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A SECOND NOTE ON INGHAM'S
SUMMATION METHOD

BY
S. L. SEGAL

A series Y a, is said to be summable (I) to the limit A if

*) !
lim= ) Y da;=A.

x—0 X pn<xd |n

Clearly the limit is the same whether x— through all real values or only

positive integer values, and the expression whose limit is being taken can also

be expressed in the two equivalent forms

1 X 1
X déx dad[d] and ; déx mszx/d 11m

where [x] is the greatest integer <x. The method called (I) was introduced by
Ingham [4] in connection with a novel proof of the prime number theorem and
independently by Wintner [8]. The denomination (I) for it was coined by
Hardy [2, Appendix IV]. Despite the fact that the method (I) is not regular, it
has a certain number-theoretic interest as the definition (*) would suggest. Such
number theoretic connections are discussed in [4], [2, Appendix IV], [6]. Two
limitation theorems are known for (I). If },, is summable (I), then

(i) a,=o(loglogn) as n—» [2, Appendix IV]

and

(i) Y a,=o(logx) as x—o [7]
n=x
Clearly neither (i) nor (ii) includes the other and it had been an open question
for sometime whether these were best possible. In [1], the author and P. Erdos
show that (i) is best possible by actual construction of an appropriate series. 1
have recently realized that (ii) can also be shown to be best possible, but the
proof is non-constructive. The purpose of this brief note is to give that proof.
Throughout, all variables other than x indicate positive integers, w(n) is the
Moébius function, N(x) =Y, <, (n(n)/(n), and [x] is the greatest integer <x.
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THEOREM. Let £(x) be any positive function decreasing to 0 monotonically but
arbitrarily slowly as x— . Then there exists a series Y, a, which is (I)-summable
and such that

Z a,#70(e(x)logx) as x—oo,

n=x

Proof. Let K(n) be any sequence indexed by the positive integers tending to
0 as n—x, (Define, for convenience, K(0)=0.) Define b, by

1
(1) b=1 ¥ w(2)(aK (@)~ (@~ DK@-1).
ngy In d

Then for positive integers ¢,

13 Y db =K,

=td|n

And so Y b, is (I)-summable to 0.

Furthermore
dK(d)—-(d—-1)K(d—1) w(m)
b —3
(2) nzsr " dér d mgr/d m
_ _ _ r Kd-1) . (r
- T (K@-K@~-1) N( d) + 3 KE-D N( d).

For the second sum on the right, we have, since K(d) is bounded,

) =o(2 2 MG)
dér d d 0 Es:,d N d
by a remark of Rubel [5, Correction].

For the first sum on the right,

@ Y. (K(d)-K(d—1)) N(ﬁ)= ) K(d)(N(ﬁ>‘N( r >>

d=r d=r d+1

(3

)=O(1) as r—o

since N(X)=0 for X<1.
Substituting (4) and (3) into (2) gives

) dzsrx(d)(w(ﬁ)—zv( =L 1))= T b +0(1) as r—e.

n=r

Suppose now the theorem were false; that is suppose there is a positive
function e(x)—0 as x—, such that for every I-summable series ) a,,
Y n=x @, = 0(e(x)log x) as x—. Then by the above construction, (5) says that
for every sequence K(n)—0 as n—x,

6) P K(d)(N(é) - N( = 1)) — o(e(r) log 1).
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Cua= Eﬂflﬁg_? (N (?:Z)‘N(d :r 1))

Then (6) says that the matrix ||C, 4|| transforms all sequences tending to 0 into
sequences tending to 0. The conditions for an infinite matrix to have this
property are well-known (e.g. [2, p. 49]) and so, in particular, we must have

‘ 1 r r
7 L5 IN(2)-~5)|<c
7) s(r)logrdzs:, d d+1
for all r, where C is a constant independent of r.
On the other hand,

Define C, 4 by

Y IN(/d)—N(d+1)|= ) ﬂm—)‘
(8) d=r d=r l(d+1)<m=r/d m
. M_)\
r2<d=r lpd+1)<m=ra M '

Now for r'2<d=r, r/d(d+1)<1, and hence the inner sum contains at most
one term. As is well-known [e.g. [3], Theorem 343 and partial summation],

5 luoml_6

logy+0(1) as y—oo,
w2

m=y

Hence, we have from (8),

ZIME)-MGH)= 2
_ y o lum)l

r'2<d=rr/d+1<m=r/d m
| (m)|
1=d<@[r'?+1) M

=3/m?*)logr+0(1) as r—,

Y p(m)
y
(rld+1)<m=r/d m

9)

But (9) contradicts (7) since £(r)—0 as r— oo, which proves the theorem.
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