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Food intake is influenced by a complex regulatory system involving the integration of a wide
variety of sensory inputs across multiple brain areas. Over the past decade, advances in neuroi-
maging using functional MRI (fMRI) have provided valuable insight into these pathways in the
human brain. This review provides an outline of the methodology of fMRI, introducing the
widely used blood oxygenation level-dependent contrast for fMRI and direct measures of cer-
ebral blood flow using arterial spin labelling. A review of fMRI studies of the brain’s response
to taste, aroma and oral somatosensation, and how fat is sensed and mapped in the brain in
relation to the pleasantness of food, and appetite control is given. The influence of phenotype
on individual variability in cortical responses is addressed, and an overview of fMRI studies
investigating hormonal influences (e.g. peptide Y'Y, cholecystokinin and ghrelin) on appetite-
related brain processes provided. Finally, recent developments in MR technology at ultra-
high field (7 T) are introduced, highlighting the advances this can provide for fMRI studies
to investigate the neural underpinnings in nutrition research. In conclusion, neuroimaging meth-
ods provide valuable insight into the mechanisms of flavour perception and appetite behaviour.

BOLD: Neuroimaging: Satiety: Obesity: Reward: Appetite: Food: Hypothalamus:
Homeostatic

Over the past decade, advances in neuroimaging techni- hormonal influences is addressed. The role of neuroima-

ques, particularly functional MRI (fMRI), have provided
valuable insight into central food-related pathways in the
human brain. This review outlines recent advances in
fMRI to understand flavour perception and human appeti-
tive behaviour. A brief overview of the method of fMRI
and the blood oxygenation level-dependent (BOLD) con-
trast generally used in fMRI is provided, together with
how more direct measures of cerebral blood flow (CBF)
can be assessed. fMRI studies of the brain’s response to
taste, aroma and flavour perception are outlined. The ques-
tion of how fat is sensed and mapped in the brain in re-
lation to the pleasantness of food, appetite control and

ging studies to assess eating behaviour in obesity will be
outlined. Finally, recent developments in MR technology,
and the advances they can provide for future fMRI studies
to investigate the neural underpinnings in nutrition re-
search will be described.

Principles of functional MRI

fMRI has revolutionised the research of functional brain
mapping and is now the most widely used method
for mapping brain activity. fMRI measures brain activity

Abbreviations: ACC, anterior cingulate cortex; BOLD, blood oxygenation level-dependent; CBF, cerebral blood flow; CCK, cholecystokinin; f MRI,
functional MRI; OFC, orbitofrontal cortex; PROP, 6-n-propylthiouracil; PYY, peptide YY; UHF, ultra-high field.
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Fig. 1. Schematic representation of (a) the haemodynamic changes which lead to a blood
oxygenation level-dependent (BOLD) signal, and (b) the BOLD haemodynamic response

function.

indirectly through the haemodynamic changes associated
with neural activation, and typically uses the BOLD con-
trast. BOLD contrast was introduced in the early 1990s'”,
and relies on the different magnetic properties of oxyge-
nated and deoxygenated blood which are diamagnetic
and paramagnetic, respectively®. Paramagnetic deoxyhae-
moglobin leads to a local magnetic field distortion within
and around vessels, causing the protons to dephase, reduc-
ing the T5/T>* relaxation time and the MR signal compared
with oxyhaemoglobin.

On brain activity, neural demand increases leading to
an increase in glucose and oxygen consumption with an in-
crease in both CBF and cerebral blood volume to deliver
these nutrients. However, the increase in CBF, and
hence the supply of oxygenated blood, increases to a
level greater than that required by demand (over compen-
sation). This leads to a local increase in blood oxygenation
in active brain regions, resulting in a local increase in 75/
T,* relaxation time and thus a small, but detectable, in-
crease 1n MR image intensity termed the BOLD re-
sponse™, Fig. 1. This effect can be observed using T»*
or T, welghted imaging sequences using gradient-echo or
spin-echo schemes, respectively. Although gradient-echo
echo planar imaging is most typically used, the change
in BOLD MR signal intensity has a characteristic
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response, termed the haemodynamic response function,
with the increase in MR signal typically delayed by 6 s fol-
lowing stimulus onset and having a 1-5 % signal change at
a magnetic field strength of 3 T.

Since BOLD-fMRI is a non-invasive technique, it can
be repeatedly used. The spatial resolution is typically 3
ml isotropic, but higher spatial resolution can be
achieved at increasing magnetic field strength, such as
at an ultra-high field (UHF) of 7 T. The main limitation
of the BOLD technique arises from the vascular origin of
the signal, which inherently limits its temporal resolution
and quantltatlon(4 ) In addition to developing stronger
magnetic fields to enhance the spatial resolution of the
BOLD response and brain mapping, measuring the di-
rect change in CBF due to neuronal activation using ar-
terial spin labelling provides absolute quantification of
the signal change and hence neuronal activity.

In arterial spin labelling, arterial blood water is mag-
netically labelled before it reaches the tlssue of interest
by applymg a single radiofrequency pulse®” or train
of pulses®. After a period of time (post- label delay),
the labelled blood ‘endogenous tracer’ flows into the
slice of interest, where it exchanges with tissue water.
During this time, an image is taken (called the tag or
label image). In this image, the blood water is in a
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different magnetisation state from that of the static tissue
water. In addition to the label image, a control image is
acquired without labelling of inflowing arterial blood.
Label and control images are then subtracted to yield a
perfusion weighted image that can be quantified in
terms of cerebral blood flow in ml/100 g per min®.
Although directly measuring CBF using arterial spin
labelling yields a better spatial correlation with the actual
site of the active brain region than BOLD, its temporal
resolution is lower than BOLD due to the time required
to collect both a label and control pair. In addition, the
signal-to-noise ratio and contrast-to-noise ratio are inher-
ently lower than BOLD!"*!D; however increasing the
field strength increases both of these measures due to
longer longitudinal relaxation time (77) at higher mag-
netic field strength.

Functional MRI paradigm designs to study nutrition

In fMRI, various designs and approaches are used for
studying the mechanism underlying food intake and
appetite. One of the most direct methods is the presen-
tation of taste, aroma or flavour stimuli or food images
in a block design, where stimuli are presented for a per-
iod of time followed by a rest period. In an fMRI study,
a set of BOLD images covering the whole brain (a brain
volume) is typically collected each 2-3 s during the pres-
entation of stimuli, and to increase the sensitivity to de-
tect active brain areas, hundreds of brain volumes are
acquired during many repeats of a stimulus. This leads
to an fMRI paradigm typically taking 10-20 min.
Signal averaging and statistical processing are required
due to the difficulty in detecting the low BOLD signal
changes against background physiological noise signal
fluctuations'?. However, BOLD sensitivity increases
supra-linearly with magnetic strength, one reason for
the current demand for UHF MR scanners.

Alternatively, the brains’ response to food or food cues
can be measured under different physiological condi-
tions, such as the fasted state v. fed state, or the presence
of exogenously administered or endogenously produced
gut hormones. Another approach is to study the resting
state signal fluctuations in the brain, where individuals
do not perform any tasks during scanning (this is termed
resting state fMRI). Subjects are scanned under different
physiological conditions and the connectivity between
different brain regions is studied. CBF-f MRI studies pro-
vide an alternative assessment of the effect of physiologi-
cal state by measuring the absolute cerebral blood flow at
different time points, which can then be compared with a
baseline measure of CBF.

Functional MRI responses to taste, aroma and oral
somatosensation

The sensory properties of food and their hedonic effects
are important drivers of food intake. The use of fMRI
in recent years has improved the understanding of the
cortical representation of sensory properties of food in
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human subjects. Although taste stimulation has consist-
ently activated the same brain regions across multiple
fMRI studies, including insula and overlaying opercu-
lum, the transduction mechanisms remain incompletely
characterised. Previous studies reported the primary
taste cortex is located within the anterior insula/frontal
operculum*'> with secondary projections to the orbi-
tofrontal cortex (OFC)"'®, amygdala!”, anterior cingu-
late cortex (ACC)'®, ventral striatum”® and
dorsolateral prefrontal cortex®”. O’Doherty ez al. were
the first to investigate the cortical response to pleasant
(glucose) and aversive (salt) taste stimuli by assessing
stimuli against a tasteless control stimulus®". In individ-
ual subject analysis, the OFC showed separate areas to
be activated in response to these two tastes. Small et al.
also highlighted activations in the OFC to sweet and
aversive taste, and investigated the neural response to
taste intensity when valence was held constant, showing
activation of the amygdala and mid-insula®.
Furthermore, the amygdala responded to both sweet
and aversive taste (when intensity was held constant),
with preferential activation to sweet taste, providing evi-
dence that the amygdala is not solely involved in proces-
sing aversive taste. Other activations including ACC have
been reported in many fMRI studies" *'**1* while the
rolandic operculum of the parietal cortex has been iden-
tified as a part of the primary gustatory cortex®>*%. A re-
cent meta-analysis confirmed widespread activation of the
insula and operculum in response to taste stimuli, diver-
ging from posterior to the most anterior junction of insula
and operculum, in addition to activation in medial OFC,
pregenual ACC and mediodorsal thalamus">.

In response to aroma stimuli, f MRI studies report ro-
bust activation in higher-order olfactory areas, including
the OFC, insula and ACC"®*-9) 1In contrast, the pri-
mary olfactory cortex has shown no®”*® or inconsistent
activations in some studies'®>*”. This may be due to its
small structure, susceptibility artefacts in this region or
habituation effects®”.

Oral somatosensation plays a crucial role in many
aspects of flavour perception. fMRI studies have
revealed brain regions involved in tactile components
such as astringency®”, burn®® and temperature®?.
Textural properties of food are known to correlate with
fat content, and fat may also act as a chemical stimulus,
with NEFA stimulating taste receptor cells for the detec-
tion of fat®**9. Very few studies have investigated the
cortical representation to oral Viscositg and oral fat in
the mouth. de Araujo and Rolls®® and De Celis
Alonso et al.®” investigated the representation of oral
viscosity (carboxymethyl cellulose) and manugel alginate
gel, respectively. Both studies showed activation in the
mid- and anterior insula, with the mid-insula represent-
ing the somatosensory properties of the oral activity (tex-
ture), other areas, including post-central gyrus and
rolandic/parietal operculum were also reported®”. In ad-
dition, the sensory and hedonic aspects of oral fat have
been investigated in a number of studies using BOLD
and CBF measures. Human responses to oral fat have
been found to activate taste, texture and reward
areas®*** 49 Responses to oral fat in the form of pure
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fat have been found in the ACC extending to the OFC
and hypothalamus, with the rostral ACC and medial
OFC being activated independent of viscosity, leading
to the suggestion that it is these areas that process the he-
donic properties of fat®®. Moreover, the subjective rat-
ing of texture and flavour pleasantness of oral fat was
found to correlate with activity in the mid-OFC and
ACC, areas thought to represent flavour pleasantness®”.
This study also suggested that the pregenual cingulate
cortex is activated by converging flavour and fat signals,
hence representing overall pleasantness. Further investi-
gations on the effect of fat content on the cortical re-
sponse show a positive correlation with increasing fat
level/concentration in taste, texture and reward
areas®® . Most recently, the somatosensory cortex
has been shown to be involved in the processing of oral
flavoured fat through functional coupling with the
OFC, for a high-fat pleasant sample compared with a
low-fat food with the same flavour. It has been suggested
that this may reflect the role of somatosensory cortex in
the processing of pleasant-flavoured oral fat“V.
Understanding the cortical encoding of the perceived re-
sponse to fat is important in relation to the pleasantness
of food and appetite control, and it provides additional
and valuable information to the food industry in order
to improve the design of products that are lower in fat
but still rewarding to eat, and hence decrease the risk
of obesity and associated complications.

Flavour perception of foods or beverages is a complex
multimodal process, engaging taste, olfaction and texture
modalities, and does not result from the simple addition
of these stimuli’"?. Despite taste, aroma and oral soma-
tosenation systems being anatomically dissociated at the
peripheral level, they are highly integrated at the cortical
level, and the exact mechanisms that lead to flavour per-
ception are still not well understood. Small*® has sug-
gested a model for flavour perception, which postulates
that the oral somatomotor areas play the principal role
in binding the taste, olfactory and associated tactile sen-
sations into the unitary flavour percept. fMRI provides a
great tool to understand the cortical association and inte-
gration between the different modalities. Evidence from
recent fMRI studies show overlapping brain responses
to taste and aroma in areas including anterior insula,
ACC, OFC and amygdala®". Verhagen and Engelen
performed a meta-analysis, which suggested the anterior
insula to be a multi-modal area activated by both taste
and aroma stimuli®®. However, the mechanism of inter-
action is poorly understood. In addition, the cortical rep-
resentation to oral somatosensation and taste was shown
to overlap in the insula and operculum®' . Although
fMRI provides a powerful method in revealing the corti-
cal response to flavour perception, much is still to be dis-
covered in flavour perception.

Phenotype and its modulation of functional MRI
responses

The perception of taste is known to vary widely across
individuals. There are many factors that contribute to
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an individual’s taste perception and subsequent food pre-
ferences and energy intake, including the density of taste
papillaec on the tongue and genetic differences in taste
receptors®”). The most well-researched taste phenotyping
is the perception of the bitterness taste. In behavioural
studies, this can be assessed by measuring a subjects’ sen-
sitivity to a bitter chemical called 6-n-propylthiouracil
(PROP). Subjects are asked to taste a filter paper soaked
in super saturated PROP solution and rate for bitterness
intensity on a Generalised Labelled Magnitude Scale®®”.
Non-tasters cannot taste the bitterness of PROP (about
25% of the population), medium tasters (about 50 %)
sense the bitterness while accepting it and super-tasters
(about 25%) find the taste of PROP unacceptable.
Tasters (medium- and super-tasters) are more sensitive
than non-tasters to the bitterness of caffeine, and to the
sweetness of sucrose®, some artificial sweeteners”
and salt taste®?. Moreover, some studies have also
shown that PROP tasters are also more sensitive to
fat®¥, oral irritation® and oral temperature®?.
Variability in PROP taster status is, in part, explained
by the TAS2R receptor gene family®®. Previous research
showed that the density of fungiform paé)illae is signifi-
cantly higher in PROP super-tasters®*>” suggesting
that this could be the source of increased sensitivity to
taste stimuli and oral sensitivity. Essick et al. showed a
strong correlation between PROP tasters and oral soma-
tosensation®® with supertasters having improved lin-
gual tactile spatial acuity (to embossed letters)
compared with medium tasters or non-tasters.

Recently, a new taste phenotype known as thermal
taster status has been described®”. Thermal stimulation
of small areas of the tongue was found to elicit a ‘phan-
tom’ taste in some individuals. Thermal sourness and/or
saltiness can be perceived by cooling the tongue, whereas
re-warming the tongue from an initial cooling period can
evoke a sweetness taste. In addition, thermal tasters were
found to be more sensitive than thermal non-tasters to
taste and olfactory stimuli®”, and oral stimulation in-
cluding temperature®”. The mechanism underlying this
is still under investigation, and appears to not be asso-
ciated with fungiform papillae density, as no correlation
has been found previously. Fungiform papillae are sur-
rounded and sometimes innervated by the trigeminal
nerve, which carries information from the tongue related
to chemical and physical properties of foods, and this
may lead to a correlation between PROP tasters and
thermal tasters. Recent studies also show there is a re-
lationship between the trigeminal system and PROP
taster status®".

Very few studies have investigated the impact of taste
phenotype on the primary gustatory cortex and oral
somatosensory areas. Eldeghaidy et al. showed that the
cortical response to oral fat in PROP tasters was highly
correlated in key taste, texture, and reward processing
areas, with a significant increase in BOLD response
with PROP taster status (super-taster>taster>non-
taster)®®, Fig. 2. More recently, Clark e al., showed
that the cortical response to taste and carbonation in
thermal tasters was significantly higher in several cortical
areas involved in flavour processing compared with
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Fig. 2. (colour online) Cortical response to oral fat. (a) Blood oxygenation level-dependent response to oral fat
delivery, shown with false discovery rate (FDR) corrected at P <0-05, overlaid on a T4-weighted image. (b) Region of
interest analysis of the T-scores showing a significant increase in the oral somatosensory (SI, SIl and mid-insula) and
reward area (amygdala) in 6-n-propylthiouracil supertasters®®. ACC, anterior cingulate cortex.

thermal non-tasters®”. Furthermore, the variation in

genotype, such as the a-synuclein gene and TaqlA Al,
has also been shown to be associated with the BOLD re-
sponse to taste stimuli in the OFC and striatum®**¥ and
regions known to be rich in dopaminergic axon term-
inals, including ACC, amygdala, thalamus and pu-
tamen®”. These results highlight new information
about the cortical features of different phenotypes, and
emphasise the importance of phenotyping participants
for fMRI taste studies to increase the statistical power
of group analysis.
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Effect of hunger and satiety on functional MRI response

A number of fMRI studies have investigated the cortical
modulation to satiation. Most studies show increased ac-
tivation in insula, amygdala, OFC parahippocampal cor-
tex, thalamus, hypothalamus, ACC and caudate in a
hunger/fasting state, compared with increased activation
in prefrontal cortex and inferior parictal lobe in a
satiated/fed state (areas that show decreased activation
in fasting/hunger areas). Viewing food images when hun-
gry modulates the response in appetite-related brain
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Emotion/memory
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regions, including the amygdala, parahippocam pal gyr
and lateral OFC, compared with the fed state
addition, manipulating food motivation by varying en-
ergy content of food images is associated with fMRI ac-
tivation in hypothalamus, ventral stratium, cerebellum
and frontal middle gyrus to high- ener7g§/ food images
compared with low-energy images

In addition to visual stimulation with food images, stu-
dies using oral food cues have also shown modulation of
brain responses by satiation. Key brain areas attenuated
due to satiation include the insula, amygdala, striatum
and OFC. Suppression in OFC, amygdala, ventral stria-
tum is reported in many studies and may reﬂect the de-
crease in pleasantness and desire to eat®>’*7%,
Suppression in the anterior insula actlvrty on satiation
suggests its role in feeding behaviour in addition to its
taste sensory processing®>>>747%_ The hypothalamus is
widely recognised as the gatekeeper to control food in-
take, highly influenced by nutrients, with evidence that
hypothalamic dysfunction may lead to obesrtym) Prior
studies have shown the hypothalamus is modulated by
satiety’®’®; however this modulation is inconsistent
across BOLD studies, and may be due to its small struc-
ture, variability in position and close proximity to the
sinus cavity. Recent CBF studies show a decrease in ac-
tivation of the hypothalamus after the consumption of
glucose”” and a high-fat meal®” compared with base-
line. In addition, the decrease in hypothalamus CBF cor-
related posmvely with the insula gustatory brain
region“” , indicating the interaction between homeostatic
and taste areas in response to a high-fat meal.

How do hormonal responses influence the cortex?

Food intake and its termination are affected by internal
and external factors. The homeostatic system controls
appetite and food intake via anorectic and appetitive
hormones connecting to the neural circuitry, and
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Fig. 3. (colour online) A simplified illustration of the gut-brain axis and appetite and homeostatic brain areas modulated by
food intake. OFC, the orbitofrontal cortex; ACC, anterior cingulate cortex; PYY, peptide YY, GLP-1, glucagon-like peptide
1; CCK, chole cystokinin.

converging throu%h the hypothalamus to stimulate or in-
hibit food intake*”. The non-homeostatic mechanisms
including food palatabllrty (through sight, smell and
taste sensory), habitual, sociocultural, emotional and
economic influences also drive food intake and appetite.
It is now widely accepted that, there is extensive cross-
modulation between homeostatic and non-homeostatic
systems, with regard to appetite control. Fig. 3 shows a
simplified schematic of the gut-brain axis and the appe-
tite and homeostatic brain areas modulated by food
intake.

Peptide YY (PYY), glucagon-like peptide 1 and chole-
cystokinin (CCK) are anorectic hormones secreted by the
gut and intestine following a meal ingestion, leading to
inhibition of food intake. Prior BOLD-fMRI studies
have assessed the brain response to an intravenous in-
fusion of PYY, and showed a modulation in OFC, pos-
terior insula, ACC striatum and homeostatic regions of
the brainstem and hypothalamus(g” The subjects’ energy
intake correlated negatively with OFC signal change
after the PY'Y infusion and positively with hypothalamus
activity after saline infusion. These authors postulated
the presence of PYY switched the regulation of food in-
take from a homeostatic brain region (hypothalamus) to
a hedonic region (OFC). In a more recent study, the com-
bined administration of PY'Y and glucagon-like peptide 1
to fasted human subjects attenuated brain areas that con-
trol appetitive behaviour, including amygdala, caudate,
insula, nucleus accumbens, OFC and putamen

CCK is released within minutes of eating, as a func-
tion of the presence of fat (long-chain NEFA) or protern
and thought to play a role in meal termination®**). The
satiety effects of CCK are mediated in part by the vagal
nerve®>%9, to activate the brainstem nucleus tractus soli-
tarius Wthh projects to brain regions controllmg food in-
take (e.g. hypothalamus and amygdala)®”. Very few
studies have assessed the brains’ response to nutrients
and the role of CCK in mediating such a response. The
intra-gastric infusion of lipids has been shown to lead
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to a CCK-dependent increase in BOLD signal in the
brainstem, pons, hypothalamus, cerebellum and motor
cortical areas®®. Li er al. investigated the brain response
to different macronutrients (fat, glucose and protein) and
measured the associated gut hormone concentrations, in-
cluding ghrelin (appetitive hormone), CCK, and
glucagon-like peptide 1, in both fed and fasted states®”.
The BOLD response reduced when fed in the middle
insula, thalamus, parahippocampal cortex, caudate,
and lateral OFC, compared with the hunger state®”.
However, amygdala activation was modulated following
protein ingestion but not after fat or glucose, suggesting
it may play a more important role than other regions in
mediating dietary protein-induced satiety. BOLD signal
changes were positively correlated with circulating ghre-
lin concentrations and were negatively correlated with
circulating insulin, CCK and glucagon-like peptide 1
concentrations. More recently, the CCK plasma values
have been showed to correlate negativity with BOLD re-
sponse in reward (amygdala) and taste (insula) regions in
response to ingestion of a high-fat meal®”. A number of
studies have also investigated the cortical response to
ghrelin®'*?.

Effect of obesity on the cortical response

There is now extensive literature on using fMRI to exam-
ine how obesity influences the cortical response to food.
Recent fMRI studies showed that brain activity of
obese people is significantly different from that of
normal-weight control subjects in several brain regions
implicated in food reward, emotion/memory and sen-
sory/motor processing, with greater activation in the
obese group paired with hypo-activity in areas associated
with homeostatic satiety and cognitive control/attention.
Szalay et al. showed that obese subjects had high levels of
activation in taste and reward areas (amygdala, nucleus
accumbens for sweet, fatty or quinone samples, whereas
control healthy subjects varied their response depending
on the taste of the sample®®. The authors postulated
that the dysfunction in reward circuitry in obese subjects
may have a distinguished role in overeating due to their
altered responsiveness to tastes. Other studies®>® dem-
onstrated that food motivation associated with viewing
high- and low-energy food images in obese women is dif-
ferent from healthy weighted subjects, with an enhanced
activation to high-energy food images in dorsal striatal
regions (reward areas). Moreover, increasing body BMI
positively correlated with BOLD signal for the high-
energy condition in anterior insula (taste region), OFC
(reward and secondary taste area), posterior cingulate,
dorsal striatum and post-central gyrus. A more recent
functional connectivity analysis study showed a relative
deficiency in the reward network in obese women, with
a deficit in amygdala modulated activation of both
OFC and nucleus accumbens, but a tendency towards ex-
cessive modulation of the nucleus accumbens by the
OFC®?_ These results show it may not only be the hyper-
activation of the reward system in obese individuals that
increases the motivational values of food, but also
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differences in the interaction of regions within the reward
network. Together these studies demonstrate unique pat-
terns of brain activation in obese compared to healthy
control individuals when food motivation is manipulated
by varying food content.

What can ultra-high field offer to functional MRI studies
of nutrition?

The studies described in this review demonstrate the ap-
plication of fMRI to reveal brain regions involved in
food perception, and provide a powerful method to
study the interactions between homeostatic and hedonic
signals controlling eating mechanism. In addition, these
studies suggest that the neural circuitry involved in the
control of food intake is not limited to the hypothalamus
and brainstem, but involves hedonic brain regions.
However, there is still much research needed to under-
stand the neural underpinnings in nutrition research in
the human brain. One of the major gains of UHF (7 T)
MR s the increased BOLD contrast-to-noise ratio. The
use of such UHF scanners will improve the spatial map-
ping, and allow better differentiation of cortical areas
involved in uni-modal and multi-modal processing, for
example in the primary gustatory cortex. Furthermore,
the increased BOLD contrast-to-noise ratio can be ap-
plied to study single trial BOLD responses and habitu-
ation, thus allowing the delivery of more natural
stimuli and reduced adaptation effects.

Conclusion
In conclusion, neuroimaging methods have been shown
to provide valuable insight into improving the under-
standing of flavour processing and the dependence of
phenotype of the cortical response. fMRI studies have
begun to demonstrate how the homeostatic system con-

trols appetite and food, and allow the study of the effect
of obesity at the cortical level.
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