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Abstract

In this paper we consider a single-server queue with Lévy input, and, in particular, its
workload process (Q;);>0, focusing on its correlation structure. With the correlation
function defined as r () := cov(Qo, Q;)/var Qo (assuming that the workload process
is in stationarity at time 0), we first study its transform fooo r(t)e~?* dt, both for when
the Lévy process has positive jumps and when it has negative jumps. These expressions
allow us to prove that r (-) is positive, decreasing, and convex, relying on the machinery of
completely monotone functions. For the light-tailed case, we estimate the behavior of ()
for large t. We then focus on techniques to estimate r (¢) by simulation. Naive simulation
techniques require roughly (r(¢))~2 runs to obtain an estimate of a given precision, but
we develop a coupling technique that leads to substantial variance reduction (the required
number of runs being roughly (r(r))~!). If this is augmented with importance sampling,
it even leads to a logarithmically efficient algorithm.
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1. Introduction

Consider a queueing system, and, more particularly, its workload process (Q;);>0. Where
one usually focuses on the characterization of the (transient or steady-state) workload, another
interesting problem relates to the identification of the workload correlation function r(t) =
cov(Qo, Q;)/var Qp, assuming that the workload process is in stationarity at time 0. For
several queueing systems, this correlation function has been explicitly computed; Morse [17],
for instance, analyzed the number of customers in the M/M/1 queue. Often, explicit formulae
are hard to obtain, but the analysis simplifies greatly when looking at the transform

o(®) = /oo r(ne " dr.
0

In his seminal paper [5], Bene$ managed to compute p (-) for the workload in the M/G/1 queue;
relying on the concept of complete monotonicity, Ott [18] elegantly proved that, in this case,
r(-) is positive, decreasing, and convex. We further mention the survey by Reynolds [20], and
interesting results by Abate and Whitt [1].
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The primary aim of this paper is to explore the workload correlation function for the class of
single-server queues fed by Lévy processes. Note that the M/G/1 queue is contained in this class;
then the Lévy process under consideration is a compound Poisson process with drift. We focus
on spectrally one-sided Lévy input processes, distinguishing between those with only positive
jumps (also referred to as spectrally positive), and those with only negative jumps (spectrally
negative). For the spectrally positive case, it has already been shown in [12] that 7 (-) is positive,
decreasing, and convex; our first contribution is that we use the results of [10] and [19] to show
that these properties carry over to the spectrally negative case. We also estimate the asymptotics
of r(t) for large . These results can be found in Section 2.

A second contribution of the paper (Section 3) considers an intimately related problem: the
analysis of the distribution of the residual busy period 7, where the queue starts in stationarity
at time 0. The insights developed in this section will be intensively used in Section 4, when
setting up schemes to efficiently simulate r(¢). For spectrally one-sided input, we first derive
the Laplace transform of p(¢#) := P(r > t). Then we use this transform to estimate the
tail of p(¢) for the case of light-tailed Lévy input, which exhibits (essentially) exponential
decay. The fact that p(t) — 0 for t — oo implies that estimation through ‘naive’ simulation
may take prohibitively long for large r. We develop a logarithmically efficient importance
sampling algorithm; in this scheme the Lévy input (in the interval (0, ¢]) is given a constant
exponential twist, but, remarkably, also the workload present at time O needs to be sampled
from an alternative distribution as well.

The third contribution, presented in Section 4, concerns efficient simulation schemes for
estimating r (¢); these intensively rely on results that we found for the busy period distribution
p(t). Again, the fact that 7 (#) — 0 (as ¢t — 00) entails that naive simulation will be extremely
time consuming; we show that it takes roughly (+(¢)) ™2 runs to obtain an estimate of a given
precision. Then we propose a coupling-based approach, yielding substantial variance reduction
(so that the number of runs required is just of the order (r(¢))~!). For the light-tailed case (in
which r(¢) vanishes essentially exponentially), we propose an importance sampling based
algorithm; if this is applied on top of the coupling technique then the resulting scheme is
asymptotically efficient (i.e. the number of replications needed grows subexponentially in 7).
To the best of the authors’ knowledge, this is the first contribution to variance reduction in
the context of the estimation of (small) correlations and covariances. As indicated above,
developing simulation-based computation techniques for this is substantially more challenging
than for rare event probabilities.

In Section 5 we present a number of simulation experiments, for the cases of reflected
Brownian motion and the M/M/1 queue, showing the substantial speed up achieved by our
approach. In Section 6 we conclude, and discuss a number of open issues.

2. Model and structural results

In this section we find an expression for the transform p (-) of the correlation function, which
is used to derive a number of structural properties of r(-), as well as asymptotics. We start this
section, however, with a formal introduction of our queueing system.

2.1. Lévy processes

Let (X;);>0 be a Lévy process, with drift E X; < 0. We consider two cases.

Case 1: (X;)i>0 has no negative jumps. Then the Laplace exponent is given by the function
@(-): [0, 00) > [0, 00), i.e. p(a) := log Ee~*X1. Itis known that ¢(-) is increasing and
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convex on [0, 0o), with slope ¢’ (0) = —E X at the origin. Therefore, the inverse v/ (-) of
¢ (-) is well defined on [0, 00). In the sequel we also require that X; is not a subordinator,
i.e. a monotone process; thus, X| has probability mass on the positive half-line, which
implies that limy_, _ o @ () = 00.

Case 2: (X;)t>0 has no positive jumps. Now we define &(f) := logEeﬂxl, which is well
defined for any § > 0. Again, ruling out that X; is a subordinator (and recalling that
®’'(0) = EX| < 0), we see that ®(B) is no bijection on [0, c0); we define the right
inverse through W(gq) := sup{8 > 0 : ®(8) = ¢}. Realize that ¥(0) > 0.

Important examples of such Lévy processes are the following. (i) Brownian motion with
drift, being actually both spectrally positive and negative. We write X € Bm(u, 02) when
o) = —ap+ %azaz. (i) Compound Poisson with drift, which is spectrally positive. Non-
negative jobs arrive according to a Poisson process with rate A; the jobs By, By, ... are
independent and identically distributed (i.i.d.) samples from a distribution with Laplace trans-
form b() := Ee *5; the storage system is continuously depleted at a rate 1. We write
X € CP(A, b(+)); it can be verified that (o) = o — A + Ab(«). Clearly, if the drift is positive,
and the jobs are i.i.d. samples from a nonpositive distribution (that is, the jumps are downward),
the process is spectrally negative.

2.2. Reflected Lévy processes: queues

We consider the reflection of (X;);>0 at 0, which we denote by (Q;);>0. It is formally
introduced as follows; see, for instance, [3, Chapter IX]. Define the decreasing process (M;);>0
and the resulting reflected process (or workload process or queueing process) (Q;);>0 by

M, = inf Xj, 0; := X; + max{—M;, Qo};
0<s<t
observe that Q; > 0 for all # > 0. Then the steady state distribution Q := lim;_, s, Q;, which
exists due to E X; < 0, is known (in terms of its Laplace transform) for both the spectrally
positive and spectrally negative cases. For spectrally positive input, we have the generalized
Pollaczek—Khinchine formula, usually attributed to Zolotarev [22]:

a¢’(0)

._ —aQ _
k() :=Ee = @

This result evidently enables the computation of all moments of the steady state queue Q (by
repeated differentiation and inserting 0). From now on we assume that E Q2 is finite, so that
v := var Q is well defined.

For spectrally negative input, realize that E ¢! is a martingale, with By := W (0) > 0.
‘Optional sampling’ [21, Chapter A14] thus gives, for any positive x,

P(there exists t > 0: X; > x)eﬁox =1,

and, as Q is distributed as the supremum over ¢ > 0 of X; (‘Reich’s identity’), we find that O
is exponentially distributed with mean 1/8y. It follows that v = 1/ ,33.

2.3. Correlation structure of the queue

In this paper we are interested in the correlation structure of the queue process (Q;);>o. For
the spectrally positive case, structural results have already been found in [12]. Relying on the
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transform of Q7 (where T is exponentially distributed with mean 9 '), given that Q¢ = x
(see, e.g. [3, Section IX.3] and [14]), it was derived that

1_¢“(0>+¢/(0>( 1 )
B 2092 | w2 \9y' @) v@) )

Then the machinery of completely monotone functions [6], [18] was used to prove that r(-) is
a positive, decreasing, and convex function. We now do the same for the spectrally negative
case.

Following the setup of [15, Chapter 8], we first introduce, for spectrally negative Lévy
processes, families of functions W@ (-) and Z@(.) as follows. Let W@ (x) be a strictly
increasing and continuous function whose Laplace transform satisfies

() = /wr(r)e*”’ dr =
0

o0 1
Brw@Dydx = ——, W(q). 2.1
/0 e Wdr= g f> V) @.1)

In addition, .
ZD (x) :=1+q/ WD (y)dy. (2.2)

0

The functions W@ (-) and Z@)(-) are usually referred to as the g-scale functions. Then [19,
Equation (19)] gives, with some abuse of notation, the following transform (with respect to ¢)
of the density of O, given that Q¢ = x:

Z(q)(x) _ W(q)(x —y).

o
v
/ eI P(Q = y)dt =V 2D
0 q

It is now a matter of straightforward calculus to show that the previous display leads to, with

T denoting an exponential random variable with mean ¢,

)
/ e_ﬂxEx e 07 gx =1 — I,
0

where
o o
, v
I ::/ / gePrewe=v@y YD @) ) 4y dy.
0 0 q

o o
L= / / ge Pe W@ (x — y)dxdy.
0 0

We now compute I} = Ii(a, 8,q) and I = I («a, B, q) explicitly. Let us first consider the
integral I1; using (2.1) and (2.2), we obtain

\'IJ o
Li(a, B,q) = %/ e P 7@ (x)dx

_ Y@ @ px >
_\v(q)+a< //qw (Ve ™ dxdy

_ VY@ 1<1+ q )
Y(g)t+ap (B)—q)

- 1 q 1
L. B.q) = (@+B)y dy =
2@ .9) /0 1 OB —q "  atBOPB) —

Likewise,
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Let us perform a few checks; it is readily verified that
e substituting ¢ = 0 into /1 («, B, q) — Ix(«, B, g) indeed yields 1/8;

e substituting 8 = By into the expression for fooo Be P*E, e %97 dx indeed yields the
steady state transform By /(B +«): when starting in the queue’s equilibrium distribution
at time 0, the workload is still in stationarity after an exponentially distributed time
(irrespectively of g).

Now observe that, recalling that 7' has an exponential distribution with mean ¢,

o o
/ ge " E(QoQn dt = f Poxe P E, Or dx
0 0

: d d oo —Bx —aQ
=lim —|— / e E,e T'dx . 2.3)
al0 do dﬁ 0 B=Po

Upon combining the explicit expression for I (¢, 8, q) — Ix(«, B, g) with (2.3), and recalling
thatv = 1/ ﬂg (in the spectrally negative case), we eventually obtain, after considerable calculus,
the following result.

Theorem 2.1. For the spectrally negative case,
p@) :=/ r(ne”"dr = ° ' (fo )(———).
0 q Y(g) Po

Corollary 2.1 below follows from applying I’Hopital’s rule twice. It implies that in the
spectrally negative case the workload process is necessarily short-range dependent. Use the
fact that W/ (0)®'(By) = 1 and " (By) + (P'(By))>W”(0) = 0, which follow from repeated
differentiation of the relation ® (¥ (q)) = q.

Corollary 2.1. For the spectrally negative case,

1 ®"(Bo) -
Bo® (Bo)  2(¥'(Bo))?

We can now use the transform p (g) to establish a number of key structural properties of ().

p(0) := /Oor(t) dr =
0

Theorem 2.2. It holds that r(-) is positive, decreasing, and convex.

Proof. We mimic the proof that was developed in [12] for the spectrally positive case. Using
integration by parts, we find that

_ B3 1 1
Dg) == "dr =2 < )
0 (q) /0 (e " dt = p (Bo) v B

which also entails that r'(0) = —Bo®’(Bo). Analogously,

> @' (Bo)
O W(g)

O = [ Fea 0 @' ( ): 2.4
p(q) /0 r"(0e” " dr = —r'(0) + B3P’ (o) v B B (2.4)

In the proof of Proposition 3.2 below we will show that W(0)/W¥(q) € C, where C is the
class of completely monotone functions [6], [13, pp. 439ff.]; completely monotone functions
are functions that can, up to some positive multiplicative constant, be considered as Laplace
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transforms of nonnegative random variables. We conclude from (2.4) that p(z) (g) isin C, and,
hence, r”(-) is positive, i.e. r(-) is convex.

We know that f(g) € C implies that, with g(q) := (f(0) — f(g))/q, g(q) € C also.
Taking f(gq) = p?(g), we find that —pM (¢) is in €, and, hence, r'(-) is negative, i.e. r(-) is
decreasing. Applying the same procedure again, we find that p(q) is in C, and, hence, r(-) is
positive. This completes the proof.

In [12] the asymptotics of r(¢) (for large t) in the spectrally positive case were addressed.
It turned out that the heavy-tailed regime (leading to r(#) decaying essentially polynomially)
and the light-tailed regime (leading to r (¢) decaying essentially exponentially) had to be treated
separately. In the light-tailed regime (where it was assumed that the equation ¢ (o) = 0 has a
negative root), it turned out that the exact asymptotics were, up to a multiplicative constant, of
the form r~3/2e”"" where 9* < 0 is the branching point of ¥ (-). This means that, with ¢ < 0
being the minimizer of ¢(-), (¢) = 9*.

Let us now consider the counterpart of these findings for the spectrally negative case. We will
argue that r () necessarily decays exponentially, relying on the Heaviside operational principle.
Let¢ > 0denote the minimizer of ®(-), so that ®(¢) = ¢* < 0; hence, ¢g* < 0is the branching
point of W(-). Around g*, W(q) looks like ¢ + +/2/vep/q — g*, with vg := ®”(¢) > 0. Let
f(t) ~ g(t) (ast — A)denote f(¢)/g(t) — 1 ast — A. Then after some calculus we find
that, for some (irrelevant) constant «, as g | g7,

Z(D/ 2
p(q) ~ «k + Boyq—q*,  Bo:= _A® P 12

(@)%¢% | v
so that application of Heaviside heuristics [2] yields, as t — oo,

*
Bq> ed !

O TSy i

3. Aninterlude: efficient estimation of the busy period tail distribution

In this section we address the estimation of the tail distribution of the busy period in a
Lévy-driven queue by applying an importance sampling based simulation procedure. In the
next section it will turn out that the insights developed here are useful when setting up an
efficient simulation scheme for estimating the workload correlation r(¢). We let t denote the
busy period duration, starting from the steady state at time 0: 7 := inf{r > 0: Q; = 0},
where Qg is distributed according to the stationary distribution. Throughout this section, we
write p(¢) := P(r > t). In this section we first derive the Laplace transform of the probability
p(-), then we consider the corresponding asymptotics, and, finally, we set up a logarithmically
efficient simulation scheme.

3.1. Transforms

Let us start by considering the spectrally positive case. We have, with 7(x) := inf{r >
0: X[ = _.x},

/Ooe"”p(t) dr = /Oo</oo e V" P(r(x) > t)dt> dP(Qo < x)
0 o \Jo

= %/000(1 —e V¥ dp(Qy < x).

Application of the Pollaczek—Khinchine formula now leads to the following result.
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Proposition 3.1. In the spectrally positive case, the Laplace transform of p(t) is given by
> 1 v (9)
—Ut /
Hdt = — — ¢'(0)——.
/0 e " p) 5 ¢ 0—3

The spectrally negative case can be dealt with similarly. First recall that
x
f e " P(t >1)dt =¢ ' (1 —Ee 7).
0

Then, using part (ii) of [15, Exercise 6.7], we have

Bok(q, o)
here « (g, B) relates to the transform of the so-called descending ladder process, and is given,
in this spectrally negative case, by €(g¢, 8) = (¢ — ®(B8))/(¥(g) — B). Using the fact that
®(By) = 0, we find that Ee™9" = W(0)/W¥(g), and, in addition, we obtain the following
result.

o0
Be 9" = / Boe PXEe 1™ dx = g,
0

Proposition 3.2. In the spectrally negative case, the Laplace transform of p(t) is given by
o0 1 w0
/ e 'p(t)dt = —(1 - L)
0 q Y(q)

We again use the Heaviside operational principle [2] to (heuristically) estimate the decay of
p(t) for large . We focus on the situation that the Lévy process is (in the upward direction)
light tailed; precise definitions follow below. The most important conclusion is that in this
light-tailed case p(t) decays to 0 essentially exponentially; up to a multiplicative constant, the
exact asymptotics coincide with those of the workload correlation function r(¢).

We again start by considering the spectrally positive case. As before, we assume that the
equation ¢ () = 0 has a negative root. Observe that Proposition 3.1 then holds for any positive
¥, but we can consider the analytic continuation up to the branching point 9* < 0 of ¥ (). In
the sequel, let £ < 0 denote the minimizer of ¢(-), so that ¢({) = 9#* < 0 (note that v, :=
¢"(¢) > 0). Then, for ¥ | 9*, we have ¢ (9) — ¢ ~ ,/2/v,+/¥ — U*. Hence, around 9*, we
have, for some (irrelevant) constant «, as ¢ | 9%,

* o _ b @) — AN
/0 e p(t)dt_l9 ¢ (0) 52 K+ ApN T — 0%, Ay = (19*)2\/;<0’

3.2. Asymptotics

and, hence, applying the Heaviside operational principle, we estimate the tail distribution of
the busy period by

v et
L(—1/2)t/t
We now turn to the spectrally negative case. Proposition 3.2 holds for any positive g, but we
can consider the analytic continuation up to the branching point g* < 0 of W(-). Let¢ > 0
denote the minimizer of ®(-), so that ®({) = ¢* < 0. Similarly to the spectrally negative case,
we obtain, with vg := ®”(¢) > 0 and k being some (irrelevant) number, as g | g*,

/oo e 'p@r)dr = l(l — w) ~ K+ Ao/ q — q*, Ag = \11(0)\/2 <0,
0 q

U(q) q*¢%\ v,

p(t) ~ ast — oo.

https://doi.org/10.1239/jap/1300198139 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1300198139

Simulation-based computation of the workload correlation 121

and, hence, the Heaviside operational principle estimates the tail of the busy period distribution

to be .
Acp e?'!

C(—=1/2) t/t

3.3. Importance sampling based simulation

p(t) ~ ast — oQ.

As p(t) vanishes exponentially fast in the light-tailed case considered above, estimating
P(r > t) from naive Monte Carlo simulation would be extremely time consuming. It is known
that the number of replications needed (to obtain an estimate of a certain predefined precision)
is roughly of the order (p(t))~!. This motivates the search for more efficient simulation
algorithms. We conclude this section with an algorithm for estimating this probability in a
logarithmically efficient way; this algorithm is based on importance sampling (see, e.g. [4,
pp. 127-128]), with an exponential twist of the Lévy process X;.

We first explain what ‘exponentially twisting’ means in our Lévy setting; we focus here on
the spectrally positive case, but the spectrally negative case works analogously. Evidently, the
queue is stable under the probability measure P, as we assumed that E X1 < 0. Below we will
propose a change of measure, with which we associate Q, under which {r > ¢} occurs with
substantially higher probability, by application of an exponential twist —¢ > 0 (where ¢ was
defined in Section 3.2). We know that the Laplace exponent ¢ (o) of X, reads, with d, 62>0
and a measure IT, () such that f(O,oo) min{1, x2}l'I¢(dx) < 00,

_ l 2.2 / —ox
o) = —ad + a0 + (e 1 4+ ax 1, 1))y (dx).
2 0,00)
It is now a matter of straightforward calculations to show that ¢ (&) := ¢(a¢ + ¢) — @(¢) is a
Laplace exponent as well; let this be the Laplace exponent of the Lévy process under Q. It is
readily checked that (using self-evident notation) Eq X1 = —¢'(0) = —¢/(¢) = 0, so that the
system under the new measure has drift 0. (We can check that, under Q, the drift d has increased
tod — 4“62, and the Brownian term remains unchanged, whereas the measure I1g(dx) is given
through its exponentially twisted counterpart (with ‘twist’ —¢).)

In importance sampling we simulate under a measure different to the original measure, where
unbiasedness is recovered by weighing the simulation output by appropriate likelihood ratios.
We propose the following alternative measure.

e Let, in the interval (0, t], the Lévy process be twisted with —¢ = —y(9*) > 0, as
described above; #* is as defined above.

e We, in addition, twist the workload at time 0, Q¢; we do so by a factor « > 0, for which
we identify a suitable value later on. This effectively means that we sample Qg from a
distribution with Laplace transform E e~ (@~)€0 /E e¥ Qo

From now on we denote this new measure by Q,., consisting of twisting Qo (with k) as well as
a twisting (X)se(0,7] (With ).

In each run we simulate the process under Q, till time ¢, so that we can check whether t > ¢
or not. In this way, we perform n independent runs. Then the estimator, based on these n
runs, reads ! Z?:l L; 1{t; > t}, where L; is the likelihood ratio of run i. Let us write down
this likelihood ratio more explicitly. First there is the contribution due to the twisted queue at
time 0; using the Pollaczek—Khinchine formula, we obtain

0 K¢/ (©)

L :=e *Q0EeQ — .
@(=K)
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Then there is the contribution due to the twisted Lévy process between 0 and ¢:

Ly = eV VX B e VX _ W)X 0"

The ‘total likelihood ratio’ is thus L := L x L. It is standard that the resulting estimator is
unbiased as Eq_L 1{t > t} equals the probability of our interest, i.e. E1{t > r}.

As varg, L 1{r > t} > 0, we see that EQKL2 Lt >t} > (Eq L1{r > tH2. In this sense,
we could call our change of measure logarithmically efficient if

: 1 2 : 1 2 *
tl_l)rgo ;logEQKL 1{r > 1} < tl_l)rgo;IOg(EQxL 1{r >t} =2v".

Logarithmic efficiency essentially means that the number of replications needed to obtain an
estimate with a certain fixed precision grows subexponentially in the ‘rarity parameter’ ¢, cf. [4,
Chapter VI]. We now address the issue of appropriately choosing «; we do this in three steps.

Step (i): k = 0 does not necessarily lead to logarithmic efficiency. A first important
observation is that not twisting Qg at all (i.e. choosing k = 0) does not necessarily yield
logarithmic efficiency: recalling that a necessary condition for {t > t} is {Q¢ + X; > 0}, we
find that

@' ON 2pmry 2000, 290"
Eq L*1{t > 1} < (——) eV Bq e Qe 2V ()00, (3.1
‘ @(—«) ‘
For logarithmic efficiency, we should have lim sup,_, ., ¢~ logEq, L>1{t >t} <20*. In
other words, when picking k = 0, we need to have EQOe_Z‘”(’?*)QO < oo for logarithmic
efficiency, and this is not a priori clear.

Step (ii): k = —¢ leads to logarithmic efficiency. Let us now check whether, with another
choice for «, logarithmic efficiency can be guaranteed. To this end, note that ¢ (¥ (9*)) is finite
(to see this, use the fact that ¢ is larger than the pole of ¢(-)). Hence, picking k := —¢(¥*) =
—¢ does yield logarithmic efficiency. In other words, we have to exponentially twist Q¢ as well
to obtain a provably logarithmically efficient procedure, and k = —¢ > 0 is a suitable choice.

Step (iii): k = —¢ is optimal. The next question is: it is clear that, for the (X)se(0.1]-
part, a twist by —¢ is optimal, but, for the Q¢-part, can we do better than twisting with —¢?
Interestingly, using

a0y _ @K 9(=K)
pla—k) —k
the right-hand side of (3.1) can be rewritten as

EQK ’

—K 20+ Kk g9y
o(—K) (28 +«)

Observe that it consists of two factors that depend on «, the first of which increases in « and the
second of which decreases in «, so that there is a trade-off. It is a straightforward exercise to
show that the minimum is achieved for x = —¢ (this can be seen by equating the derivative to
0, but it also follows using an elementary symmetry argument). We conclude that the proposed
change of measure is the best possible within the class of exponential twists of Qo, in the sense
that it minimizes (3.2).

(¢'(0))? (3.2)

4. Simulation-based computation of the correlation function

As noted in the previous section, if a probability tends to 0 as some ‘rarity parameter’ r grows
large then the number of runs needed to estimate the probability by naive simulation, for a given
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relative precision, is roughly inversely proportional to the probability. At the end of Section 2
we observed that the correlation r(¢) also tends to 0 as t — oo, which raises the question of
how many runs would be roughly needed to estimate r(#) by naive simulation. We first answer
this question, and then propose a coupling-based alternative that performs substantially better.
This section concludes with a logarithmically efficient algorithm, which combines the coupling
idea with importance sampling. In this section we concentrate on the spectrally positive case;
in the spectrally negative case, the decay rates ¥* must be replaced by ¢g* (while the proofs are
very similar).

4.1. Naive simulation

In the remainder of this section we concentrate on estimating r(¢) := cov(Qq, Q;), as
v = var Q is known. The naive estimator of 7(¢) is, using self-evident notation, and recalling
that E Q is known,

1 & . .
NS . Z @) @) 2
Tn( )(I)ZZ lQol tl —(EQ),
1=

based on n independent runs. The variance of this estimator reads n~ 1 var(QpQ;). Now note
that, as t — oo,

var(Q0Q:) = E(Q30%) — (E 090/)* — (E0»)* — (E Q)*,

which is positive due to the fact that E 9% > (E Q)2. Suppose that our goal is to simulate until
our estimate has a certain given relative precision ¢ (defined as the ratio between the width of
the confidence interval and the estimate) and confidence «. The number of runs needed, say
nM) (1), is roughly equal to the smallest n satisfying

4/ var T,fNS) (1)

o 0 <e€
for an appropriately chosen percentile of the standard normal distribution §,. We obtain the
following remarkable result for the naive estimator; it states that the number of runs required
blows up exponentially, but it is quadratically inversely proportional to r(¢), rather than just
inversely proportional. This result underscores that efficient (simulation-based) computation
of the workload correlation r(¢) poses fundamentally new questions, despite the fact that its
decay matches that of the busy period asymptotics p(z).

Proposition 4.1. It holds that lim;_, ot~ logn ™S () = —29* > 0.

4.2. A coupling-based algorithm

In this subsection we develop a coupling-based simulation procedure that reduces the number
of runs needed from quadratically inversely proportional to 7 (), to just inversely proportional.
We write

(1) = E(Qo(Q: — O7)),

where both Q and Q* are stationary versions of the workload, and Q7 is independent of Q.
We construct such a coupling as follows. Generate Q¢ and Q) independently, sampled from
the stationary distribution of the workload. Now use exactly the same incoming Lévy process
X; over (0, t] to drive both (Qs)se(0,:1 and (QF)se (0,1 from their two independently generated
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initial conditions. This makes Q; and Qg correlated but O} and Qg independent. The new
estimator becomes, using self-evident notation,

1 . . .
CS . @), @) * (1)
) .=;§' lj 0, (0" — 07",
1=

based on n independent runs. The key observationis that |Q, — QF| < |Qo — Qg: the distance
between both processes decreases in time. In particular, after the first epoch that both queues
have been empty, the queueing processes coincide.

We split E(Qo(Q; — Q7)) into four terms, as follows. Recall that we defined M; :=
info<s<; Xs. We write T > ¢ if and only if Q¢+ M; > 0 (i.e. the busy period has not ended at ¢)
and t* > ¢t if and only if Qf + M; > 0. Then 7(¢) = ry(t) +ry (1) +r— () +r__(1),
where

r+4+(t) == E(Qo(Qr — O)) Ut > 1, 7% > 1}),
r4—(t) :=E(Qo(Q; — O)) l{r > 1, T < 1}),
r—+(t) :=E(Qo(Q: — O)) lr <1, T% > 1}),
r—— (1) :=E(Qo(Qr — O Nt <1, T" < 1}).
Itisevident thatr__(¢) = 0, as both queues have been empty and are identical from some time s

(smaller than 1) on. We estimate the other three terms separately. Dueto |Q; — Q7| < |Qo— Qg
we thus have

var(Qo(Qr — 7)) <E Q5(Q: — 07)°
<E(Q5(Qo — 09)* Ut > 1, T > 1))
+E(Q5(Qo — Q) Hr > 1, T < 1))
+E(Q5(Q0 — 00 lr <1, T* > 1)).
With my(t) := E(Q’(‘) 1{r > t}), both the first and third terms can be bounded from above by
E(Q})P(t > 1)+ E(Q3)m:(t), whereas the second term is majorized by m4(t) + E(Q3)m» (1).
The claim of Proposition 4.2 now follows directly from the following lemma (whose proof can

be found in Appendix A). The number of runs needed, n®(¢), is defined analogously to
(NS)( )
n t).

Lemma 4.1. For any k > 0, we have lim sup,_, o, t~ogmy (1) < 9*.
Proposition 4.2. It holds that lim sup,_, o, 71 1ogn©S 1) < —v*.

4.3. Importance sampling based algorithm

We now apply importance sampling on top of the coupling idea presented in the previous
subsection. As we are dealing with the light-tailed case, an importance sampling measure Q is
logarithmically efficient if

1 . .
lim ;ngQ(LZQ%(Qt — 0% < 20"

We again consider four scenarios by comparing t and t* with #; the idea is to estimate r4 4 (¢),
r+_(t), and r_4 (¢) separately (recall that 7__(¢) = 0).
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First we focus on 74 (¢). We define
1 n
IS ' i '
T3 = =3 L7000 = Q') 1w > 1. 7 > 1)
i=1

as an (unbiased) estimator of r; 1 (¢). Note that in this case Q; — Qf = Qo — Q. Let, as in
Section 3.3, the Lévy process on (0, f] be twisted with —¢ = —y(9*) > 0, where 9™ is as
defined before. Also, Q is twisted by a factor « and Qf by a factor «*, for which we identify
suitable values below. In each run we simulate the process till time ¢. Let us write down the
likelihood ratio at time #; we call the new measure Qg, with k¥ denoting the vector (k, K*). We
find that the likelihood equals

I = <e_KQ0 _K(p/(())) <e_KtQ6 _K*w/(o))(egxteﬂxt)'
p(=K) P(=K*)

‘We conclude that the second moment of the estimator reads
Eq, (L*Q5(Q0 — 09 Uz > 1, T > 1}).

Itis clear that 1{t > ¢, t* > ¢} < 1{t > t}, and on {t > t} we have —X; < Q¢. We thus find

the upper bound
E (( Qo _Kﬁﬂ/(o))z( 0 _"*“’/(0))2( ~100e?" 12020 Q*)2>
- (e —— ) |e — ) (e e 0—
? (=) (=K 0 °
_’“/’/(O)>2(_K*€0/(0) )2 20% 4,-2(+£)Q —26*Q
< e (Eq, Qe T020) o, (72" %)
( o(—) ) \ o=k Q0 ©
+Eq; (Qge 220 Eq, ((Qf)%e ™ 20)).
Now we use our findings from Section 3.3. It is readily seen that the choices x = —¢ and

k* = 0 yield logarithmic efficiency, as the above display reduces to a finite number multiplied
by e2?"’. Here we use, in the same way as in Section 3, the fact that ¢ is larger than the pole of
@(-), so that twisting with —¢ keeps all means finite, that is, Eq, Qg < o0, Eq. Q% < 00, and
Eq: ((09)*) =E Qf < oo.

We now consider the second term, r_(¢). The estimator T,f}i)_ (1) is defined as Tn(’li) ().
Apparently, Qo > 0y, and, therefore, Q; > Q7 for all 1 > 0 also. We also have Q; — Q7 <
Qo — Qg forallt > 0. With 1{r > ¢, ™ > t} < 1{r > t}, we can use the bounds above. We
again find that k = —¢ and «* = 0 yield logarithmic efficiency.

Finally, the case r_ (¢) is essentially identical, but now we should pick k* = —¢ and« = 0.

As we can now estimate r 4 (¢), r+—(t), and r—4 (¢) logarithmically efficiently, we arrive at
the following result. Here n"8)(¢) denotes the number of runs needed to estimate r(¢) with a
predefined precision for a given confidence. The result states that the number of runs needed
increases only subexponentially fast in the ‘rarity parameter’ ¢, and, hence, we have achieved
a huge improvement over the naive scheme, and a still quite substantial improvement over the
coupling-based algorithm (without importance sampling).

Theorem 4.1. It holds that lim;_, ot~ - logn™ (1) = 0.
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5. Experimental results

In this section we discuss a number of implementation issues, and demonstrate the efficiency
gain. We do this by considering two important special cases: reflected Brownian motion and
the M/M/1 queue.

5.1. Reflected Brownian motion
We consider standard Brownian motion with drift —1, such that (@) = o + %az. We now

provide some details regarding the implementation of the three simulation schemes.

Naive simulation. It is readily checked that { = —1. Remember that

0: = X, —|—max{— inf X,, Qo}.
0<s<t
It is a matter of straightforward verification that Q¢ is exp(2)-distributed, i.e. has an
exponential distribution with mean % Then we sample X, from a normal distribution
with mean —¢ and variance ¢; say it has value z. Using known results for the Brownian
bridge, it is immediate that

. X
P(— inf X; <x ‘ X, = z) = exp(—2?(x +z)>.

0<s<t

Then it can be verified that

. z 1
o= (2 X [ Xi=2) &5 g ke
where U has a uniform distribution over (0, 1] and ‘=’ denotes equality in distribution.

The above observations enable easy simulation of Q,, requiring just three random
numbers, which can be sampled in a standard manner.

Coupling-based algorithm. In this variant we sample Qg and Q) independently of each other,
both from an exp(2)-distribution. In each simulation run, we simulate Q; and Q} by
using the same samples for X; and U.

Importance sampling. Inthe importance sampling variant, when simulating 74 4 () and r_(¢),
we let the initial workload Qf be sampled from exp(2) and Qg be sampled from exp(1),
leading to the likelihood ratio L; := 2¢=90; when simulating r_ (¢), we do this vice
versa, resulting in L := 2¢~ 2. Then we simulate X ; from a normal distribution with
mean 0 and variance 7. Supposing that X, has value z, we sample Y, as explained above.
This yields the likelihood ratio

Ly :=e Xi—1/2,

Then in each run the simulation output Qo(Q; — Q7) needs to be multiplied by L L.

Table 1 (in which 108 runs were performed per experiment) convincingly shows the enormous
efficiency gain achieved, both when comparing the naive approach with the coupling approach,
and when comparing the coupling approach with importance sampling. The second column
of the table gives, for various values of #, the estimate of r(¢), obtained by the most efficient
of the three methods, viz. importance sampling. Then the table gives, for the three methods,
the relative error, i.e. the ratio of the width of the confidence interval (at a confidence level of
95%) and the estimate. Strikingly, under importance sampling, the relative error is more or less
constant, underscoring the superior performance of this method.
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TABLE 1: Numerical results for reflected Brownian motion.

Relative error (%)

t r(t
© Naive approach ~ Coupling approach  Importance sampling approach

10 7.91x10~4 35 0.85 0.038
12 221x1074 75 1.50 0.042
14 6.75% 107 133 2.82 0.045
16 217 x 107 151 4.99 0.049
18 6.83x107° 160 8.4 0.054
20 227 x107° 188 11.9 0.057

5.2. M/M/1 queue

‘We now take
A

nta’

i.e. arrivals occur according to a Poisson process with rate A, and service times are exp(u). It
is readily checked that ¢ = —u + /Ap. From
)n

Ee“QO—(l—m/(l——)—(1—9)2@ (

we retrieve the known fact that Qy is distributed as a geometric number (with parameter 1 — o)
of i.i.d. exp(u) random variables. Likewise,

pla) =a—A+

Ee@—0Q0

(Y
Eet0r :(1_@%@(@_&).

We conclude that, in order to estimate 4 (t) and ry_(t), Qg is, under the importance sampling
measure, distributed as a geometric number (with parameter 1 — , /o) ofi.i.d. exp(x/A ) random
variables; in order to estimate r_, (¢), we let QO have this distribution. In this importance
sampling, during the interval (0, ¢] jobs arrive according to a Poisson process with rate /AL,
whereas their service times are i.i.d. samples from an exp(4/A) distribution.

In our experiments we chose 4 = 1 and A =0 = % Table 2 should be read as Table 1,
except that we now present the results for the covariances 7 (-) rather than the correlations r(-);

TaBLE 2: Numerical results for the M/M/1 queue.

Relative error (%)

! Fe) Naive approach ~ Coupling approach  Importance sampling approach
50 6.25x 1073 18 7.0 0.53

60 2.26x 1073 41 12.6 0.52

70 8.20 x 1074 65 18.7 0.54

80 3.01x107* 76 31.8 0.59

90 1.15x 1074 87 46.4 0.61
100 4.20 x 1073 101 69.1 0.62

https://doi.org/10.1239/jap/1300198139 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1300198139

128 P. W. GLYNN AND M. MANDIJES

here the number of runs per experiment is 10’. The conclusions are very much in line with
those of the Brownian case.

6. Practical aspects and discussion

Application of the simulation algorithms proposed in the previous sections requires the
ability to sample Lévy processes. Guidelines on this issue are presented in [4, Chapter XII].

In addition, we should be able to draw variates from exponentially twisted versions of the
stationary workloads. In the spectrally negative case this is straightforward, as Qg has an
exponential distribution. In the spectrally positive case, the Laplace transform of Qg is known
(by the Pollaczek—Khinchine formula), and we could use those methods described in [9] to
generate samples. An alternative, but which is only useful in the case of compound Poisson
input, is to recognize that then the steady state workload is distributed as a geometric sum of
residual job sizes, and, hence, so is its exponentially twisted version; in this situation we could
also use the exact sampling technique proposed in [11].

Observe, however, that spectrally positive light-tailed Lévy inputs are always just the sum
of (i) Brownian motions; (ii) compound Poisson processes with light-tailed jobs; and (iii) a
negative drift. Restricting ourselves to phase-type jobs, it is readily seen from the generalized
Pollaczek—Khinchine formula that the steady state workload is phase-type as well, and, hence,
easy to generate variates from. In addition, the phase-type property is closed under exponential
twisting, so it is straightforward to sample from this exponentially twisted workload.

In this paper we presented efficient algorithms for estimating the tail of the busy period
p(t) and the workload correlation function r(¢). In the spectrally one-sided cases Laplace
transforms are known in closed form, so the obvious alternative to simulation is to perform
numerical inversion of these transforms. It should be noted, however, that the importance
sampling based simulation method can also be applied (and has good variance properties) if
the driving Lévy process has both positive and negative jumps.

Potential subjects for future research are the following. (i) We could try to apply the
coupling idea to settings in which the queue’s input process does not have stationary independent
increments. Can we, for instance, develop an algorithm of this kind for a queue fed by on—off
sources with generally distributed on and off times, or for queues with Gaussian input [16]?
(ii) Is it possible to develop a simulation scheme with bounded relative error [4, p. 159]? Is
it, perhaps for special cases such as reflected Brownian motion, possible to compute a zero-
variance change of measure?

Appendix A. Proof of Lemma 4.1

In this appendix we present the proof of Lemma 4.1. Take ¢ > O arbitrary. Let m
denote —E X| > 0 and m, := |m/e]. By splitting the interval [0, co) into intervals of the
form [iet, (i 4+ 1)et) fori = 0,1, ..., we obtain, using the fact that P(t(x) > ¢) increases
monotonically in x,

mi(t) = / ¥ P = 1) dP(Q0 < 1)
0

< Z((i + 1)£t)k P(z((i + Det) > t)P(Qp > iet)
i=0
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mg

< D (G + Deny* P + Den) > 1) P(Qo > ie1)

i=0
o
+ ) (4 Den*P(Qo > iet).
i=mg+1
With I (a) := supy(fa — log Eexp(6 X)), the Chernoff bound immediately gives
P(r(x) > 1) < P(X(1) > —x) < e H/(=x/D

for all x < mt. In addition, [7, Remark 5.3] yields P(Qp > x) < e §*, where & =
infy-o I (x)/x. Hence, m(t) is bounded from above by

me

D hi() + g (),

i=0

where

oo
hi(t) = (i + Denle ! EHDOTEE ()= 3 (i + Der)'e 5.
i=mg+1

It is readily checked that lim;_, oo t ~' log h; (t) = —I(—(i 4+ 1)e) — &Eie. Also,
o0
/ xKe ™ dx ~ s(t)e
a

for some subexponential function s(-) (as t — 00), which leads to
Jim t~logg(t) < £ — (m, + 1)&e.
— 00

Now [8, Lemma 1.2.15], stating that the decay rate of a finite sum equals the maximum of the
decay rates, yields

1
lim sup — logmy (t) < max{ max {—1(—@G 4+ 1)e) —&ie}, Ee — (me + 1)58}.
t—oo I i=0,...,mg
Note that k; := —I(—({ + 1)e) — &i¢ is concave in i, and, hence, kg > ki would imply that
max;eo,1,..} ki = ko. Itis seen that ko > ki is equivalent to
eI (=e) — I(=2¢)) <E&.
Observing that the convexity of 7 (-) implies that

& = inf @ > inf w > 1'(0),

x>0 X x>0 X
we find that, for sufficiently small ¢, it indeed holds that ko > k1, and, hence,

lim sup 1!

—>0o0

logmy(t) < ko = —1(—¢).

Now letting ¢ — 0, and realizing that 7 (0) = —9*, completes the proof.
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