
LMS J. Comput. Math. 17 (Special issue A) (2014) 92–111 C© 2014 Authors

doi:10.1112/S1461157014000333

Approximating the densest sublattice from Rankin’s inequality

Jianwei Li and Phong Q. Nguyen

Abstract

We present a higher-dimensional generalization of the Gama–Nguyen algorithm (STOC ’08) for
approximating the shortest vector problem in a lattice. This generalization approximates the
densest sublattice by using a subroutine solving the exact problem in low dimension, such as the
Dadush–Micciancio algorithm (SODA ’13). Our approximation factor corresponds to a natural
inequality on Rankin’s constant derived from Rankin’s inequality.

1. Introduction

Lattices are discrete subgroups of Rm. Any lattice L has a basis: a set of linearly independent
vectors b1, . . . ,bn in Rm such that L is equal to the set L(b1, . . . ,bn) = {

∑n
i=1 xibi, xi ∈ Z}

of all integer linear combinations of the bi. All the bases of L have the same number n of
elements, called the dimension of L, and they all have the same n-dimensional volume, called
the volume vol(L) or determinant of L. Let λ1(L) be the first minimum of L, that is, the
minimal Euclidean distance between two lattice points. In the 19th century, Hermite [7] proved
the inequality λ1(L)/vol(L)1/n 6 (4

3)(n−1)/4, which gave rise to Hermite’s constant γn, defined

as the supremum of (λ1(L)/vol(L)1/n)2 over all n-dimensional lattices L, and satisfying

(Hermite’s inequality) γn 6 (
√

4
3)n−1 = γn−12 . (1.1)

Hermite’s inequality has an efficient algorithmic version: the celebrated LLL algorithm [10].
Given a basis B0 of an n-dimensional integer lattice L ⊆ Zm and a reduction factor ε > 0,
LLL outputs (in time polynomial in (size(B0), 1/ε)) a reduced basis (b1, . . . ,bn) whose first
vector is provably short, namely

‖b1‖/vol(L)1/n 6 ((1 + ε)
√

4
3)(n−1)/2, (1.2)

‖b1‖/λ1(L) 6 ((1 + ε)
√

4
3)n−1. (1.3)

Hermite’s inequality (1.1) is implied by (1.2) with ε = 0. The second inequality (1.3) means
that LLL approximates the shortest vector problem (SVP) within an exponential factor.

In 1944, Mordell [15] generalized Hermite’s inequality (1.1) as follows

(Mordell’s inequality) γn 6 γ
(n−1)/(k−1)
k for any 2 6 k 6 n. (1.4)

Gama and Nguyen [5] gave an efficient algorithmic version of Mordell’s inequality: given
a basis B0 of an n-dimensional integer lattice L ⊆ Zm, a blocksize k dividing n, a
reduction factor ε > 0, and an SVP-subroutine computing shortest vectors in any lattice of

Received 27 February 2014; revised 23 May 2014.

2010 Mathematics Subject Classification 11H06, 68W25 (primary), 11Y16 (secondary).

Contributed to the Algorithmic Number Theory Symposium XI, GyeongJu, Korea, 6–11 August 2014.

The work is supported in part by China’s 973 program (No. 2013CB834205) and the National Natural Science
Foundation of China (No. 61133013).

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 93

dimension 6 k, their slide reduction algorithm outputs (in time polynomial in (size(B0), 1/ε))
a basis whose first vector b1 satisfies

‖b1‖/vol(L)1/n 6 (
√

1 + εγk)(n−1)/2(k−1), (1.5)

‖b1‖/λ1(L) 6 (
√

1 + εγk)(n−k)/(k−1), (1.6)

and the number of calls to the SVP-subroutine is polynomial in (size(B0), 1/ε). As an
SVP-subroutine, one can take the Micciancio–Voulgaris algorithm [14], which runs in 22k

polynomial-time operations and exponential space. The exponential cost of the SVP-subroutine
can be kept polynomial in the size of the basis if the blocksize k is sufficiently small, namely,
k = O(log n) for the MV algorithm [14], in which case the Gama–Nguyen algorithm achieves
in polynomial time a subexponential approximation factor 2O(n log logn/logn).

In 1953, Rankin [17] introduced a higher-dimensional generalization of Hermite’s constant.
For any n-dimensional lattice L and 1 6 r 6 n, its Rankin invariant γn,r(L) is defined as

γn,r(L) = min
x1,...,xr∈L

vol(x1,...,xr)6=0

(
vol(x1, . . . ,xr)

vol(L)r/n

)2

= min
S sublattice of L

dimS=r

(
vol(S)

vol(L)r/n

)2

. (1.7)

Rankin’s constant is γn,r = max γn,r(L) over all n-dimensional lattices L, which satisfies
γn,r 6 γrn. Hermite’s constant is the special case r = 1: γn = γn,1. Gama et al. [3] introduced
a natural generalization of the shortest vector problem, which is to Rankin’s constant
what SVP is to Hermite’s constant. The so-called r-dimensional densest sublattice problem
(r-DSP) asks to find a sublattice reaching the Rankin invariant: given an n-dimensional lattice
L and an integer r ∈ {1, . . . n}, find an r-dimensional sublattice S of L such that

√
γn,r(L) =

vol(S)/vol(L)r/n. There is a reduction from SVP to r-DSP for 1 6 r < n, then r-DSP is NP-
hard under randomized reductions [2]. In the special case r = 1, the densest sublattice problem
is simply SVP. Dadush and Micciancio [2] showed how to solve r-DSP exactly with running
time rO(r·n) and 2npoly(n) space for any r < n. In its approximate version introduced by [3],
one is asked to find an r-dimensional sublattice S of L such that vol(S)/vol(L)r/n 6 f(n, r)
for some approximation factor f(n, r). The case (n, r) = (2k, k) is known as the half-volume
problem (see [3]), and is used in blocksize reduction algorithms [3, 5, 19] for approximating
SVP, where one needs to approximate DSP using an SVP-oracle in dimensions 6 k + 1 (see
transference reduction in [3]). Approximating DSP also arises in enumeration algorithms for
SVP [6, 20, 21]: the cost of enumeration depends on the quality of the basis with respect to
DSP; the better the approximation factor, the faster the enumeration.

Our results. The Dadush–Micciancio algorithm for exact DSP suggests finding a DSP
approximation algorithm using an exact algorithm in low dimension, similar to blocksize
approximation algorithms for SVP, which rely on an exact algorithm in low dimension. Such
a framework was briefly discussed in [2, § 5.2]. However, one may wonder what should be the
approximation factor.

We first show a simple generalization of Mordell’s inequality for Rankin’s constant.

Theorem 1.1. For all integers r and k such that 1 6 r < k, Rankin’s constant satisfies

γn,r 6 γ
(n−r)/(k−r)
k,r (1.8)

for any n > r of the form n = pk + `r for some integers p > 1 and ` > 0.

The inequality (1.8) with r = 1 becomes Mordell’s inequality (1.4). Yet, for r > 2, (1.8)
appears to be new, though we derive it from elementary inequalities due to Rankin.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

94 j. li and p. q. nguyen

Next, we show that (1.8) has an efficient algorithmic version like Mordell’s inequality, by
generalizing the Gama–Nguyen SVP-approximation algorithm using a DSP-oracle instead of
a SVP-oracle. Given a basis B0 of an n-dimensional integer lattice L ⊆ Zm, a blocksize k
dividing n, an index r < k, a reduction factor ε > 0, and a DSP-subroutine computing
the r-dimensional densest sublattice in any lattice of dimension k, one can compute (in time
polynomial in (size(B0), 1/ε)) a basis (b1, . . . ,bn) such that

vol(b1, . . . ,br) < (
√

1 + εγk,r)(n−r)/2(k−r)vol(L)r/n (1.9)

where the number of calls to the DSP-subroutine is polynomial in (size(B0), 1/ε), and the
input to the subroutine always has polynomial size.

Roadmap. In § 2, we provide background on lattices and lattice reduction. In § 3, we prove
Theorem 1.1. In § 4, we present an efficient algorithmic version of Theorem 1.1, which we call
block–Rankin reduction. In Appendices A–D, we provide missing proofs.

2. Background

In this paper, we use bold lower case letters to denote vectors in column notation, and
use column-representation for matrices: the matrix is denoted by upper case letters, and its
coefficients are denoted by lower case letters. The ring of m × n matrices with coefficients
in the ring A is denoted by Am×n. The n × n identity matrix is denoted by In. For a
matrix B = (b1, . . . ,bn) of n columns, we denote ‖B‖ = max{‖b1‖, . . . , ‖bn‖}, while ‖ · ‖F
denotes the Frobenius norm: ‖B‖F =

√∑n
i=1 ‖bi‖2. The size of an object corresponds to

the length of its binary representation, for example, if B = (bi,j) ∈ Qm×n, then size(B) =∑
i∈[1,m],j∈[1,n] size(bi,j).

2.1. Lattices

Hermite’s constant. The Hermite invariant of an n-dimensional lattice L is defined by
γn(L) = (λ1(L)/vol(L)1/n)2, where λ1(L) = minv∈L\{0} ‖v‖ is the first minimum of L.
Hermite’s constant is the maximum γn = max γn(L) over all n-dimensional lattices L. We

have γn < 1 + n/4 for n > 1; see [12]. It is known that γn 6 γ
(n−1)/(n−2)
n−1 ; see [15].

Rankin’s constant. For any n-dimensional lattice L and 1 6 r 6 n, Rankin [17] introduced
the Rankin invariant γn,r(L) defined as

γn,r(L) = min
x1,...,xr∈L

vol(x1,...,xr) 6=0

(
vol(x1, . . . ,xr)

vol(L)r/n

)2

= min
S sublattice of L

dimS=r

(
vol(S)

vol(L)r/n

)2

.

Rankin’s constant is the maximum γn,r = max γn,r(L) over all n-dimensional lattices L.
Clearly, γn,1(L) = γn(L) and γn,1 = γn.

Primitive set. Let L be an n-dimensional lattice. If 1 6 i 6 n, then i linearly independent
vectors b1, . . . ,bi ∈ L form a primitive set for L if and only if b1, . . . ,bi can be extended to
a basis of L. In particular, the vectors b1, . . . ,bi ∈ Zn form a primitive set for Zn if and only
if b1, . . . ,bi can be extended to a unimodular matrix.

Orthogonalization. Given a basis B = (b1, . . . ,bn), consider the orthogonal projections

πi : span(b1, . . . ,bn) 7→ span(b1, . . . ,bi−1)⊥, for i = 1, . . . , n,

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 95

where span(b1, . . . ,bn) denotes the space spanned by b1, . . . ,bn. Then Li := πi(L) is a
lattice of dimension n − i + 1. We will use the notation B[i,j] for the projected block
(πi(bi), πi(bi+1), . . . , πi(bj)). In particular, B[i,n] is a basis of Li.

The vectors b∗i = πi(bi) for 1 6 i 6 n are the Gram–Schmidt vectors ofB. Its Gram–Schmidt
coefficients are µi,j = 〈bi,b

∗
j 〉/〈b∗j ,b∗j 〉 which can be defined recursively by: b∗1 = b1,b

∗
i = bi−∑i−1

j=1 µi,jb
∗
j , for i = 2, . . . , n. We have µi,i = 1 and µi,j = 0 for i < j. Then for 1 6 i < j 6 n,

we have πi(bj) =
∑j

l=i µj,lb
∗
l . There is a unique Gram–Schmidt decomposition B = QDµ,

where Q = (b∗1/‖b∗1‖, . . . ,b∗n/‖b∗n‖) is an orthogonal set, D = Diag(‖b∗1‖, . . . , ‖b∗n‖), and
µ = (µi,j)

t
16i,j6n is upper triangular. The triplet (Q,D, µ) is called the GSO of B. The

GSO can also be defined for linearly dependent vectors, in which case some of the b∗i
can be zero.

Duality. For any n-dimensional lattice L with basis B ∈ Rm×n, the dual lattice of L is
defined as L× = {y ∈ span(B) : 〈x,y〉 ∈ Z, ∀ x ∈ L}; L× has basis B−t , B(BtB)−1,
which is called the dual basis of B. The reversed dual basis [4] is defined as B−s =
RmB

−tRn where Rn is the reversed identity matrix: Rn(i, j) = δi,n−j+1 where δi,j denotes

Kronecker’s symbol. Write b̂ := Rmb = (bm, bm−1, . . . , b1)t where b = (b1, b2, . . . , bm)t,

and let L̂ := {x̂ : x ∈ L}. Then L̂× := (̂L×) = (L̂)× is the reversed dual lattice of L,
which has basis B−s. In lattice reduction, it is more convenient to consider B−s than to
consider B−t. The main advantage is that the reversed duality preserves upper triangular,
lower triangular, diagonal and orthogonal matrices; it is fully compatible with the matrix
product, for example, (QDµ)−s = Q−sD−sµ−s; the reversed dual lattice L̂× is isometric
to the standard dual lattice L×, and has therefore the same mathematical properties; the
projected blocks satisfy (B−s)[i,j] = (B[n−j+1,n−i+1])

−s for 1 6 i < j 6 n (see Appendix A for
the proof).

Quadratic forms. Any basis B = (b1, . . . ,bn) defines a positive definite quadratic form
over Rn by q(x1, . . . , xn) = ‖

∑n
i=1 xibi‖2. Reciprocally, any positive definite quadratic form

over Rn is of this form for at least one basis of some lattice, which follows from classical matrix
decompositions.

2.2. Lattice reduction

Size reduction. A basis B = (b1, . . . ,bn) is size-reduced if its GSO satisfies: |µi,j | 6 1
2 for

all 1 6 j < i 6 n. The basis B is size-reduced starting from bi0 if |µi,j | 6 1
2 for i0 6 i 6 n and

1 6 j < i. The basis vector bi is size-reduced if |µi,j | 6 1
2 for all 1 6 j < i.

LLL reduction. A basis B = (b1, . . . ,bn) is LLL-reduced [10] with factor ε ∈ [0, 3) if it
is size-reduced and every 2 × 2 block B[i,i+1] satisfies Lovász’s condition: ‖b∗i ‖2 6 (1 + ε)
(‖b∗i+1‖2 + µ2

i+1,i‖b∗i ‖2). This implies Siegel’s condition: ‖b∗i ‖2 6 (4(1 + ε)/(3− ε))‖b∗i+1‖2.
Given as input B ∈ Zm×n and ε > 0, the LLL algorithm [10] outputs an LLL-reduced basis
in time polynomial in (size(B), 1/ε).

HKZ reduction. A basis B = (b1, . . . ,bn) is HKZ-reduced [7, 8] if it is size-reduced and
b∗i is a shortest non-zero vector of the projected lattice Li for i = 1, . . . , n.

SVP-oracle. Given as input a symmetric matrix G ∈ Qk×k, an SVP-oracle outputs
x = (x1, . . . , xk)t ∈ Zk\{0} minimizing the positive definite quadratic form q(x1, . . . , xk) =
xtGx. In the particular case of a lattice with the known GSO (µ,D) of a basis, we may
take G = µtD2µ. From a theoretical point of view, the best SVP algorithm known is the

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

96 j. li and p. q. nguyen

Micciancio–Voulgaris algorithm [14], which is a deterministic single exponential time algorithm
with 22k polynomial-time operations and 2k polynomial-size registers.

SVP reduction. A basis B is SVP-reduced if the first basis vector b1 satisfies ‖b1‖ =
λ1(L(B)). There is a natural relaxation: a basis B is (1 + ε)-SVP-reduced for ε > 0 if the first
basis vector satisfies ‖b1‖ 6

√
1 + ε · λ1(L(B)).

DSVP reduction. For ε > 0, a basis B is (1 + ε)-DSVP-reduced [5] (where D stands for
dual) if the reversed dual basis B−s is (1 + ε)-SVP-reduced.

Rankin reduction. A basis B of a lattice L of dimension n is r-Rankin reduced [3] if the
first r basis vectors satisfy vol(b1, . . . ,br) =

√
γn,r(L)vol(L)r/n. There exist r-Rankin reduced

bases for any given lattice.
All lattice reduction notions can naturally be adapted to positive definite quadratic forms,

using the correspondence described in the previous subsection.

2.3. The Gama–Nguyen slide reduction algorithm

A basis B of a lattice L of dimension n = pk is slide reduced [5, Definition 1] with
blocksize k and factor ε > 0 if it is size-reduced and satisfies the following two sets of
conditions.

(1) Primal conditions: for all i ∈ [0, p− 1], the block B[ik+1,ik+k] is HKZ-reduced.
(2) Dual conditions: for all i ∈ [0, p− 2], the block B[ik+2,ik+k+1] is (1 + ε)-DSVP-reduced.

Slide reduced bases achieve Mordell’s inequality (1.4).

Theorem 2.1 [5, Theorem 1]. A slide reduced basis B = (b1, . . . ,bn) of a lattice L of
dimension n = pk with blocksize k and factor ε > 0 satisfies

‖b1‖ 6 (γk
√

1 + ε)(n−1)/2(k−1)vol(L)1/n, (2.1)

‖b1‖ 6 (γk
√

1 + ε)(n−k)/(k−1)λ1(L). (2.2)

Gama and Nguyen [5] showed how to compute slide-reduced bases in polynomial time,
using a polynomial number of calls to the SVP-oracle in dimension 6 k (see Algorithm 1).
Algorithm 1 uses two local algorithms which use an SVP-oracle in dimension 6 k.

– Algorithm 2 [5, Algorithm 2], which performs an HKZ reduction of a given block, using
an SVP-oracle in dimension 6 k. This algorithm calls a Projected-LLL subroutine (see
[5, Algorithm 4] for details), which given as input an index j ∈ N, a factor ε > 0, and a
family B = (b1, . . . ,b`+1) of dimension ` where (b1, . . . ,bj−1) are linearly independent
and j 6 `, outputs a basis B′ = (b1, . . . ,bj−1,vj , . . . ,v`) of L(B) such that B′ is
size-reduced starting from vj and the projection (πj(vj), . . . , πj(v`)) is an LLL-reduced
basis of L(πj(bj), . . . , πj(b`+1)). In particular, B′[j,ik+k] is SVP-reduced after Step 4 in
Algorithm 2.

– A DSVP-algorithm (see [5, Algorithm 3]), which performs a (1 + ε)-DSVP reduction
of a given block. Given as input a factor ε, a basis B ∈ Zm×n whose block
B[ik+2,ik+k+1] is LLL-reduced, and the GSO matrices µ[ik+2,ik+k+1], D

2
[ik+2,ik+k+1] of the

block B[ik+2,ik+k+1], this algorithm outputs a basis B′ such that the block B′[ik+2,ik+k+1]

becomes (1 + ε)-DSVP-reduced, but none of the basis vectors outside the block are
modified.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 97

Algorithm 1 The Gama–Nguyen slide reduction algorithm [5, Algorithm 1]

Input: A blocksize k, a factor ε > 0, and a basis B = (b1, . . . ,bn) ∈ Zm×n in dimension
n = pk.

Output: A slide reduced basis of L(B) with blocksize k and factor ε.
1: while B is not slide reduced do
2: while one of the primal conditions does not hold do
3: LLL-reduce B with factor ε and update the GSO matrices µ,D2 ∈ Qn×n

4: for i ∈ [0, p− 1] do
5: HKZ-reduce B[ik+1,ik+k] using Algorithm 2
6: end for
7: end while
8: for i ∈ [0, p− 2] do
9: (1 + ε)-DSVP-reduce B[ik+2,ik+k+1] using DSVP-algorithm (see [5, Algorithm 3])

10: end for
11: end while
12: return B.

3. A new inequality for Rankin’s constant

In this section, we prove Theorem 1.1 and discuss what an algorithmic version of (1.8) would
mean.

3.1. Proof of Theorem 1.1

We recall a few elementary inequalities on Rankin’s constant proved in [17]:

∀n ∈ N, γn,n = 1, γn,1 = γn, (3.1)

∀n, r with r < n, γn,r = γn,n−r, (3.2)

∀n, r and s ∈ [r, n], γn,r 6 γs,r(γn,s)
r/s. (3.3)

Rankin’s inequality (3.3) and the duality relation (3.2) imply Mordell’s inequality γn+1 6

γ
n/(n−1)
n and the generalized Mordell’s inequality γn+r,r 6 γ

n/(n−r)
n,r (see [12, Corollary 2.8.9]).

Proof of (1.8). Let 1 6 r < k 6 n where n is of the form n = pk + `r with p > 1 and ` > 0;
we want to prove

γn,r 6 γ
(n−r)/(k−r)
k,r (1.8).

The generalized Mordell’s inequality γn+r,r 6 γ
n/(n−r)
n,r implies

γpk+`r,r 6 γ
(pk+`r−r)/(pk+`r−2r)
pk+`r−r,r 6 . . . 6 γ

(pk+`r−r)/(pk−r)
pk,r , for p > 1 and ` > 0.

To complete the proof, it suffices to show that γpk,r 6 γ
(pk−r)/(k−r)
k,r for p > 1, which is done

by induction over p.
Assume that it holds for some p. Let L be a lattice of dimension n = (p+1)k. There exists a

basis B of L such that B is r-Rankin reduced, B[r+1,n] is (k− r)-Rankin reduced and B[k+1,n]

is r-Rankin reduced, because r < r+ 1 and r+ 1 + (k− r− 1) < k+ 1. Then B[1,k] is r-Rankin
reduced, therefore

vol(B[1,r]) 6 γ
1/2
k,r vol(B[1,k])

r/k. (3.4)

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

98 j. li and p. q. nguyen

Algorithm 2 HKZ-reduction of the block B[ik+1,ik+k] [5, Algorithm 2]

Input: A factor ε, a basis B ∈ Zm×n whose block B[ik+1,ik+k] is LLL-reduced, and the GSO
matrices µ[ik+1,ik+k], D

2
[ik+1,ik+k] of the block B[ik+1,ik+k].

Output: The block B[ik+1,ik+k] becomes HKZ-reduced, but none of the basis vectors outside
the block are modified.

1: for j = ik + 1 to ik + k − 1 do
2: Call the SVP-oracle on the quadratic form defined by µ[j,ik+k] and D2

[j,ik+k], let

(αj , . . . , αik+k)t be the output linear combination, and compute b =
∑ik+k

l=j αlbl

3: if ‖b∗j‖ > ‖πj(b)‖ then
4: Projected-LLL-reduce [5, Algorithm 4] with factor ε the family (b1, . . . ,bj−1,b,

bj , . . . ,bik+k) starting at index j
5: Store the result of Projected-LLL in column j to ik+ k of B, update µ[ik+1,ik+k] and

D2
[ik+1,ik+k]

6: else
7: j ← j + 1
8: end if
9: end for

10: return B.

And B[r+1,k+r] is (k− r)-Rankin reduced, therefore vol(B[r+1,k]) 6 γ
1/2
k,r vol(B[r+1,k+r])

(k−r)/k.
This yields

vol(B[r+1,k]) 6 γ
k/(2r)
k,r vol(B[k+1,k+r])

(k−r)/r.

Together with (3.4) and vol(B[1,k]) = vol(B[1,r])× vol(B[r+1,k]), this implies that

vol(B[1,r]) 6 γ
k/(k−r)
k,r vol(B[k+1,k+r]). (3.5)

Since B[k+1,n] is r-Rankin reduced, by the inductive hypothesis, we have

vol(B[k+1,k+r]) 6 γ
(pk−r)/2(k−r)
k,r vol(B[k+1,n])

r/pk. (3.6)

Combining (3.4)–(3.6), we obtain vol(B[1,r]) 6 γ
(n−r)/2(k−r)
k,r vol(B[1,n])

r/n, which yields

γ(p+1)k,r 6 γ
((p+1)k−r)/(k−r)
k,r . Thus, we proved γpk,r 6 γ

(pk−r)/(k−r)
k,r by induction over p > 1,

which completes the proof.

We note that (1.8) implies both γn+r,r 6 γ
n/(n−r)
n,r and γn 6 γ

(n−1)/(k−1)
k as special cases.

3.2. Approximating the densest sublattice from Theorem 1.1

Theorem 1.1 upper bounds Rankin’s constant γn,r in high dimension using Rankin’s constant
γk,r in low dimension. This is reminiscent of Mordell’s inequality, which upper bounds
Hermite’s constant γn in high dimension using Hermite’s constant γk in low dimension.
Mordell’s inequality inspired the Gama–Nguyen reduction algorithm [5] which, given a
subroutine to solve SVP in low dimensions 6 k, approximates SVP in high dimension n, within
an approximation factor corresponding to Mordell’s inequality. This suggests that similarly,
there might exist an algorithm corresponding to Theorem 1.1 for approximating the densest
sublattice, which we will show in the next section.

The r-DSP is to Rankin’s constant what the SVP is to Hermite’s constant. It was introduced
by Gama et al. [3] under the name ‘the smallest volume problem’: given a basis of an

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 99

n-dimensional lattice L, r-DSP asks to find an r-dimensional sublattice S of L such that vol(S)
is minimal. This is equivalent to finding a basis (b1, . . . ,bn) of L minimizing vol(b1, . . . ,br).
In its approximate version, given an approximation factor f(n, r), one is asked to find an
r-dimensional sublattice S of L such that vol(S) 6 f(n, r)vol(L)r/n.

By analogy with Mordell’s inequality, Theorem 1.1 suggests to look for an algorithm
to approximate the densest sublattice within a factor essentially

√
γk,r

(n−r)/(k−r), using
polynomially many calls to a subroutine solving k-DSP exactly.

Like in the Gama–Nguyen reduction algorithm [5], it is more convenient if the subroutine
works with positive definite quadratic forms instead of lattices.

We define an (r, k)-DSP-oracle as any algorithm which, given a positive definite quadratic
form represented by a (positive definite) symmetric matrix G ∈ Qk×k, outputs an integer
matrix H ∈ Zk×r such that

det(HtGH) = min
x1,...,xr∈Zk

vol(x1,...,xr)6=0

det((xt
iGxj)16i,j6r),

and the quadratic form represented by HtGH is HKZ-reduced.
The first condition corresponds to the classical interpretation of Rankin’s constant for

positive definite quadratic forms. We explain the HKZ requirement. If B = (b1, . . . ,bk) is
an r-Rankin reduced basis, then the bi may be arbitrarily long for i > 2. Indeed, if we replace
bi by bi +

∑i−1
j=1 xjbj , where the xjs are integers, then the basis is still r-Rankin reduced.

Forcing the output to be HKZ-reduced allows us to bound the coefficients of H. By minimality
and [13, Lemma 3.1], H can be extended to a k × k unimodular matrix, which is done by
Algorithm B.2 (see Appendix B).

It can be checked that the Dadush–Micciancio algorithm [2] is an (r, k)-DSP-oracle, running
in time rO(r·k) and space 2kpoly(k) for any r < k. By duality, an (r, k)-DSP-oracle implies a
(k − r, k)-DSP-oracle.

4. Block–Rankin reduction

In this section, we present an efficient algorithmic version of Theorem 1.1, which is to (1.8) what
the Gama–Nguyen reduction algorithm is to Mordell’s inequality. In fact, our algorithm is very
similar to the Gama–Nguyen reduction algorithm. First, we introduce a new reduction notion,
called block–Rankin reduction, which achieves (1.8) by generalizing Gama–Nguyen’s slide
reduction. Then we present a deterministic polynomial-time reduction algorithm to output
block–Rankin reduced bases, which can be viewed as a higher-dimensional generalization of
the Gama–Nguyen reduction algorithm.

The main result of this paper is the following: there exists a deterministic algorithm which,
given as input a basis B0 of an n-dimensional lattice L, a reduction factor ε > 0, an (r, k)-
DSP-oracle such that n = pk + r or n = pk for some p, outputs r linearly independent lattice
vectors b1, . . . ,br such that

vol(b1, . . . ,br) < (
√

1 + εγk,r)(n−r)/2(k−r)vol(L)r/n,

where the number of calls to the oracle and the size of the input are polynomial, and apart
from the running time of the oracle, the algorithm runs in polynomial time. If the blocksize is
k 6 (logr poly(n))/r and one selects the Dadush–Micciancio algorithm [2] as the oracle, then
the whole algorithm runs in polynomial time.

4.1. Reduction definitions

In order to present our block–Rankin reduction, we first generalize the SVP reduction and
DSVP reduction used in slide reduction. These generalizations are straightforward.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

100 j. li and p. q. nguyen

Definition 1 (Rankin reduction). A basis B = (b1, . . . ,bn) of an n-dimensional lattice L
is r-Rankin reduced [3] if its first r vectors satisfy vol(b1, . . . ,br) =

√
γn,r(L)vol(L)r/n. There

is a natural relaxation: a basis B is (1 + ε, r)-Rankin reduced for ε > 0 if its first r vectors
satisfy

vol(b1, . . . ,br) 6
√

(1 + ε)γn,r(L)vol(L)r/n.

If the basis is a projected block B[i,j] of size k = j − i+ 1, this implies that

vol(B[i,i+r−1]) 6
√

(1 + ε)γk,rvol(B[i,j])
r/k.

Definition 2 (Dual-Rankin reduction). A basis B is (1 + ε, r)-dual-Rankin reduced if the
reversed dual basis B−s is (1 + ε, r)-Rankin reduced.

If the basis is a projected block B[i,j] of size k = j − i+ 1, this implies that

vol(B[i,j]) 6
√

(1 + ε)γk,r
k/r

vol(B[j−r+1,j])
k/r,

which is equivalent to vol(B[i,j−r]) 6
√

(1 + ε)γk,rvol(B[i,j])
(k−r)/k because vol(B[j−r+1,j]) =

vol(B[i,j])/vol(B[i,j−r]).
We now present our higher-dimensional generalization of slide reduction for lattices of

dimension n, when n is of the form n = pk + r or n = pk and k is a blocksize satisfying
1 6 r < k.

Definition 3 (Block–Rankin reduction). A basisB of an n-dimensional lattice L is (1+ε, r)-
Block–Rankin reduced with blocksize k where n = pk + r (respectively n = pk) with p > 1
and ε > 0 if it is size-reduced and satisfies the following two sets of conditions.

(i) Primal conditions: the blocks B[ik+1,ik+k] for i ∈ [0, p− 1] are r-Rankin reduced.
(ii) Dual conditions: the blocks B[ik+r+1,ik+k+r] for i ∈ [0, p− 1] (respectively i ∈ [0, p− 2])

are (1 + ε, r)-dual-Rankin reduced.

Block–Rankin reduction achieves the new Rankin’s inequality (1.8), like slide reduction
achieved Mordell’s inequality.

Theorem 4.1. If a basis B of an n-dimensional lattice L is (1 + ε, r)-block–Rankin reduced
with blocksize k, where n is of the form n = pk + r or n = pk with p > 1 and ε > 0, then

vol(B[1,r]) 6 (
√

1 + εγk,r)(n−r)/2(k−r)vol(L)r/n. (4.1)

Proof. The main idea is the same as in Theorem 1.1. We first prove the case n = pk. By
Definition 3, each primal condition implies

vol(B[ik+1,ik+r]) 6 γ
k/2(k−r)
k,r vol(B[ik+r+1,ik+k])

r/k−r, for 0 6 i 6 p− 1.

Due to the dual conditions, we have

vol(B[ik+r+1,ik+k])
r/(k−r) 6 ((1 + ε)γk,r)k/2(k−r)vol(B[(i+1)k+1,(i+1)k+r]), for 0 6 i 6 p− 2.

For each i ∈ [0, p− 2], by multiplying the above two inequalities together, we obtain

vol(B[ik+1,ik+r]) 6 (
√

1 + εγk,r)k/(k−r)vol(B[(i+1)k+1,(i+1)k+r]).

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 101

In particular, the first r basis vectors satisfy vol(B[1,r]) 6 (
√

1 + εγk,r)ik/(k−r)vol(B[ik+1,ik+r]).
This yields

vol(B[1,r]) 6 (
√

1 + εγk,r)ik/(k−r)+1/2vol(B[ik+1,ik+k])
r/k, for 0 6 i 6 p− 1.

The product of the above p inequalities for i ∈ [0, p− 1] gives rise to

vol(B[1,r]) 6 (
√

1 + εγk,r)(n−r)/2(k−r)vol(L)r/n.

For the case n = pk + r, it is easy to deduce the desired result by combining the inequalities
on vol(B[1,r])/vol(B[1,pk])

r/pk and vol(B[1,r])/vol(B[pk+1,pk+r]). This completes the proof.

The inequality (4.1) is a higher-dimensional generalization of (2.1). Similarly, we will present
an algorithm, which is a higher-dimensional generalization of slide reduction.

4.2. A reduction algorithm

Our block–Rankin reduction algorithm is Algorithm 3, which has the same structure as
Algorithm 1, and uses two local algorithms based on an (r, k)-DSP-oracle:

– Algorithm 4 performs an r-Rankin reduction of a given block;
– Algorithm 5 performs a (1 + ε, r)-dual-Rankin reduction of a given block.

Without loss of generality, we may assume that r 6 k/2 holds in Algorithm 4 and Algorithm 5
by duality. Both Algorithm 4 and Algorithm 5 call Algorithm B.2 (see Appendix B) for
extending the output matrix of the (r, k)-DSP-oracle to a unimodular matrix and do not
modify any of the basis vectors outside the block: furthermore, the size of the block vectors
is always polynomial in the size of the input basis and 1/ε. The analysis of the two local
algorithms and Algorithm B.2 can be found in Appendices C and D.

We first show correctness of Algorithm 3.

Algorithm 3 Block–Rankin reduction of an integer lattice

Input: Parameters 0 < r < k, a factor ε > 0, and a basis B = (b1, . . . ,bn) ∈ Zm×n in
dimension n = pk.

Output: A (1 + ε, r)-block–Rankin reduced basis of L(B) with blocksize k.
1: while B is modified by the loop do
2: // ⇔ While B is not block Rankin reduced
3: LLL-reduce B with factor ε and update the GSO matrices µ,D2 ∈ Qn×n

4: for i ∈ [0, p− 1] do
5: //ensure primal conditions
6: r-Rankin reduce B[ik+1,ik+k] using Algorithm 4
7: end for
8: LLL-reduce B with factor ε and update the GSO matrices µ,D2 ∈ Qn×n

9: for i ∈ [0, p− 2] do
10: //ensure dual conditions
11: (1 + ε, r)-dual-Rankin reduce B[ik+r+1,ik+k+r] using Algorithm 5
12: end for
13: end while
14: return B.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

102 j. li and p. q. nguyen

Algorithm 4 Rankin reduction of the block B[ik+1,ik+k]

Input: Parameters r < k, a factor ε, a basis B = (b1, . . . ,bn) ∈ Zm×n whose block
B[ik+1,ik+k] is LLL-reduced, and the GSO matrices µ[ik+1,ik+k], D

2
[ik+1,ik+k] of the block

B[ik+1,ik+k].
Output: The block B[ik+1,ik+k] becomes r-Rankin reduced, but none of the basis vectors

outside the block are modified.
1: Call the (r, k)-DSP-oracle on the quadratic form defined by µ[ik+1,ik+k] and D2

[ik+1,ik+k],

let H ∈ Zk×r be the output linear combination matrix, and compute the corresponding
minimum mr := det(Htµt

[ik+1,ik+k]D
2
[ik+1,ik+k]µ[ik+1,ik+k]H)

2: // note that B[ik+1,ik+k]H reaches γk,r(L(B[ik+1,ik+k])) and is HKZ-reduced
3: if mr 6= vol(B[ik+1,ik+r])

2 then

4: Apply Algorithm B.2 on H and Ik to obtain a unimodular matrix U ∈ Zk×k

5: // note that U[1,r] = H and therefore B[ik+1,ik+k]U is r-Rankin reduced
6: Compute (bik+1, . . . ,bik+k)← (bik+1, . . . ,bik+k)U
7: end if
8: return B.

Algorithm 5 Dual-Rankin reduction of the block B[ik+r+1,ik+k+r]

Input: Parameters r < k, a factor ε, a basis B ∈ Zm×n whose block B[ik+r+1,ik+k+r]

is LLL-reduced, and the GSO matrices µ[ik+r+1,ik+k+r], D
2
[ik+r+1,ik+k+r] of the block

B[ik+r+1,ik+k+r].
Output: The block B[ik+r+1,ik+k+r] becomes (1 + ε, r)-dual-Rankin reduced, but none of the

basis vectors outside the block are modified.
1: Compute µ′ ←

∑k−1
j=0 N

j where N = Ik − (µ[ik+r+1,ik+k+r])
s

2: Compute D′2 ← Diag

(
1

‖b∗
ik+k+r‖2

, . . . , 1
‖b∗

ik+r+1‖2

)
3: //Note that µ′, D′ are the GSO matrices of (B[ik+r+1,ik+k+r])

−s

4: Call the (r, k)-DSP-oracle on the quadratic form defined by µ′ and D′2, let H ∈ Zk×r be
the output linear combination matrix, and compute the corresponding minimum mr :=
det(Htµ′tD′2µ′H)

5: //Note that (B[ik+r+1,ik+k+r])
−sH reaches γk,r(L((B[ik+r+1,ik+k+r])

−s)) and is HKZ-
reduced

6: if (B[ik+r+1,ik+k+r])
−s is not (1 + ε, r)-Rankin reduced, that is, (1 + ε)mrvol(B[ik+k+1,ik+k+r])

2 < 1,
then

7: Apply Algorithm B.2 on H and Ik to obtain a unimodular matrix U ∈ Zk×k

8: //Note that U[1,r] = H and therefore (B[ik+r+1,ik+k+r])
−sU is r-Rankin reduced

9: Compute U−s ← RkU
−tRk

10: Compute (bik+r+1, . . . ,bik+k+r)← (bik+r+1, . . . ,bik+k+r)U−s

11: end if
12: return B.

Theorem 4.2. For all ε > 0, Algorithm 3 terminates, and outputs a (1+ε, r)-block–Rankin
reduced basis with blocksize k.

Proof. We only consider the case n = pk (the case n = pk + r is similar). Let B0 =
(b1, . . . ,bn) be the input integer lattice basis and let B denote the current basis during the
execution. Following the standard analysis of LLL [10], we consider the following integral

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 103

potential

P (B) =

p−1∏
j=1

vol(B[1,jk])
2 =

p−2∏
j=0

vol(B[jk+1,jk+k])
2(p−1−j) ∈ Z.

Then, the initial potential satisfies logP (B0) 6 n(p − 1) · log ‖B0‖ and every operation in
Algorithm 3 either preserves or strictly decreases P (B). More precisely, if each (1 + ε, r)-dual-
Rankin reduction modifies the block B[ik+r+1,ik+k+r] for some i ∈ [0; p − 2], or each special
swap of LLL (in lines 3 and 8) between two indexes (ik+k, ik+k+ 1) occurs, then the integer
number P (B) is reduced by a factor < 1/(1 + ε). Therefore, there is a bounded number of
such (1 + ε, r)-dual-Rankin reductions and special swaps even if ε = 0. The operations which
preserve P (B) cannot modify the basis indefinitely. Hence, Algorithm 3 terminates for all
ε > 0.

It is easy to see that Algorithm 3 finally outputs a (1+ε, r)-block Rankin reduced basis with
blocksize k. Indeed, the LLL reduction ensures that the output basis is size-reduced. The use
of Algorithm 4 ensures that each primal condition is satisfied, while the use of Algorithm 5
ensures that each dual condition is satisfied. This completes the proof.

Algorithm 3 follows virtually the same structure as Algorithm 1, and Algorithm 5 follows
the same principle as the DSVP-algorithm [5, Algorithm 3]. Algorithm B.2 as a subroutine in
both Algorithm 4 and Algorithm 5 only performs rational operations on the integer matrices
consisting of k-dimensional vectors instead of on the basis consisting of m-dimensional vectors.
However, we need to bound the size of the matrices that appear in steps 4–8 of Algorithm 4
and in steps 7–12 of Algorithm 5 (see Appendices C and D for details).

4.3. Complexity analysis

We now show that Algorithm 3 is in fact polynomial, in the same sense as blockwise reduction
algorithms [3, 5, 19] to approximate SVP. More precisely, we have the following result (see
Appendices C and D for the technical lemmas).

Theorem 4.3. Given as input parameters 1 6 r < k, a basis B0 ∈ Zm×n of dimension
n = pk + r or n = pk, and a reduction factor ε ∈ (0, 1], then any execution of Algorithm 3
satisfies the following.

(i) The number of calls to the (r, k)-DSP-oracle is O(np2 log ‖B0‖/ε).
(ii) The size of the coefficients passed to the (r, k)-DSP-oracle is polynomial in size(B0).
(iii) Apart from the calls to the (r, k)-DSP-oracle, the algorithm only performs arithmetic

operations on rational numbers such that the number of arithmetic operations is
polynomial in (size(B0), 1/ε), and the size of the rational numbers remains polynomial
in size(B0).

We consider again the integral potential P (B) defined in § 4.2. Since ε > 0, the
number of calls to (1 + ε, r)-dual-Rankin reduction subroutine and special swap is at most
(logP (B0))/log(1 + ε). That is, Algorithm 3 terminates after at most (logP (B0))/log(1 + ε)
loops, and every loop has pr-Rankin reductions and p − 1 (1 + ε, r)-dual-Rankin reductions
(for the case n = pk). Therefore the total number of calls to the (r, k)-DSP-oracle is at most
(2np2 log ‖B0‖)/log(1 + ε).

It remains to upper bound the size of the variables and the cost of the operations (apart
from oracle queries) used by Algorithm 3. The main issue is to upper bound ‖B‖ during the
algorithm, with respect to ‖B0‖.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

104 j. li and p. q. nguyen

First, consider the current basis B, right after Steps 3 or 8. Then B is LLL-reduced. By
classical properties of LLL-reduced bases [10], this implies (for ε ∈ (0, 1]) that ‖B‖ 6 2nλn(L),
where λn() denotes the nth minimum, and L is the lattice spanned by B0. Notice that λn(L) 6
‖B0‖ because B0 is a basis. Hence, after each Step 3 or 8, we have

‖B‖ 6 2n‖B0‖,

which implies that size(B) is polynomial in size(B0).
Now, the only other operations which may increase ‖B‖ are Steps 6 and 11, where

Algorithms 4 and 5 are called: these algorithms apply some unimodular transformation U
locally on B. Fortunately, we are able to suitably upper bound ‖U‖ (see Lemmas C.2 and C.3
in Appendix C), that is, size(U) is polynomial in size(B): this is because our oracles have an
HKZ constraint, and the way we extend a primitive set to a basis cannot increase the norms
much (see Theorem B.2). Hence, before each Step 3 or 8, size(B) is polynomial in size(B0) (see
Lemmas D.1 and D.3), and therefore the LLL reductions run in time polynomial in size(B0).

We proved that size(B) is always polynomial in size(B0) during the whole algorithm: by
the same arguments as in the classical analysis of the LLL algorithm, it follows that all the
rational numbers used by the algorithm (such as Gram–Schmidt coefficients and the oracle
inputs) have size polynomial in size(B0) and can be computed in time polynomial in size(B0).

This completes the proof of Theorem 4.3. And we deduce that the running time of
Algorithm 3 can be upper bounded by a polynomial factor times the cost DSP(r, k) of the (r, k)-
DSP-oracle. Hence, Algorithm 3 is polynomial in the same sense as Schnorr’s algorithm [19]
and its transference variant [3], and slide reduction [5]. In particular, if k 6 (logr poly(n))/r
and we use the Dadush–Micciancio algorithm [2] as the (r, k)-DSP-oracle, then Algorithm 3
runs in polynomial time.

Appendix A. Properties of projected blocks

Proposition A.1. Let B = (b1, . . . ,bn) ∈ Rm×n be an n-dimensional lattice basis. Then
the projected blocks satisfy (B−s)[i,j] = (B[n−j+1,n−i+1])

−s for 1 6 i < j 6 n.

Proof. Since (B[n−j+1,n−i+1])
−s = Rm(B[n−j+1,n−i+1])

−tRj−i+1, it suffices to prove that
Rm(B−s)[i,j]Rj−i+1 = (B[n−j+1,n−i+1])

−t, which is equivalent to

span(Rm(B−s)[i,j]Rj−i+1) = span(B[n−j+1,n−i+1]), (A.1)

Rm(B−s)[i,j]Rj−i+1(B[n−j+1,n−i+1])
t = Im. (A.2)

Let b∗1, . . . ,b
∗
n denote the Gram–Schmidt orthogonalization of b1, . . . ,bn, and let dn, . . . ,d1

be the dual basis of b1, . . . ,bn in reverse order with Gram–Schmidt orthogonalization
d∗n, . . . ,d

∗
1 (using this order). Then B−s = RmB

−tRn = (d̂n, . . . , d̂1) and b∗l = d∗l /‖d∗l ‖2
for 1 6 l 6 n (see [9, 18]). We define τ : span(dn, . . . ,d1) 7→ span(dn, . . . ,dn−i+2)⊥, then

Rm(B−s)[i,j]Rj−i+1 = (τ(dn−j+1), . . . , τ(dn−i+1)).

Note that span(τ(dn−j+1), . . . , τ(dn−i+1)) = span(d∗n−j+1, . . . ,d
∗
n−i+1) and span

(B[n−j+1,n−i+1]) = span(b∗n−j+1, . . . ,b
∗
n−i+1), these imply that (A.1) holds. For i 6 s, t 6 j,

since 〈dn−s+1−τ(dn−s+1), πn−j+1(bn−t+1)〉 = 0 and 〈dn−s+1,bn−t+1−πn−j+1(bn−t+1)〉 = 0,
then

〈τ(dn−s+1), πn−j+1(bn−t+1)〉 = 〈dn−s+1,bn−t+1〉 = δs,t

which proves (A.2). This completes the proof.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 105

Algorithm B.1 Computing a basis of a lattice given by generators

Input: An integer matrix B = (b1, . . . ,bn) ∈ Zm×n such that b1 6= 0. The columns of B
might be linearly dependent.

Output: A basis of the lattice L = L(b1, . . . ,bn) spanned by the columns of B.
1: z ← 0, j ← 2
2: while j 6 n do
3: if b∗j 6= 0 then
4: j ← j + 1
5: else
6: Size-reduce bj {with respect to the previous vectors (bz+1, . . . ,bj−1)}
7: if bj = 0 then
8: for i = j downto z + 2 {move bj to the front, and shift the rest} do
9: bi ← bi−1

10: end for
11: bz+1 ← 0, j ← j + 1; z ← z + 1 {we have found one more zero vector}
12: else
13: Swap bj−1 and bj

14: j ← max{z + 2, j − 1}
15: end if
16: end if
17: end while
18: return (bz+1, . . . ,bn)

Appendix B. Extending a primitive set to a lattice basis

Our block–Rankin reduction algorithm requires a subroutine to extend a given primitive set
of a lattice L to a basis of L, in order to use the DSP-oracle output (for both the primal and
dual blocks): similarly, the Gama–Nguyen algorithm [5] required the simplest case where the
primitive set is a single primitive vector to be tackled, which was done in Algorithms 3 and 4
of [5] (for both the primal and dual blocks). This general problem was solved by Magliveras et
al. [11], by reducing the problem to the computation of a Hermite normal form and a matrix
inverse. However, for the analysis of the reduction algorithm, it is also convenient to have good
bounds on the output basis, which are not provided in [11].

In this section, we present a (simple) direct polynomial-time algorithm (see Algorithm B.2)
to extend a primitive set, together with good bounds on the output basis. This algorithm
simply applies a special algorithm (Algorithm B.1) which, given (possibly linear dependent)
integer vectors, outputs a basis of the lattice spanned by the input vectors, without increasing
the norms much. This special algorithm is essentially a ‘cheap’ version of the modified LLL
algorithm for linearly dependent vectors, where we ignore Lovász’ conditions: apparently, the
same idea is used in the image() subroutine of Shoup’s NTL library, and the algorithms might
be identical.

We first describe our special algorithm to compute a lattice basis from generators: this
is Algorithm B.1, which iteratively modifies the sequence (b1, . . . ,bn) of generators given as
input. It uses two indices j and z such that: b1, . . . ,bz are zero vectors, but bz+1, . . . ,bj−1 are
linearly independent. At the end of the algorithm, j−1 = n, which implies that (bz+1, . . . ,bn)
is a basis. It can be checked that if the input matrix is actually a basis, then the algorithm
returns the same basis.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

106 j. li and p. q. nguyen

The main result on Algorithm B.1 is the following.

Theorem B.1. Given as input an m × n integer matrix B0, Algorithm B.1 runs in time
polynomial in the size of B0, and outputs a basis B of the lattice L spanned by the n columns
of B0 such that ‖B‖ 6

√
dim(L)× ‖B0‖.

Proof. Let L be the lattice spanned by the n columns of the input matrix B0. It can easily
be checked that during the algorithm, we always have L = L(b1, . . . ,bn), that is, the bi’s
generate L.

We first prove the correctness of the algorithm. To do so, note that the following invariants
hold at Steps 3–16:

(i) j > z + 2;
(ii) if 1 6 i 6 z, then bi = 0;

(iii) if z < i < j, then b∗i 6= 0.
Property (i) is obvious. Property (ii) holds initially when z = 0, and the only operation which
increases z is Step 11, where a zero vector is inserted at index z + 1. The third invariant (iii)
also holds initially when j = 2 because the input b1 6= 0: the only operations which can change
j are Steps 4 and 14. Step 4 preserves (iii) by definition. For Step 14, b∗j−1 and b∗j have been
changed: either j decreases which preserves (iii) no matter, or j = z + 2, which implies that
bz+1 has been replaced by bj 6= 0, and therefore b∗z+1 = bj 6= 0 which proves (iii). Now if the
algorithm terminates, then j = n+ 1: (iii) implies that bz+1, . . . ,bn are linearly independent,
and together with (ii), it implies that they form a basis of L: hence, the output returned by
Step 18 is indeed a basis of L.

Next, we study the running time of the algorithm. We consider the same potential D =
DL × DR as in the analysis of the modified LLL algorithm for linearly dependent vectors
(see [16, § 6]), where

DL =

dim(L)∏
i=1

di and DR =
∏
‖b∗

i ‖=0

2i,

with di the product of the i first non-zero ‖b∗i ‖2. It is known that the di are strictly positive
integers, and so are therefore DL, DR and D.

We use D to upper bound the number of iterations of the while loop, and we study the
evolution of ‖B∗‖. Initially, we have

D 6 ‖B0‖2 dim(L)22n
2

and ‖B∗‖ 6 ‖B0‖.

Since size-reduction does not change the Gram–Schmidt vectors, the only operations which
can change D or ‖B∗‖ are Steps 8–11 (then) and Step 13.

Steps 8–11 do not change DL, but they decrease DR by a multiplicative factor > 2: indeed,
(i) implies that at least one non-zero vector is moved, and a zero vector is inserted at index
z + 1. Thus, Steps 8–11 decrease D by a multiplicative factor > 2, and they do not change
‖B∗‖.

Now, consider the effect of Step 13 on the Gram–Schmidt vectors.
– The new b∗j−1 is µj,j−1b

∗
j−1 where |µj,j−1| 6 1

2 by size-reduction.
– The new b∗j is either zero if µj,j−1 6= 0, or b∗j−1 otherwise.
– All the other Gram–Schmidt vectors are preserved.

This implies that Step 13 cannot increase ‖B∗‖, and there are two cases.
– If µj,j−1 6= 0, then DL decreases by a multiplicative factor > 4 (because 0 < µ2

j,j−1 6 1
4)

and DR remains.
– Otherwise µj,j−1 = 0, which preserves DL, but decreases DR by a multiplicative

factor 2.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 107

To summarize, ‖B∗‖ never increases, and D decreases by a multiplicative factor > 2
at each Step 5. This proves that the number of loop iterations is upper bounded by
O(log ‖B0‖2 dim(L)22n

2

), which is polynomial in size(B0). It remains to bound the cost of each
iteration.

The only operation which can change ‖B‖ is the size-reduction (Step 6): at this point, we

know that b∗j = 0, therefore bj =
∑j−1

i=1 µj,ib
∗
i where |µj,i| 6 1

2 and the b∗i are pairwise

orthogonal, thus ‖bj‖ 6 ‖B∗‖F /2 and ‖bj‖ 6 ‖B∗‖
√

dim(L)/2 because at most dim(L)
coefficients µj,i are non-zero. Hence, we always have

‖B‖ 6
√

dim(L)× ‖B0‖.

This shows that the size of the bi is always polynomial in size(B0), and it follows that each
loop iteration runs in time polynomial in size(B0).

We now explain how Algorithm B.1 gives rise to Algorithm B.2 for extending a primitive
set to a lattice basis.

Algorithm B.2 Extending a primitive set to a lattice basis

Input: A primitive set P = (p1, . . . ,pr) of a lattice L ∈ Zm, and a basis B0 of L.
Output: A basis B of L such that B[1,r] = P .

1: return the output of Algorithm B.1 on the column-concatenation of P and B0.

Our main result is as follows.

Theorem B.2. Given as input a primitive set P = (p1, . . . ,pr) of a lattice L ⊆ Zm, and a
basis B0 of L, Algorithm B.2 runs in time polynomial in the size of B0, and outputs a basis
B of the lattice L such that B[1,r] = P and ‖B‖ 6

√
dim(L)×max(‖P‖, ‖B0‖).

Proof. From Theorem B.1, the only thing to prove is B[1,r] = P . This certainly holds at
the start of Algorithm B.1. We claim that the following invariant holds at Steps 3–16: if
z < i 6 z + r, then bi = pi−z. Now, the only way to break the invariant is if Step 13 occurs
when j = z+r+1. So let us assume that j = z+r+1. If b∗j 6= 0, then Step 13 does not occur.
Otherwise, bj ∈ span(b1, . . . ,bj−1) = span(p1, . . . ,pr). However, span(p1, . . . ,pr)

⋂
L =

L(p1, . . . ,pr) because P = (p1, . . . ,pr) is a primitive set of L. Therefore bj ∈ L(p1, . . . ,pr),
which implies that the size-reduction (Step 6) makes bj equal to zero, and therefore Step 13
does not occur. Hence, we proved that Step 13 never occurs when j = z + r + 1, and the
invariant always holds.

Algorithm B.2 can be natively used to extend the output matrix H of the (r, k)-DSP-oracle
to a unimodular matrix: simply feed H and Ik to Algorithm B.2, which returns a basis U of
Zk such that U[1,r] = H and ‖U‖ 6

√
k‖H‖.

Appendix C. Bounding the size of unimodular transformations

We bound the size of the matrices of our algorithm, using the notation ‖ · ‖F and ‖ · ‖.

Lemma C.1. The following properties hold for the Frobenius norm:
(i) ‖A1A2‖F 6 ‖A1‖F ‖A2‖F for A1 ∈ Rm×n and A2 ∈ Rn×k;
(ii) ‖A‖ 6 ‖A‖F 6

√
k‖A‖ for A ∈ Rm×k;

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

108 j. li and p. q. nguyen

(iii) ‖QA‖F = ‖A‖F for A ∈ Rk×k, where Q ∈ Rm×k satisfies QtQ = Ik;

(iv) ‖Ã‖F 6 k‖A‖k−1F for A ∈ Rk×k and k > 2, where Ã = det(A)A−1 denotes the adjunct
matrix of A.

Proof. Properties (i)–(iii) are obvious. Let Ã = (ãi,j)16i,j6k, then ‖Ã‖F =
√∑

i,j ã
2
i,j 6

kmaxi,j |ãi,j |. Note that ãi,j is the (i, j)th cofactor of A. From Hadamard’s inequality det(B) 6∏n
i=1 ‖bi‖ for B = (bi)16i6n and the mean inequality

∏n
i=1 xi 6 ((

∑n
i=1 x

2
i)/n)n/2, we deduce

that |ãi,j | 6 (‖A‖2F /(k − 1))(k−1)/2. This proves Property (iv) since k > 2.

Lemma C.2. Let B ∈ Zm×n be the input basis of Algorithm 4 and
α = 4(1 + ε)/(3− ε). If H ∈ Zk×r and U ∈ Zk×k are the matrices defined in Line 1 and
Line 4 of Algorithm 4 respectively, then

‖H‖F 6 αk−1kk+1‖B‖2n,
‖U‖F 6 αk−1kk+2‖B‖2n.

Proof. We use the notation of Algorithm 4 and let K = B[ik+1,ik+k]. Note that there exists
a k × k unimodular matrix V such that KV is LLL-reduced (with factor ε) and V[1,r] = H,
therefore it suffices to bound ‖V ‖F . Let W = KV , then V = (KtK)−1KtW . By Lemma C.1(i),
we obtain

‖V ‖F 6 ‖(KtK)−1‖F ‖K‖F ‖W‖F .

By Lemma C.1(ii), we have

‖K‖F 6
√
k‖B‖. (C.1)

Since both W and K are LLL-reduced, ‖W‖ 6 αk−1‖K‖. Then, by Lemma C.1(ii), we obtain

‖W‖F 6 αk−1√k‖B‖.

Since (KtK)−1 = (det(KtK))−1K̃tK, Lemma C.1(iv) implies that ‖(KtK)−1‖F 6
k(det(KtK))−1‖KtK‖k−1F . Using det(KtK) = vol(B[ik+1,ik+k])

2 = vol(B[1,ik+k])
2/vol(B[1,ik])

2

and vol(B[1,j])
2 ∈ Z for j ∈ [1, n], we have

‖(KtK)−1‖F 6 k‖B‖2ik‖K‖2(k−1)F 6 kk‖B‖2(n−1). (C.2)

Putting the above together, we obtain that ‖V ‖F 6 αk−1kk+1‖B‖2n. Since ‖H‖F 6 ‖V ‖F
and ‖U‖F 6 k‖H‖F (by Theorem B.2 and Lemma C.1(ii)), the conclusion follows.

Lemma C.3. Let B ∈ Zm×n be the input basis of Algorithm 5 and α = 4(1 + ε)/(3− ε).
If H ∈ Zk×r and U ∈ Zk×k are the matrices defined in Line 4 and Line 7 of Algorithm 5
respectively, then

‖H‖F 6 αk−1kk+3‖B‖3n,
‖U‖F 6 αk−1kk+4‖B‖3n,

‖U−s‖F 6 α(k−1)2kk
2+3k−3‖B‖3n(k−1).

Proof. We use the notation of Algorithm 5 and let M = (B[ik+r+1,ik+k+r])
−s. Note that

there exists a k × k unimodular matrix V such that J := MV is LLL-reduced (with factor ε)
and V[1,r] = H, therefore it suffices to bound ‖V ‖F . Since V = (M tM)−1M tJ , then

‖V ‖F 6 ‖(M tM)−1‖F ‖M‖F ‖J‖F .

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 109

We first bound ‖J‖F . Clearly, ‖J‖F 6
√
k‖J‖. Since J is LLL-reduced, then ‖J‖ 6√

α
k−1

λk(L(J)) (see [10]) where the λj(L) denote the successive minima of L. Using the
transference theorem λk(L(J))λ1(L(J)×) 6 k (see [1]), we obtain

‖J‖ 6
√
α
k−1

kλ1(L(J)×)−1.

Note that the lattice L(J)× is isometric to the projected lattice L(B[ik+r+1,ik+k+r]) where
B[ik+r+1,ik+k+r] is LLL-reduced, then

λ1(L(J)×)−2 = λ1(L(B[ik+r+1,ik+k+r]))
−2 6

αk−1

‖b∗ik+r+1‖2
=
αk−1vol(B[1,ik+r])

2

vol(B[1,ik+r+1])2
.

Since vol(B[1,ik+r])
2 6 ‖B‖ik+r and vol(B[1,ik+r+1])

2 ∈ Z, then λ1(L(J)×)−2 6
αk−1‖B‖2(n−k). Therefore,

‖J‖F 6 αk−1k
3
2 ‖B‖n−k.

By Lemma C.1(iii), we have

‖M‖F =‖(B[ik+r+1,ik+k+r])
−t‖F =‖B[ik+r+1,ik+k+r]((B[ik+r+1,ik+k+r])

tB[ik+r+1,ik+k+r])
−1‖F .

Hence, applying (C.1) and (C.2) on the block B[ik+r+1,ik+k+r], we obtain

‖M‖F 6 kk+1/2‖B‖2n−1.

Since M = (B[ik+r+1,ik+k+r])
−s, then (M tM)−1 = ((B[ik+r+1,ik+k+r])

tB[ik+r+1,ik+k+r])
s.

Thus

‖(M tM)−1‖F = ‖(B[ik+r+1,ik+k+r])
tB[ik+r+1,ik+k+r]‖F 6 ‖B[ik+r+1,ik+k+r]‖2F 6 k‖B‖2.

Putting the above together, we obtain

‖H‖F 6 ‖V ‖F 6 αk−1kk+3‖B‖3n.

Using Theorem B.2 and Lemma C.1(ii), we have

‖U‖F 6 k‖H‖F 6 αk−1kk+4‖B‖3n.

Lemma C.1(iv) implies ‖U−s‖F = ‖U−1‖F = ‖Ũ‖F 6 k‖U‖k−1F , and then the last assertion
follows. This completes the proof.

Appendix D. Analysis of Algorithms 4 and 5

Lemma D.1. Let B(a) and B(b) denote the input and output bases of Algorithm 4 on the

projected block B
(a)
[ik+1,ik+k] respectively, and α = 4(1 + ε)/(3− ε). Then L(B(a)) = L(B(b)),

B
(b)
[ik+1,ik+k] is r-Rankin reduced and

‖B(b)‖ 6 αn2+kkk+3‖B0‖2n+1

where B0 ∈ Zm×n denotes the input of Algorithm 3.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

110 j. li and p. q. nguyen

Proof. We use the notation of Algorithm 4. If mr = vol(B
(a)
[ik+1,ik+r])

2 holds, it is trivial.

We assume that Algorithm 4 executes Steps 4–6, then Algorithm 4 runs Algorithm B.2 on
H and Ik to output U . Since U is unimodular, L(B(a)) = L(B(b)). Since U[1,r] = H and

B
(b)
[ik+1,ik+k] = B

(a)
[ik+1,ik+k]U , then B

(b)
[ik+1,ik+k] is r-Rankin reduced.

We write K(a) = (b
(a)
ik+1, . . . ,b

(a)
ik+k). Note that none of the basis vectors outside the block

are modified, it suffices to bound ‖K(a)U‖. Applying Lemmas C.1(i) and C.2, we obtain

‖K(a)U‖ 6 ‖K(a)U‖F 6 ‖K(a)‖F ‖U‖F 6 αk−1kk+3‖B(a)‖2n+1.

Thus, ‖B(b)‖ 6 αk−1kk+3‖B(a)‖2n+1. Since B(a) is LLL-reduced with factor ε (by Step 3 in

Algorithm 3), we have ‖B(a)‖ 6
√
α
n−1‖B0‖ and the last assertion follows. This completes

the proof.

Lemma D.2. Let B ∈ Zm×n be the input basis of Algorithm 5. If µ′ and D′2 are the k × k
matrices defined in Line 1 and Line 2, respectively, of Algorithm 5, then there exist positive
integers h1 and h2 such that

h1 6 ‖B‖2nk, h1µ
′ ⊂ Zk×k, ‖h1µ′‖F 6 kk‖B‖2n(k−1),

h2 6 ‖B‖2nk, h2D
′2 ⊂ Zk×k, ‖h2D′2‖F 6 k‖B‖2n(k+1).

Proof. For B = QDµ, by [10, p. 523], we have

‖b∗j‖2 =
dj
dj−1

, for 1 6 j 6 n, (D.1)

d`µj,` ∈ Z, for 1 6 ` < j 6 n, (D.2)

where dj = vol(B[1,j])
2 ∈ Z and dj 6 ‖B‖2j .

Let µ[i] = (µı,)ik+r+16ı,6ik+k+r, then µ[ik+r+1,ik+k+r] = (µ[i])
t. Thus, µ′ :=

(µ[ik+r+1,ik+k+r])
−s = Rk(µ[i])

−1Rk = Rkµ̃[i]Rk. By the definition of adjoint matrix and

(D.2), then the integer h1 satisfies h1µ
′ ⊂ Zk×k: h1 =

∏ik+k+r−1
j=ik+r+1 dj 6 ‖B‖2n(k−1). Note that B

is size-reduced, then ‖µ′‖F = ‖µ̃[i]‖F 6 k‖µ[i]‖k−1F 6 kk. This yields ‖h1µ′‖F 6 kk‖B‖2n(k−1).
Since D′2 = Diag(1/‖b∗ik+k+r‖2, . . . , 1/‖b∗ik+r+1‖2), by (D.1), then the integer h2 satisfies

h2D
′2 ⊂ Zk×k: h2 =

∏ik+k+r
j=ik+r+1 dj 6 ‖B‖2nk. Note that ‖D′2‖F 6

√
k‖B‖2(n−1), we have

‖h2D′2‖F 6 k‖B‖2n(k+1). This completes the proof.

Lemma D.3. Let B(a) and B(b) denote the input and output bases, respectively, of

Algorithm 5 on the projected block B
(a)
[ik+r+1,ik+k+r], and α = 4(1 + ε)/(3− ε) and B0 ∈ Zm×n

denote the input of Algorithm 3. Then L(B(a)) = L(B(b)), B
(b)
[ik+r+1,ik+k+r] is (1 + ε, r)-dual-

Rankin reduced and
‖B(b)‖ 6 α

3
2n

2kkk
2+3k‖B0‖

3
2nk.

Proof. We use the notation of Algorithm 5. We assume that Algorithm 5 executes Steps
7–10. Since U is unimodular, U−s is unimodular and therefore L(B(a)) = L(B(b)). Note that

U[1,r] = H and (B
(b)
[ik+r+1,ik+k+r])

−s = (B
(a)
[ik+r+1,ik+k+r])

−sU , then B
(b)
[ik+r+1,ik+k+r] is r-dual-

Rankin reduced.
Let K(a) = (b

(a)
ik+r+1, . . . ,b

(a)
ik+k+r). Since none of the basis vectors outside the block are

modified, it suffices to bound ‖K(a)U−s‖. Using Lemma C.1(i) and C.3, we have

‖K(a)U−s‖ 6 ‖K(a)U−s‖F 6 ‖K(a)‖F ‖U−s‖F 6 α(k−1)2kk
2+3k−2‖B(a)‖3nk−3n+1.

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000333

approximating dsp 111

This yields ‖B(b)‖ 6 α(k−1)2kk
2+3k‖B(a)‖3nk−2n. Since ‖B(a)‖ 6

√
α
n−1‖B0‖ (by Step 8 in

Algorithm 3), the last assertion follows. This completes the proof.

References

1. W. Banaszczyk, ‘New bounds in some transference theorems in the geometry of numbers’, Math. Ann.
296 (1993) no. 1, 625–635.

2. D. Dadush and D. Micciancio, ‘Algorithms for the densest sub-lattice problem’, Proc. SODA ’13 (SIAM,
2013) 1103–1122.

3. N. Gama, N. Howgrave-Graham, H. Koy and P. Nguyen, ‘Rankin’s constant and blockwise lattice
reduction’, Proc. CRYPTO ’06, Lecture Notes in Computer Science 4117 (Springer, 2006) 112–130.

4. N. Gama, N. Howgrave-Graham and P. Q. Nguyen, ‘Symplectic lattice reduction and NTRU’, Proc.
EUROCRYPT ’06, Lecture Notes in Computer Science 4004 (Springer, 2006) 233–253.

5. N. Gama and P. Q. Nguyen, ‘Finding short lattice vectors within Mordell’s inequality’, Proc. STOC ’08
(ACM, 2008) 207–216.

6. N. Gama, P. Q. Nguyen and O. Regev, ‘Lattice enumeration using extreme pruning’, Proc.
EUROCRYPT ’10, Lecture Notes in Computer Science 6110 (Springer, 2010) 257–278.

7. C. Hermite, ‘Second letter to M. Jacobi (in French)’, J. reine angew. Math. 40 (1850) 279–290.
8. A. Korkine and G. Zolotareff, ‘Sur les formes quadratiques’, Math. Ann. 6 (1873) 366–389.
9. J. C. Lagarias, H. W. Lenstra Jr. and C. P. Schnorr, ‘Korkine Zolotarev bases and successive minima

of a lattice and its reciprocal’, Combinatorica 10 (1990) 333–348.
10. A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász, ‘Factoring polynomials with rational coefficients’,

Math. Ann. 261 (1982) 366–389.
11. S. S. Magliveras, T. van Trung and W. Wei, ‘Primitive sets in a lattice’, Australas. J. Combin. 40

(2008) 173–186.
12. J. Martinet, Perfect lattices in Euclidean spaces (Springer, 2002).
13. D. Micciancio, ‘Efficient reduction among lattice problems’, Proc. SODA ’08 (ACM/SIAM, 2008) 84–93.
14. D. Micciancio and P. Voulgaris, ‘A deterministic single exponential time algorithm for most lattice

problems based on Voronoi cell computations’, Proc. STOC ’10 (ACM, 2010) 351–358.
15. L. J. Mordell, ‘Observation on the minimum of a positive quadratic form in eight variables’, J. Lond.

Math. Soc. 19 (1944) 3–6.
16. P. Nguyen and D. Stehlé, ‘An LLL algorithm with quadratic complexity’, SIAM J. Comput. 39 (2009)

no. 3, 874–903.
17. R. A. Rankin, ‘On positive definite quadratic forms’, J. Lond. Math. Soc. 28 (1953) 309–314.
18. O. Regev, Lecture 8: Dual lattices, 2004, http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/in

dex.html.
19. C. P. Schnorr, ‘A hierarchy of polynomial time lattice basis reduction algorithms’, Theoret. Comput.

Sci. 53 (1987) 201–224.
20. C. P. Schnorr and M. Euchner, ‘Lattice basis reduction: improved practical algorithms and solving

subset sum problems’, Math. Program. 66 (1994) 181–199.
21. C. P. Schnorr and H. H. Hörner, ‘Attacking the Chor–Rivest cryptosystem by improved lattice

reduction’, Proc. EUROCRYPT ’95, Lecture Notes in Computer Science 921 (Springer, 1995) 1–12.

Jianwei Li
Institute for Advanced Study
Tsinghua University
Beijing 100084
China

lijianwei10@mails.tsinghua.edu.cn

Phong Q. Nguyen
INRIA
France

and

Institute for Advanced Study
Tsinghua University
Beijing 100084
China
http://www.di.ens.fr/∼pnguyen/

https://doi.org/10.1112/S1461157014000333 Published online by Cambridge University Press

http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.cims.nyu.edu/regev/teaching/lattices-fall-2004/index.html
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
http://www.di.ens.fr/~pnguyen/
https://doi.org/10.1112/S1461157014000333

	1 Introduction
	2 Background
	2.1 Lattices
	2.2 Lattice reduction
	2.3 The Gama–Nguyen slide reduction algorithm

	3 A new inequality for Rankin's constant
	3.1 Proof of Theorem 1.1
	3.2 Approximating the densest sublattice from Theorem 1.1

	4 Block–Rankin reduction
	4.1 Reduction definitions
	4.2 A reduction algorithm
	4.3 Complexity analysis

	Appendix A Properties of projected blocks
	Appendix B Extending a primitive set to a lattice basis
	Appendix C Bounding the size of unimodular transformations
	Appendix D Analysis of Algorithms 4 and 5
	References

