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ON THE WAITING TIME TO ESCAPE

MARIA CONCEIÇÃO SERRA,∗ Chalmers University of Technology

Abstract

The mathematical model we consider here is a decomposable Galton–Watson process
with individuals of two types, 0 and 1. Individuals of type 0 are supercritical and can
only produce individuals of type 0, whereas individuals of type 1 are subcritical and
can produce individuals of both types. The aim of this paper is to study the properties
of the waiting time to escape, i.e. the time it takes to produce a type-0 individual that
escapes extinction when the process starts with a type-1 individual. With a view towards
applications, we provide examples of populations in biological and medical contexts that
can be suitably modeled by such processes.
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1. Introduction

In many biological and medical contexts we find populations that, due to the small reproduc-
tive ratio of the individuals, will become extinct after some time. However, sometimes changes
occur during the reproduction process that lead to an increase of the reproductive ratio, making
it possible for the population to escape extinction. In this work we use the theory of branching
processes to model the evolution of this kind of population.

Cancer cells subjected to chemotherapy are an example of such a population. When the cells
are subjected to chemotherapy, their capacity for division is reduced, hopefully leading to the
extinction of tumour cells. Yet mutations may lead to another kind of cell that is resistant to the
chemotherapy. Thus, the population of this new type of cell has a larger reproductive ratio and
might escape extinction.

Another example can be found in epidemics like HIV or SARS. Imagine a virus of one host
species that is transferred to another host species where it has a small reproductive mean and,
therefore, the extinction of its lineage is certain. Mutations occurring during the reproduction
process could still lead to a virus capable of initiating an epidemic in the new host species.

The goal of this article is to use a two-type Galton–Watson branching processes (GWBP)
to study properties of populations of this sort. We assume that the process starts with a single
subcritical individual that gives birth to individuals of the same type, but whose descendents,
through mutation, can become supercritical and are therefore capable of establishing a popula-
tion that has a positive probability of escaping extinction.

In Section 2 we introduce the model, the main reproduction parameters of the process, and
give some references to theoretical and applied works. Section 3 contains the main results and
proofs. Using probability generating functions, we derive properties of the distribution of the
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waiting time to produce an individual that escapes extinction. We prove that it has a point mass
at ∞ and compute the tail probabilities and its expectation (conditioned on being finite). We
also show that, in the long run, the population size of this process grows like that of a single-type
GWBP with a delay.

2. Description of the model

Consider a two-type GWBP {(Z(0)
n , Z

(1)
n ), n ∈ N0}, where Z

(0)
n and Z

(1)
n respectively denote

the number of individuals of type 0 and of type 1 in the nth generation, and N0 is the set of
nonnegative integers. Suppose that individuals of type 1 are subcritical, i.e. have reproduction
mean m, 0 < m < 1, and that each one of their descendents can mutate, independently of the
others, to type 0 with probability u, 0 < u < 1. Individuals of type 0 are supercritical, i.e. have
reproduction mean m0, 1 < m0 < ∞, and there is no backward mutation. For this particular
two-type GWBP, the first moment matrix is of the form

A =
[
m0 0
mu m(1 − u)

]
.

Unless stated otherwise, we assume that the process starts with just one individual, of type 1, i.e.
Z

(0)
0 = 0 and Z

(1)
0 = 1. The probability generating function of the reproduction law of type-i

individuals will be denoted by fi, i ∈ {0, 1}, and the joint probability generating function of
(Z

(0)
1 , Z

(1)
1 ) is given by

F(s0, s1) = E
[
s
Z

(0)
1

0 s
Z

(1)
1

1

]
=

∞∑
k=0

p
(1)
k

k∑
j=0

(
k

j

)
s
j
0 uj s

k−j
1 (1 − u)k−j

= f1(s0u + (1 − u)s1), (s0, s1) ∈ [0, 1]2, (2.1)

where {p(1)
k , k ∈ N0} represents the reproduction law of type-1 individuals.

Branching processes have been intensively studied during the last decades; classical ref-
erences are the books of Harris (1963), Athreya and Ney (1972), Jagers (1975), and Mode
(1971). For recent books, with emphasis on applications, see Axelrod and Kimmel (2002) and
also Haccou et al. (2005). For a nice example of how branching processes can be used to solve
important problems in biology and medicine, the reader is referred to the papers of Iwasa et al.
(2003), (2004).

3. Main results

3.1. Number of mutants and the probability of extinction

Consider the sequence of random variables {In, n ∈ N0}, with In being the total number of
mutants produced until generation n (inclusive), and let I be the random variable that represents
the number of mutants in the whole process. By mutant we mean an individual of type 0 whose
mother is of type 1.

It is obvious that the sequence In converges pointwise to the random variable I . In our
first theorem, we use this convergence to establish a functional equation for the probability
generating function of I , denoted by fI .

Theorem 3.1. The probability generating function of I satisfies the functional equation

fI (s) = f1(us + (1 − u)fI (s)), (3.1)

for all s ∈ [0, 1].
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Proof. First we establish a recursive relation for the probability generating functions of the
random variables In, denoted by fIn . We find that, for all n ≥ 1,

fIn(s) = E[sIn ]
= E[E[sIn | Z

(0)
1 , Z

(1)
1 ]]

= E
[
E
[
sZ

(0)
1 +∑Z

(1)
1

i=1 I i
n−1

∣∣∣ Z
(0)
1 , Z

(1)
1

]]

= E
[
sZ

(0)
1 E[sIn−1 ]Z

(1)
1

]
= F(s, fIn−1(s))

= f1(su + (1 − u)fIn−1(s)), (3.2)

where the I i
n−1 are independent, identically distributed copies of the random variable In−1, the

function F is as defined in (2.1), and fI0(s) = 1.
By taking the limit in relation (3.2) we obtain the functional equation (3.1).

We now proceed to determine the probability of extinction. Using the notation

q0 = P[Z(0)
n = Z(1)

n = 0 for some n ≥ 1 | Z
(0)
0 = 1, Z

(1)
0 = 0],

q1 = P[Z(0)
n = Z(1)

n = 0 for some n ≥ 1 | Z
(0)
0 = 0, Z

(1)
0 = 1],

it follows, from the classical result on the extinction of branching processes, that q0 is the
smallest root of

q0 = f0(q0)

in the interval [0, 1]. To determine q1, notice that extinction of the process occurs if and only
if all the supercritical single-type GWBPs starting from the mutants die out. Since there are I

such processes, we have
q1 = E[qI

0 ] = fI (q0).

Obtaining an explicit expression for q1 is not always possible; therefore, approximations are
necessary for application purposes. Assuming there to be small mutation rate u, Iwasa et al.
(2003), (2004) provided these approximations for particular reproduction laws, namely for
Poisson and geometric distributions. Their results extend to an even more complex scheme of
mutations leading to branching processes with more than two types of individual.

3.2. Waiting time to produce a successful mutant

Consider the random variable T , which represents the time to escape, i.e. the first generation
in which a successful mutant is produced. By successful mutant we mean a mutant that is
able to start a single-type GWBP that escapes extinction. This variable takes values in the set
{1, 2, . . . ,∞}, with T = ∞ if no successful mutant is produced.

Theorem 3.2. The distribution of T has the following properties:

(i) P[T > k] = fIk
(q0) for all k ≥ 0,

(ii) P[T = ∞] = q1,

(iii) E[T | T < ∞] = ∑∞
k=0(fIk

(q0) − q1)/(1 − q1).
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Proof. To prove (i), observe that T > k means that all Ik mutants were unsuccessful.
Therefore,

P[T > k] = E[qIk

0 ] = fIk
(q0).

To prove (ii), observe that (T > k)k≥0 is a nonincreasing sequence of events and that

P[T = ∞] = P

[ ∞⋂
k=0

(T > k)

]
= lim

k→∞ P[T > k] = lim
k→∞ fIk

(q0) = fI (q0) = q1.

To prove (iii), observe that T > 0 and, therefore,

E[T | T < ∞] =
∞∑

k=0

P[T > k, T < ∞]
P[T < ∞]

=
∞∑

k=0

P[T < ∞] − P[T ≤ k]
1 − q1

=
∞∑

k=0

fIk
(q0) − fI (q0)

1 − q1
,

with the fIk
as recursively defined in (3.2).

A similar problem was considered in Bruss and Slavtchova-Bojkova (1999), where a single-
type GWBP with immigration to the state 0 was used to model the repopulation of an
environment. The idea is the following. Consider a population starting with a supercritical
individual and let it grow according to a GWBP. If extinction occurs at time t then immigration
takes place immediately after, i.e. one individual of the same kind is introduced and a new
process, independent of and identically distributed to the first one, restarts. Among other
results, Bruss and Slavtchova-Bojkova derived properties of the last instant of immigration, i.e.
of the generation into which was introduced an immigrant that started a process that escaped
extinction.

In the applications we consider, the mutants appear at random times as descendents of the
subcritical individuals, and the model described above therefore does not apply.

3.3. Comparison with a single-type supercritical GWBP

In this section we prove a result that will allow us to compare the limit behavior of the
sequence Z

(0)
n with the limit behavior of a single-type supercritical GWBP. First, we recall a

result on single-type GWBPs. The proof can be found in any of the classical books referred to
in Section 2.

Theorem 3.3. Let {Yn, n ∈ N0} be a single-type supercritical GWBP with reproduction law
{p(0)

k , k ∈ N0}, and suppose that Y0 = 1. If

∞∑
k=0

k log kp
(0)
k < ∞ (3.3)

then Yn/µ
n → W almost surely and in L1, where µ = ∑∞

k=0 kp
(0)
k and E[W ] = 1. Further-

more, the Laplace transform of W , φW , satisfies

φW(µs) = f0(φW (s)), s ≥ 0.
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Our result is as follows.

Theorem 3.4. If the reproduction law of type-0 individuals satisfies condition (3.3), then

Z
(0)
n

mn
0

→ U almost surely and in L1,

with E[U ] = um/(m0−m(1−u)) < 1. Furthermore, the Laplace transform of U , φU , satisfies
the functional equation

φU(m0s) = f1(uφW (s) + (1 − u)φU(s)),

where φW is as in Theorem 3.3.

Proof. Consider the sequence of random variables {Jn, n ≥ 1}, where Jn represents the
number of mutants in generation n, i.e. Jn = In − In−1. Using these variables, Z

(0)
n , n ≥ 1,

can be decomposed in the following way:

Z
(0)
1 = J1, Z(0)

n =
n−1∑
k=1

Jk∑
i=1

Y i
n−k, n ≥ 2. (3.4)

Here, the random variable Y i
n−k represents the number of individuals in generation n− k of the

single-type supercritical GWBP initiated by the ith mutant of generation k. These processes
are independent of each other and have the same reproduction law, namely {p(0)

k , k ∈ N0}.
By dividing (3.4) by mn

0 and taking expectations, we obtain

E

[
Z

(0)
n

mn
0

]
=

n−1∑
k=1

1

mk
0

E

[ Jk∑
i=1

Y i
n−k

mn−k
0

]

=
n−1∑
k=1

1

mk
0

E[Jk]

=
n−1∑
k=1

1

mk
0

um[m(1 − u)]k−1

→ um

m0 − m(1 − u)
< 1 as n → ∞. (3.5)

The expectation of Jk is obtained by differentiation of the recursive relation (3.2). Since
{m−n

0 Z
(0)
n , n ≥ 0} is a submartingale with respect to the σ -algebra Fn = σ {Z(0)

m , Z
(1)
m ,

0 ≤ m ≤ n} and, from (3.5), we have

sup E

[
Z

(0)
n

mn
0

]
< ∞,

the martingale convergence theorem ensures that the sequence converges almost surely to a
random variable U with E[U ] < ∞.

To prove L1-convergence, it remains to show that

E[U ] = um

m0 − m(1 − u)
. (3.6)
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Observe that, given (Z
(0)
1 , Z

(1)
1 ), the following decomposition holds:

Z
(0)
n

mn
0

= 1

m0

Z
(0)
1∑

i=1

Y i
n−1

mn−1
0

+ 1

m0

Z
(1)
1∑

j=1

X
(0)
n−1,j

mn−1
0

. (3.7)

In this expression the Y i
n−1 are as described in decomposition (3.4) and the X

(0)
n−1,j are the

random variables that represent the number of type-0 individuals in generation n − 1 of the
j th two-type GWBP initiated in generation 1. There are Z

(1)
1 such processes and they are

independent of each other. Taking the limit in (3.7) (the existence of the limits of the sequences
involved was already proved) gives

U = 1

m0

Z
(0)
1∑

i=1

Wi + 1

m0

Z
(1)
1∑

j=1

Uj , (3.8)

where Wi are independent, identically distributed copies of W , as defined in Theorem 3.3, and
Uj are independent, identically distributed copies of U . It is now a matter of taking expectations
in (3.8) to obtain the desired result, (3.6).

Finally, proving the functional equation for the Laplace transform of U is just a matter of
using (3.8). Indeed,

φU(s) = E[e−sU ]
= E[E[e−sU | Z

(0)
1 , Z

(1)
1 ]]

= E

[
E

[
exp

(
− s

m0

Z
(0)
1∑

i=1

Wi

) ∣∣∣∣ Z
(0)
1 , Z

(1)
1

]
E

[
exp

(
− s

m0

Z
(1)
1∑

j=1

Uj

) ∣∣∣∣ Z
(0)
1 , Z

(1)
1

]]

= E

[(
φW

(
s

m0

))Z
(0)
1

(
φU

(
s

m0

))Z
(1)
1

]

= f1

(
uφW

(
s

m0

)
+ (1 − u)φU

(
s

m0

))
.

With

τ =
∣∣∣∣logm0

(
um

m0 − m(1 − u)

)∣∣∣∣,
we conclude that there exists a random variable U∗ such that

Z
(0)
n

mn−τ
0

→ U∗ almost surely and in L1,

with E[U∗] = 1. This indicates that the sequence Z
(0)
n exhibits the same limit behavior as a

single-type supercritical GWBP, except with a delay τ . It remains to investigate the relation
between the constant τ and the random variable that represents the delay between the two
processes.

In applications, it is not only important to study the time taken to produce a successful mutant,
but also the time taken for the number of type-0 individuals to reach high levels. Theorem 3.4
provides a first step in determining this.
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