Ae′ (see [9]), and compare it
with the database of e′Ae′-composition factors of V e′. On the other hand, if the

217https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000577

Matching simple modules of condensed algebras

condition of Line 6 cannot be verified, Lemma 2.3 gives that the simple A-module
Ŝ for which Ŝe ∼= S is annihilated by e′ and thus there is no possible match, and a
return value of fail is given.

4. Matching in practice: Condensed group algebras

As related in the introduction, we are primarily interested in the applications
of condensation in the computational representation theory of finite groups, and in
the Modular Atlas project in particular. Therefore in this section we take A to be
the group algebra FG for some finite group G.

To demonstrate the usability of the Matching Lemma in practice, we detail how
the unavoidable calculations in the uncondensed original module V , i.e., the projec-
tions of Lines 3 and 5 of Algorithm 1, and in particular the necessary basis changes,
may be contrived for two important condensation methods: The condensation of
tensor products, or homomorphism spaces, and the condensation of permutation
modules.

In the case of tensor products it is important to note that given two modules V
and W of dimensions n and m, and affording (matrix) representations ρV and ρW ,
then even when computing in the tensor product V ⊗W , we never need to work with
nm × nm-representing matrices. Instead, we make use of the natural isomorphism
V ⊗W ∼= HomF (V ∗, W) (see [8, Lemma 2.6]): The action of a group element g ∈ G
on a vector x ∈ V ⊗ W may be realized by furling x into an n × m-matrix X , i.e.,
applying the isomorphism Φ of [8, Lemma 2.6], evaluating ρV (g)tr ·X · ρW (g), and
unfurling the matrix X to an element of V ⊗W again, i.e., applying Φ−1. Therefore,
from a computational point of view, it is more natural to consider homomorphism
spaces of modules, whose condensation can be handled very efficiently (see [7]).

Furthermore, as the basis of the tensor product is derived from the bases of the
factors V and W , a change of basis with respect to which a vector x ∈ V ⊗ W
is given, is also easily realized by multiplying the furled up x from the left and
from the right with appropriate base-change matrices of the factors. The latter are
computed prior to condensation (see [8] for details) giving us matrices B ∈ Fn×n

and C ∈ Fm×m, such that any x ∈ V ⊗ W may be rewritten with respect to the
new basis by evaluating Φ−1(B−tr · Φ(v) · C−1).

Hence, since all computations within V ⊗ W are conducted with furled-up ele-
ments, the uncondensed vector of a peakword kernel is given as an n × m-matrix,
and it only takes two matrix multiplications in the sizes of the tensor factors, before
the projection part of the condensation algorithm can be applied.

Let us consider permutation modules next. Here, the necessary basis change
may be obtained by ‘merely’ permuting the entries of an uncondensed vector. Of
course, since in current applications the considered permutation modules possess
dimensions which range in the billions, this is a nontrivial task. The solution to
this problem is to never explicitly uncondense a peakword kernel vector in the first
place.

The requisites for condensing a permutation module V with basis Ω are the orbits
of the condensation subgroup on Ω (see, for example, [5, Section 5]). For simplicity,
we take the condensation idempotents to be of the form e = 1

|K|
∑

k∈K k, if K is a
condensation subgroup, i.e., the canonical basis of V e is given by the K-orbit sums

218https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000577

Matching simple modules of condensed algebras

on Ω. Then given two condensation subgroups K and K ′, and an element v ∈ V e,
the task of determining the coefficients of ve′ with respect to the canonical basis of
V e′, relies on the information in which K ′-orbit a point of a K-orbit lies.

This information may be gained at little extra cost: Condensing with the idem-
potent e, for example, the algorithm loops over every point of all K-orbits on Ω,
and therefore in every step we may simultaneously look up in which K ′-orbit the
point lies. Hence the data structure necessary for the projection with e′ is con-
structed just once during the condensation of any one element at the cost of one
such look-up for every point of Ω.

Then, as given in Lines 2 and 3 of Algorithm 1, the uncondensation of v and its
projection to ve′ may be conducted as in Algorithm 2, for which we let O1, . . . , On

and O′
1, . . . , O

′
n′ denote the K- and K ′-orbit sums on Ω, respectively.

Algorithm 2 Uncondensation and projection procedure for permutation modules
Input: The coefficient vector [v1, . . . , vn] of an element v =

∑n
i=1 viOi ∈ V e , and

the data WhichOrbit, which for an ω ∈ Ω gives the number of its K ′-orbit.
Output: The coefficient vector [z1, . . . , zn′] of ve′ =

∑n′

i=1 ziO
′
i ∈ V e′.

1: Set z := 0 ∈ Fn′
.

2: for 1 � i � n do
3: for every ω ∈ Oi do
4: j := WhichOrbit(ω).
5: zj := zj + vi

|O′
j |

6: end for
7: end for
8: return z.

While we still need to process all points in the G-set Ω, this way only one K-
orbit needs to be stored in memory at a time. Also, the calculation is shortened by
only considering the K-orbits which correspond to nonzero entries of the coefficient
vector of v. Furthermore, as every K-orbit may be treated independently of all
other K-orbits, this procedure is trivially parallelizable, and is easily distributed to
several machines. Thus Algorithm 1 is viable even for large permutation modules.

5. An example: HN in characteristic 3

The purpose of this section is to substantiate our previous theoretical discussion
with a practical example. To this end we consider the tensor product V := 133a⊗
8778a of irreducible representations of the sporadic Harada–Norton group G := HN
over a field F of characteristic 3. Our motivation for considering this tensor product
will be detailed in a forthcoming paper in which the 3-modular characters of HN
are classified as a contribution to the Modular Atlas project.

The information of an FG-module’s composition factors and their multiplicities
is naturally essential to gain insight into the irreducible modular characters of G,
and several variations of this theme have been applied successfully in the past. See,
for example, [4] and [12] how the simple modules of a group algebra may be inferred
by studying several modules through condensation techniques.

219https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000577

Matching simple modules of condensed algebras

As condensation subgroups for 133a ⊗ 8778a we choose the normal 2- and 5-
subgroups of order 2048 and 3125 contained in the ninth and tenth maximal sub-
groups (in Atlas notation) 23.22.26.(3 × L3(2)) and 52.5.52.4A5 of G, respectively.
We denote the trace idempotents to which both groups give rise by e and e′, respec-
tively, and accordingly distinguish eFGe-modules from e′FGe′-modules by affixing
prime marks to the latter.

Condensing V with both idempotents yields the module V e of dimension 567
and the module V e′ whose dimension is 438. Note that, while neither e nor e′ is
faithful, no simple FG-module condenses to zero under both idempotents. Applying
the Meat-Axe, we obtain the following decompositions into composition factors, in
which we denote a condensed module with a lower case k for emphasis:

V e = 5 × k1a + k1b + 2 × k8a + 2 × k9a + 2 × k26a + k26b (1)
+ 2 × k138a + k173a,

V e′ = k1a′ + 2 × k3a′ + 2 × k7a′ + 3 × k8a′ + 2 × k8b′ + (2)
+ 3 × k8c′ + k8d′ + 4 × k16a′ + k89a′ + 2 × k96a′.

We may now match the composition factors of either decomposition (1) or (2) to
the constituents of the other decomposition: we either consider the composition fac-
tors of V e, and find their matches in the composition factors of V e′, i.e., we match
from V e to V e′, or vice versa. As the majority of calculations in Algorithm 1 occurs
within the module whose composition factors we are trying to match, in practice it
is sensible to match from the smaller dimensional module to the larger dimensional
one. For illustrative purposes, however, we apply our GAP implementation of Algo-
rithm 1 to match both ways in this example. The output matchings produced are
given in Tables 1 and 2.

On a machine with an AMD Athlon processor running at 2400Mhz the matching
of a simple module takes around 40 seconds either way. Most of this time (approx.
30 seconds) is spent on computing the basis changes in the uncondensed modules,
while the remaining time is mainly accounted for by spinning and determining the
action on submodules. However, we expect that, as the dimension of the condensed
modules increases, the time spent on the calculations in the condensed module will
eventually exceed the time needed for the basis changes in the uncondensed module.

Table 1: Matching the composition factors of (133a⊗8778a)e to composition factors
of (133a⊗ 8778a)e′

V e k1a k1b k8a k9a k26a k26b k138a k173a
V e′ − k1a′ k7a′ − k8b′ k8d′ k96a′ k89a′

Table 2: Matching the composition factors of (133a⊗8778a)e′ to composition factors
of (133a⊗ 8778a)e

V e′ k1a′ k3a′ k7a′ k8a′ k8b′ k8c′ k8d′ k16a′ k89a′ k96a′

V e k1b − k8a − k26a − k26b − k173a k138a

220https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000577

Matching simple modules of condensed algebras

Finally, considering Decompositions (1) and (2) together with the matching of
Table 1, we can now give the entire decomposition of V into composition factors as

V = 5 × k̂1a + k̂1a′ + 2 × k̂3a′ + 2 × k̂7a′ + 3 × k̂8a′ + 2 × k̂8b′ +
+ 3 × k̂8c′ + k̂8d′ + 2 × k̂9a + 4 × k̂16a′ + k̂89a′ + 2 × k̂96a′,

in which the hats above the simple modules indicate that the sum is taken over
their respective origins in mod-FG, as defined in the introduction.

References

1. ‘The Modular Atlas Homepage’, www.math.rwth-aachen.de/∼MOC/. 213

2. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A.
Wilson, Atlas of finite groups. Maximal subgroups and ordinary charac-
ters for simple groups. With computational assistance from J. G. Thackray
(Oxford University Press, Eynsham, 1985). ISBN 0-19-853199-0. 213

3. J. A. Green, Polynomial representations of GLn, Lecture Notes in Mathe-
matics 830 (Springer, Berlin, 1980). ISBN 3-540-10258-2. 213

4. G. Hiss, M. Neunhöffer and F. Noeske, ‘The 2-modular characters of
the Fischer group Fi23’, J. Algebra 300 (2006) 555–570. 219

5. F. Lübeck and M. Neunhöffer, ‘Enumerating large orbits and direct con-
densation’, Experiment. Math. 10 (2001) 197–205. 214, 218

6. K. Lux, J. Müller and M. Ringe, ‘Peakword condensation and submodule
lattices: an application of the MEAT-AXE’, J. Symbolic Comput. 17 (1994)
529–544. 214, 215, 216

7. K. Lux, M. Neunhöffer and F. Noeske, ‘Condensation of homomorphism
spaces’, in preparation. 214, 218

8. K. Lux and M. Wiegelmann, ‘Condensing tensor product modules’, The
atlas of finite groups: ten years on, Birmingham, 1995, London Math. Soc.
Lecture Note Ser. 249 (Cambridge Univ. Press, Cambridge, 1998) 174–190.
214, 218

9. K. Lux and M. Wiegelmann, ‘Determination of socle series using the con-
densation method’, Computational algebra and number theory, Milwaukee,
WI, 1996, J. Symbolic Comput. 31 (2001) 163–178. 217

10. J. Müller and J. Rosenboom, ‘Condensation of induced representations
and an application: the 2-modular decomposition numbers of Co2’, Computa-
tional methods for representations of groups and algebras, Essen, 1997, Progr.
Math. 173 (Birkhäuser, Basel, 1999) 309–321. 214

11. F. Noeske, ‘Morita-Äquivalenzen in der algorithmischen Darstellungstheo-
rie’, PhD thesis, RWTH Aachen University, 2005. 214

12. F. Noeske, ‘The 2- and 3-modular characters of the sporadic simple Fischer
group Fi22 and its cover’, J. Algebra 309 (2007) 723–743. 219

13. R. A. Parker, ‘The computer calculation of modular characters (the Meat-
Axe)’, Computational group theory, Durham, 1982 (Academic Press, London,
1984) 267–274. 213

221https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

http://www.math.rwth-aachen.de/~MOC/
https://doi.org/10.1112/S1461157000000577

Matching simple modules of condensed algebras

14. A. J. E. Ryba, ‘Computer condensation of modular representations. Com-
putational group theory, Part 1, J. Symbolic Comput. 9 (1990) 591–600. 213

15. A. J. E. Ryba, ‘Condensation of symmetrized tensor powers’, J. Symbolic
Comput. 32 (2001) 273–289. 214

Felix Noeske Felix.Noeske@math.rwth-aachen.de

Lehrstuhl D für Mathematik
RWTH Aachen University
52056 Aachen, Germany

222https://doi.org/10.1112/S1461157000000577 Published online by Cambridge University Press

mailto:Felix.Noeske@math.rwth-aachen.de
https://doi.org/10.1112/S1461157000000577

	Introduction
	S-local submodules and matching
	From theory to practice: An algorithm
	Matching in practice: Condensed group algebras
	An example: HN in characteristic 3

