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We study the dynamics of thermal and momentum boundary regions in three-dimensional
direct numerical simulations of Rayleigh–Bénard convection for the Rayleigh-number
range 105 ≤ Ra ≤ 1011 and Pr = 0.7. Using a Cartesian slab with horizontal periodic
boundary conditions and an aspect ratio of 4, we obtain statistical homogeneity in the
horizontal x- and y-directions, thus approximating best an extended convection layer
relevant for most geo- and astrophysical flow applications. We observe upon canonical use
of combined long-time and area averages, with averaging periods of at least 100 free-fall
times, that a global coherent mean flow is practically absent and that the magnitude of
the velocity fluctuations is larger than the mean by up to 2 orders of magnitude. The
velocity field close to the wall is a collection of differently oriented local shear-dominated
flow patches interspersed by extensive shear-free incoherent regions which can be as
large as the whole cross-section, unlike for a closed cylindrical convection cell of aspect
ratio of the order 1. The incoherent regions occupy a 60 % area fraction for all Rayleigh
numbers investigated here. Rather than resulting in a pronounced mean flow with small
fluctuations about such a mean, as found in small-aspect-ratio convection, the velocity
field is dominated by strong fluctuations of all three components around a non-existent or
weak mean. We discuss the consequences of these observations for convection layers with
larger aspect ratios, including boundary layer instabilities and the resulting turbulent heat
transport.
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1. Introduction

Rayleigh–Bénard convection (RBC) is one of the fundamental flow configurations in
fluid turbulence research. The fluid in this configuration is nominally confined to an
infinitely extended layer enclosed between two parallel, horizontal and impermeable
plates separated by a vertical distance H (Rayleigh 1916). When the fluid layer is heated
sufficiently strongly from below (and cooled from above), buoyancy forces initiate a
turbulent fluid motion that has a statistically preferred state with respect to the direction
of gravity, g = gez. A central question concerns the amount and nature of heat and
momentum carried through the layer, and their dependencies on the imposed temperature
difference between the top and bottom plates, �T = Tbot − Ttop. The temperature
difference is expressed by the dimensionless Rayleigh number Ra = gα�TH3/(νκ),
where α is the isobaric expansion coefficient, ν the kinematic viscosity and κ the
temperature diffusivity (Ahlers, Grossmann & Lohse 2009b; Chillà & Schumacher 2012;
Verma 2018).

A second important question is the structure of the velocity and thermal boundary
layers on the horizontal walls and their effects on heat transport. Since the RBC system is
enclosed by walls at the top and bottom, the viscous and thermal boundary layers formed
on these walls pose a bottleneck for the global transport of both heat and momentum.
Their composition and dynamics at very high Rayleigh numbers still need to be better
understood, as emphasized recently (Iyer et al. 2020; Lindborg 2023; Shishkina & Lohse
2023; Creyssels & Martinard 2024). For Rayleigh numbers Ra � 1010, no laboratory
experiment to date has resolved the dynamic interplay of the boundary layers and their
fluctuations with the basic structural elements, namely thermal plumes and shear layers.
Direct numerical simulations (DNS) are thus the only way to compare their structure and
statistical properties with predictions from theories for canonical laminar and turbulent
boundary layers (Schlichting & Gersten 2016). Furthermore, the closed-cell geometry of
high-Rayleigh-number studies (Castaing et al. 1989; Chavanne et al. 1997; Niemela et al.
2000; Ahlers et al. 2009a; Urban et al. 2012) breaks the horizontal translation symmetry
of the statistics, except possibly when the aspect ratio is very large (Pandey, Scheel &
Schumacher 2018). Small aspect ratio enforces a dominant large-scale circulation (LSC)
in the cell (Kadanoff 2001), manifesting as a relatively coherent shear flow connecting the
top and bottom plates, fluctuating only moderately in its mean orientation (Sreenivasan,
Bershadskii & Niemela 2002; Stevens, Lohse & Verzicco 2011; Shi, Emran & Schumacher
2012; Scheel & Schumacher 2017). Both aspects take us away from the original question
on the heat and momentum transfer in an infinitely extended plane layer.

In this work, we focus more on the second question in a configuration that is closest
to the original RBC model of convection between a pair of infinitely extended planes,
by using periodic boundaries in both horizontal directions. Simulations with similar
boundary conditions and Prandtl numbers have been done by Kerr (1996) for an aspect
ratio Γ = 6 and Ra ≤ 2 × 107, by Hartlep, Tilgner & Busse (2003) for Γ = 10 and
Ra ≤ 1 × 107, by van Reeuwijk, Jonker & Hanjalić (2008a) and van Reeuwijk, Jonker
& Hanjalić (2008b) for Γ = 4 and Ra ≤ 1 × 108, by De, Eswaran & Mishra (2018) for
Γ = 6 but Ra ≤ 2 × 106 and by Stevens et al. (2018) for Γ ≤ 32 at Ra = 109. Our DNS
span Rayleigh numbers of six orders of magnitude up to Ra = 1011 for long periods of time
(see table 1 for details). The choice of an aspect ratio of 4 for the present study provides a
‘sweet spot’. On the one hand, the domain is large enough that it does not generate strong
LSCs, see Niemela & Sreenivasan (2006). On the other hand, it is small enough to allow
us to advance to very high Rayleigh numbers, here of up to Ra = 1011, since the required
numerical resources grow with Γ 2. Furthermore, this is the aspect ratio beyond which
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No mean velocity in boundary region of thermal convection

Ra Γ Ne p NBL τtotal Nuvol Nuwall Re Raδ,rms

105 4 100 × 100 × 64 5 71 1000 4.27 ± 0.24 4.27 ± 0.15 93.0 ± 2.6 104 ± 21
106 4 100 × 100 × 64 7 57 1000 8.15 ± 0.35 8.15 ± 0.19 296 ± 5 116 ± 14
107 4 100 × 100 × 64 9 42 1000 15.6 ± 0.9 15.6 ± 0.3 892 ± 17 144 ± 14
108 4 150 × 150 × 96 7 24 1000 30.4 ± 1.9 30.4 ± 0.4 2571 ± 47 174 ± 15
109 4 150 × 150 × 96 9 15 400 60.9 ± 4.4 60.8 ± 0.9 7300 ± 150 209 ± 15
109 † 2 120 × 120 × 96 9 21 100 62.4 ± 5.0 62.4 ± 1.2 6990 ± 210 177 ± 21
109 † 4 220 × 220 × 96 9 22 100 60.5 ± 3.8 60.5 ± 0.7 7340 ± 140 206 ± 18
109 † 8 450 × 450 × 96 9 22 100 60.9 ± 2.0 60.9 ± 0.3 7180 ± 70 212 ± 10
1010 4 400 × 400 × 200 7 16 100 122.9 ± 10.8 123.1 ± 1.4 20 720 ± 380 247 ± 22
1011 4 500 × 500 × 256 7 16 100 254 ± 21 253 ± 2 58 550 ± 1040 298 ± 23

Table 1. Details of the simulation series. Listed here are the Rayleigh number Ra, the aspect ratio Γ , the
number of spectral elements Ne, the polynomial order p on each element with respect to each space direction,
the number of collocation points within the thermal boundary layer NBL, the total averaging time in free-fall
units τtotal, the volume-averaged and wall-averaged Nusselt numbers, Nuvol(= Nu) and Nuwall, the Reynolds
number Re and the Rayleigh number based on the thermal fluctuation boundary layer thickness, Raδ,rms. The
three DNS runs with dagger symbols at Ra = 109 have a different vertical spectral element grid stretching than
the fourth DNS run at this Rayleigh number. The total number of mesh cells is Ne × p3. It increases to almost
2.2 × 1010 collocation mesh cells for Ra = 1011. Mean values in the last four columns are accompanied by the
standard deviations. The Prandtl number of all runs is Pr = 0.7.

Nusselt and Reynolds numbers become independent of Γ , as discussed in Stevens et al.
(2018). We supplement these results by additional DNS runs at Γ = 2 and 8 for Ra = 109.

A canonical mean-flow analysis reveals practically no global mean flow; instead,
strong velocity fluctuations dominate the flow at all Ra. Fits to the mean vertical
velocity profiles result in very small free-stream velocities U∞ ∼ 10−3 in terms of the
free-fall velocity Uf = √

gα�TH, and thicknesses δ∞ ∼ 10−2 in terms of H, resulting
in small shear Reynolds numbers Reshear � 1–10 even for the largest Ra. We further
analyse fluctuations of the velocity components, determine the distances of maximum
mean-square fluctuations from the wall and discuss the resulting Reynolds numbers.

A quick impression of the complex boundary layer dynamics is obtained by the
streamline and contour plots in figure 1 close to the bottom wall for two Rayleigh numbers.
The figures indicate a prominent patchiness of the whole velocity boundary layer viewed
from the top. The boundary layer is composed of coherent shear-dominated and incoherent
shear-free regions. This feature becomes less prominent for the contours of the temperature
field, which display an increasingly dense skeleton of thermal plume ridges over the whole
plate. Here, we quantify the corresponding area fraction, condition the fluctuations on
the coherent and incoherent regions and relate the incoherent regions to the large-scale
patterns in the bulk, which are the turbulent superstructures of convection (Pandey et al.
2018; Stevens et al. 2018). Only when the velocity fluctuations are conditioned on the
coherent shear-dominated regions are the mean profiles close to those observed in closed
cylinders for Γ ∼ 1 (Scheel & Schumacher 2017).

One important point needs to be made here. While a thermal boundary layer of the
standard type is indeed present, no momentum boundary layer can be easily identified, as
explained subsequently. For the velocity field, it is thus more accurate to merely discuss the
flow near the wall instead of the boundary layer flow, but for convenience of identification
and following convention, we continue to use the term boundary layer. There is no such
ambiguity for the thermal boundary layer.
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(b)(a)

(d )(c)

Figure 1. Turbulent fields at two Rayleigh numbers. Streamline snapshots of the horizontal velocity field
(ux, uy) and contour plots of temperature field T at the same instant. Panels show (a,c) Ra = 108 and (b,d)
Ra = 1011. The entire cross-section of 4H × 4H at z = δT/2 close to the bottom wall is shown. Here, H is
the height of the convection layer and δT the thermal boundary layer thickness. The colour legend holds for
both temperature field panels (c,d). In panels (a,b) examples for local coherent shear-dominated and incoherent
shear-free regions are indicated.

2. Numerical simulations and resolution analysis

We solve the three-dimensional Boussinesq equations of RBC (Verma 2018) by the
GPU-based spectral element code nekRS (Fischer et al. 2022) which combines an element
decomposition of the computational domain with a spectral expansion in Lagrange
polynomials of each involved field along each spatial dimension on each element. The
equations are given in dimensionless form by

∂u
∂t

+ (u · ∇)u = −∇p + T ẑ +
√

Pr
Ra

∇2u, (2.1)

∂T
∂t

+ (u · ∇)T = 1√
PrRa

∇2T, (2.2)

∇ · u = 0. (2.3)

Here, u, p and T are the velocity, pressure and temperature fields, respectively. Length,
velocity and temperature are expressed in units of H, Uf and the outer temperature
difference �T , respectively. No-slip boundary conditions apply for the velocity field at
the plates at z = 0 and H. Table 1 summarizes 10 simulations, all at a Prandtl number
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No mean velocity in boundary region of thermal convection
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Figure 2. (a) Compensated turbulent heat transfer Nu/Ra0.331 vs Ra. (b) Compensated turbulent momentum
transfer Re/Ra0.458 vs Ra. The panels contain data from the present DNS and from Scheel & Schumacher
(2017), Stevens et al. (2010) and Iyer et al. (2020). All data are compensated by the fits to the data from Iyer
et al. (2020); see also table 1.

Pr = ν/κ = 0.7 and aspect ratios Γ = L/H = 2, 4 and 8, where L is the horizontal
length. The number of collocation points inside the thermal boundary layer (based on
the temperature fluctuation profiles) is always NBL ≥ 15. Furthermore, we verified that the
Nusselt numbers Nuvol and Nuwall, which are given by combined volume–time 〈·〉V,t and
area–time averages 〈·〉A,t,

Nuvol = 1 +
√

RaPr〈uzT〉V,t and Nuwall = −∂〈T〉A,t

∂z

∣∣∣∣
z=0,H

, (2.4a,b)

result in practically the same values (table 1).
As a first global result, we plot in figure 2(a,b) the Nusselt and Reynolds numbers,

Nu = Nuvol and Re = Urms
√

Ra/Pr vs the Rayleigh number Ra, compensated by the
high-Ra scaling result of Iyer et al. (2020); here, Urms = 〈u2〉1/2

V,t is the root-mean-square
velocity. Also compared are our results with those of Stevens, Verzicco & Lohse (2010)
and Scheel & Schumacher (2017) in closed cylinders at Γ = 1/2 and Γ = 1, respectively.
Considering the large differences in aspect ratios, the Nusselt numbers collapse fairly
well and follow the same trend for Ra ≤ 1011 (figure 2a); they are also in agreement
with previous simulations for Ra ≤ 108 from van Reeuwijk et al. (2008a). The Reynolds
number shows a strong geometry dependence, as visible in figure 2(b), although they tend
to the same exponent towards high Ra; this suggests an agreement in scaling exponents
at high Ra, but the prefactor seems to have a complicated Rayleigh-number dependence.
Statistics in all runs are obtained for equal and more than 100 free-fall times Tf = H/Uf ;
see table 1.

We verified that the resolution of the boundary layers is sufficient. Figure 3 shows the
vertical profiles of the temperature fluctuations for three different spectral element grids
at Ra = 1010 and two at Ra = 1011 with different polynomial orders p ≥ 5. It is seen that
the profiles collapse well on each other, thus also demonstrating the convergence of the
spectral method. This conclusion is further reinforced for Ra = 109 where we have 4 DNS
runs at different aspect ratio and vertical grid stretching. First, the Nusselt and Reynolds
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Figure 3. Resolution study for the runs at the two highest Rayleigh numbers. The near-wall profile of the
temperature fluctuations is plotted. The legend indicates the Rayleigh number together with the vertical
numbers of spectral elements and the polynomial order. The runs, as listed in the legend from top to bottom,
have 11, 14, 16, 11 and 16 points inside the thermal boundary layer. The horizontal lines are the thermal
fluctuation boundary layer thicknesses.

numbers in table 1 differ only slightly (of the order of a tenth of a per cent) between
Γ = 4 and 8. Secondly, they are very close for two element grids with different vertical
grid stretching at Γ = 4. The fast spectral convergence of spectral element methods
in comparison with lower-order finite-difference schemes has been reported recently by
Zahtila et al. (2023) in comprehensive studies for turbulent channel flows.

3. Mean profiles of temperature and velocity

The mean velocity profiles for the horizontal components are obtained by a combined
average over the area A = L2 and Nt = 20 statistically independent realizations of the
turbulent flow separated from each other by at least 5Tf as

〈ui〉A,t(z) = 1
ANt

Nt∑
k=1

∫
A

ui(x, y, z, tk) dA, (3.1)

for i = x, y and Nt the number of snapshots. For all runs, Nt = 20 to obtain equidistant
and statistically independent realizations of the flow. Figure 4 displays the result of this
analysis for Ra = 109. In panel (a), the mean profile of the x-velocity component is shown
as a function of even longer averaging times, which were varied from τtotal = 400 Tf (= 20
snapshots) to 1600 Tf (= 80 snapshots). The profile converges steadily to zero, although
not uniformly. There is essentially no mean flow. If we insist upon fitting the near-wall
mean profiles to the two-dimensional Blasius solution, for example, the result is shown in
panel (b). In the absence of a definable leading edge distance x, we match 〈ux〉A,t(z)/U∞
and z/δ∞ to f ′(η) which is reported in panels (b,c) of figure 4. Recall that the
Blasius solution f (η) = ψ(x, z)/

√
xU∞ν and η = z/δ(x) (Schlichting & Gersten 2016),
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Figure 4. (a) Planar-averaged profiles of the horizontal velocity component ux for different averaging intervals
for Ra = 109. Notice the very small values of U∞ and the non-monotonic convergence of the profiles. (b) Match
of the near-wall profiles from panel (a) to the Blasius profile f ′(η) (dashed line). (c) Variation of the free-stream
velocity U∞ and boundary layer height δ∞ obtained from the fits to the Blasius profile vs averaging time at
Ra = 109. (d) Time-averaged profiles 〈ux〉A,t for all 7 Rayleigh numbers. (e) Time-averaged profiles 〈uy〉A,t for
all 7 Rayleigh numbers. ( f ) Time-averaged profiles 〈ux〉A,t for Rayleigh number Ra = 109 and aspect ratios
Γ = 2, 4 and 8. These are the three runs which are indicated by a dagger in table 1.

where ψ(x, z) is the streamfunction and ux = ∂ψ/∂z and uz = −∂ψ/∂x. The numerical
profiles are rescaled such that the first local maximum of 〈ux〉A,t corresponds to U∞. The
fits are shown for different time intervals in (b). Recall that, at distance η = 5, the Blasius
profile reaches a streamwise velocity magnitude of f ′(η) = 0.99U∞. In this case, panel
(a) shows that the maximum velocity reached is of the order 1 % or less of the free-fall
velocity, which is the only characteristic velocity of the flow. As shown in panel (c), no
clear trend of the velocity Ux,y

∞ with averaging time is detectable, and the magnitude is
between O(10−3) and O(10−2). In table 2, the results for all Rayleigh numbers and both
horizontal components are listed.

The boundary layer thickness parameters vary when x- and y-directions are compared at
fixed Ra. They decrease with increasing Rayleigh number. Furthermore, we calculate the
corresponding shear Reynolds numbers Reshear = U∞δ∞/ν, which are found to be very
small for all cases. Panels (d,e) of figure 4 show the mean profiles for all 7 simulation runs
and for both horizontal velocity components. They underline the very small mean-flow
amplitudes for all Rayleigh numbers in this series. Panel ( f ) of the figure compares three
runs at Ra = 109, which are indicated with a dagger symbol in table 1, at aspect ratios Γ =
2, 4 and 8. Again, the mean-flow amplitudes 〈ux〉A,t(z) are comparable and very small such
that an aspect-ratio dependence for this result can be excluded when periodic boundary
conditions in the horizontal directions are applied. The non-monotonic behaviour is simply
a reflection of the long averaging times required for convergence in convection studies.
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Ra Ux∞ Uy
∞ δx∞ δ

y
∞ Rex

shear Rey
shear

105 4.8 × 10−4 1.7 × 10−3 9.1 × 10−1 6.5 × 10−1 0.16 0.43
106 2.5 × 10−3 8.4 × 10−3 1.7 × 10−1 1.5 × 10−1 0.51 1.5
107 3.0 × 10−3 2.7 × 10−3 8.2 × 10−2 8.1 × 10−2 0.93 0.82
108 1.2 × 10−3 6.6 × 10−3 5.8 × 10−2 3.7 × 10−2 0.80 2.9
109 2.5 × 10−4 9.3 × 10−4 5.1 × 10−2 2.7 × 10−2 0.48 0.94
1010 3.3 × 10−3 1.8 × 10−3 1.3 × 10−2 1.1 × 10−2 5.1 2.4
1011 3.6 × 10−3 1.4 × 10−4 5.8 × 10−3 7.0 × 10−3 7.9 0.38

Table 2. Fit parameters Ux∞ and Uy
∞ as well as the corresponding thicknesses δx∞ and δy

∞ of the combined
plane–time-averaged mean profiles of the horizontal velocity components 〈ux〉A,t and 〈uy〉A,t to the Blasius
profile U∞f ′(η) with η = z/δ∞. The corresponding shear Reynolds numbers Rex,y

shear = Ux,y
∞ δ

x,y
∞ /ν are also

given. All runs are at Γ = 4.

4. Fluctuation profiles of temperature and velocity

The mean vertical profiles of the root-mean-square velocities are given by

Uh
rms(z) =

√
〈u2

x + u2
y〉A,t and Urms(z) =

√
〈u2

x + u2
y + u2

z 〉A,t, (4.1a,b)

where we distinguish between horizontal and full profiles. The fluctuation profiles for
the velocity fields are obtained from the full components since the means are so small.
We have verified that the differences in the procedure produce only very small changes.
Figure 5 summarizes mean profiles for 7 simulation runs, the mean temperature profile
and the root-mean-square profiles of temperature, horizontal velocity components and
all three velocity components. The temperature fluctuation profile is similarly obtained
by Trms(z) = 〈θ2〉1/2

A,t with θ(x, t) = T(x, t)− 〈T〉A,t(z). The corresponding characteristic
scales are indicated by horizontal dashed lines and detailed in table 3. It is seen that the
thermal boundary layer thickness δT = 1/(2Nu) is slightly larger than the distance from
the wall of the maximum of the temperature fluctuation profile, which we term the thermal
fluctuation boundary layer thickness or, for short, thermal fluctuation thickness, δT,rms.
Increasingly larger are distances from the wall to the maxima of the velocity fluctuation
profiles, obeying a ratio of δU,rms/δT,rms ≈ 2 for Ra = 105 up to approximately 13 for
Ra = 1011; see panel (d). The corresponding thicknesses are termed velocity fluctuation
thickness.

Furthermore, we repeated the fluctuation profile analysis for the dependence on different
aspect ratios, one on each side of 4, at Ra = 109. These runs are indicated again by a dagger
symbol in table 3, where we collect the corresponding thickness scales. The corresponding
profiles are shown in figure 6. While the temperature profiles collapse close to the walls,
thus displaying no sensitivity with respect to the aspect ratio Γ in this range, the velocity
profiles are affected by Γ . However, the resulting velocity fluctuation thicknesses are found
to agree well for Γ = 4 and 8 (by 1.5 % or less), in terms of both horizontal and full
velocity fluctuations. The finding supports our considered view that Γ ≥ 4 is sufficient to
obtain horizontal homogeneity for the statistics already introduced.

5. Scaling of combined volume–time-averaged fluctuation with Rayleigh number

Figure 7 summarizes the root-mean-square fluctuations of the three velocity components
and the temperature. They are obtained by a combined average with respect to the full
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Figure 5. Mean profiles are compared with each other for all 7 runs. We show the mean profile of temperature
〈T〉A,t(z) in panel (a), root-mean-square profile of temperature Trms(z) in (b), root-mean-square profile with
respect to the two horizontal velocity components, Uh

rms(z), in (c) and with respect to all three components,
Urms(z), in (d). The corresponding height scales of these profiles are indicated by dashed horizontal lines in
the figures and listed in table 3. Note that, for the two lowest Ra, they exceed the displayed plot range of the
figure in panel (d).

Ra Γ δT δT,rms δh
U,rms δU,rms

105 4 (1.17 ± 0.04)× 10−1 (1.27 ± 0.08)× 10−1 (1.23 ± 0.07)× 10−1 (2.39 ± 1.32)× 10−1

106 4 (6.13 ± 0.15)× 10−2 (6.13 ± 0.27)× 10−2 (8.80 ± 0.54)× 10−2 (1.74 ± 1.12)× 10−1

107 4 (3.21 ± 0.06)× 10−2 (3.07 ± 0.10)× 10−2 (6.99 ± 0.58)× 10−2 (1.07 ± 0.51)× 10−1

108 4 (1.64 ± 0.02)× 10−2 (1.52 ± 0.04)× 10−2 (5.08 ± 0.35)× 10−2 (6.51 ± 0.92)× 10−2

109 4 (8.22 ± 0.12)× 10−3 (7.47 ± 0.18)× 10−3 (3.52 ± 0.28)× 10−2 (4.33 ± 1.97)× 10−2

109 † 2 (8.01 ± 0.15)× 10−3 (7.07 ± 0.29)× 10−3 (2.94 ± 0.49)× 10−2 (3.75 ± 0.72)× 10−2

109 † 4 (8.27 ± 0.10)× 10−3 (7.44 ± 0.21)× 10−3 (3.28 ± 0.28)× 10−2 (4.15 ± 0.63)× 10−2

109 † 8 (8.20 ± 0.04)× 10−3 (7.51 ± 0.12)× 10−3 (3.23 ± 0.12)× 10−2 (4.20 ± 0.22)× 10−2

1010 4 (4.06 ± 0.04)× 10−3 (3.67 ± 0.11)× 10−3 (2.39 ± 0.19)× 10−2 (2.79 ± 0.27)× 10−2

1011 4 (1.97 ± 0.02)× 10−3 (1.81 ± 0.05)× 10−3 (2.07 ± 0.27)× 10−2 (2.55 ± 0.39)× 10−2

Table 3. Differently defined boundary layer thicknesses of temperature and velocity according to the vertical
mean profiles plotted in figure 5. The standard deviation accompanies each mean value.

volume V = L2H and time, e.g. ux,rms = 〈u2
x〉1/2

V,t . The quantity Urms denotes again the
fluctuations with respect to all three velocity components. It is seen that the dependence
of the velocity fluctuations on the Rayleigh number is very weak with β � 0.042. The
temperature fluctuations drop with a smaller power-law exponent, Trms ∼ Ra−β , which is
found to be β = 0.119 for the present data. This exponent is slightly smaller in magnitude
than those reported in experiments in cylindrical cells of aspect ratio 1/2. For comparison,
Castaing et al. (1989), Niemela et al. (2000) and Wu & Libchaber (1992) report exponents
of β ≈ 0.145. We also analysed the temperature fluctuations in the bulk of the layer,
which takes a volume average with respect to Vb = L2 × [0.4, 0.6] and time. The exponent
changes to β = 0.141 which is closer to the experiments. We have verified that a variation
of the thickness of the bulk volume Vb does not alter the results significantly.

In panels (b–d) of figure 7, we added data from the DNS of Iyer et al. (2020) for
comparison, which were obtained in a closed slender cylindrical cell of aspect ratio
Γ = 0.1. It is seen that exponents of the power-law fits are close to those of the present
simulation series. The prefactors differ as expected, because the former DNS data were
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Figure 6. Mean temperature profiles compared with each other for different aspect ratios at Ra = 109. Similar
to figure 5, we show the mean profile of temperature 〈T〉A,t(z) in panel (a), root-mean-square profile of
temperature Trms(z) in (b), root-mean-square profile with respect to the horizontal velocity components, Uh

rms(z)
in (c) and with respect to all three components Urms(z) in (d). The corresponding height scales of these profiles
are indicated by dashed horizontal lines and are also listed in table 3.

obtained for geometrically constrained convection. This finding of nearly the same scaling
exponents suggests a robust geometry-independent trend of all thermal fluctuations with
respect to the Rayleigh number. Geometry-specific aspects mostly affect the prefactor.

6. Decomposition into coherent and incoherent boundary layer regions

The orientation of the boundary layer flow varies strongly, as shown in figures 8(a) and
8(c), where we plot the orientation angle of the horizontal velocity ϕ = arctan(uy/ux) ∈
[−π,π] for a snapshot at Ra = 1010 at z = δT and z = H − δT , respectively. At both these
heights, we cover the horizontal plane into 104 disjoint square boxes of area content Ai =
A/104, where A = L2. We then calculate the mean horizontal velocity ūh(Ai) in each of Ai
and decompose the cross-section into coherent and incoherent boundary layer regions for
|ūh(Ai)| > Uh

rms(δT) and |ūh(Ai)| ≤ Uh
rms(δT), respectively. Similar decompositions have

been applied to analyse the spatio-temporal intermittency of the transition to turbulence
in shear flow turbulence in extended domains, see e.g. Hof (2022). Panels (a,c) of figure 8
show that coherent shear-dominated patches are separated by incoherent flow regions (in
grey). See also figure 1. The superposed streamlines indicate the different flow orientations
of the shear-dominated regions.

Panels (b,d) of the same figure show the corresponding snapshots of the temperature
field T at z = 0.1 above the bottom and z = 0.9 below the top, which are distances of 25
δT away from the walls at Ra = 1010. It is clearly seen that the hotter regions at z = 0.1
and the colder regions at z = 0.9, both of which are displayed in grey, coincide fairly well
with the incoherent flow regions at the edge of the thermal boundary layer. We can define
overlap factors 0 ≤ Õ ≤ 1 by

Õbot = Aincoh
⋃

AT>T0

max(Aincoh,AT>T0)
and Õtop = Aincoh

⋃
AT<T0

max(Aincoh,AT<T0)
, (6.1a,b)

with T0 = 0.5. Here, we find mean overlaps of 〈Õbot〉 = 0.60 and 〈Õtop〉 = 0.63, where
the average is taken over the snapshots. The physical interpretation is as follows:
the incoherent regions correspond to dominant hotter upwelling (colder downwelling)
motions. These regions occur outside shear-dominated patches where the thermal plumes
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Figure 7. Scaling of the root-mean-square velocities and temperature with respect to Rayleigh number.
All values are obtained by a combined average with respect to volume and time. (a) Horizontal velocity
components. (b) Vertical velocity component. (c) All three velocity components. (d) Temperature. Dashed
lines denote power-law fits to the data. Blue open circles stand for data obtained in the bulk volume Vb. In
panels (b–d), we add data from Iyer et al. (2020) with separate fits. The corresponding temperature data are
obtained there for the cylindrical cell interior, r ≤ 0.03H and Ra ≥ 109.

merge successively with growing distances from the walls. As one approaches the
mid-plane of the convection cell, they tend to form the turbulent superstructure pattern of
convection. We have determined that the area fraction of the incoherent regions remains
nearly constant at approximately 60 % of A for the whole Rayleigh-number range. The
insensitivity of the volume fractions with respect to the Rayleigh number suggests that
this skeleton of upwelling (downwelling) incoherent regions could be a relic from the
weakly nonlinear regime of convection at much lower Rayleigh numbers, which itself
arises from the onset of convection by a linear primary instability, filling the whole domain
with convection rolls.

We have varied the threshold for this analysis from 0.5Uh
rms(δT) to 2Uh

rms(δT). While
the incoherent fractions do depend on the threshold when its variations are large, they are
practically independent of the Rayleigh number even for such large variations stated above.
This supports our choice of Uh

rms(δT) as a physically meaningful threshold.
We can now return to the fluctuation analysis which is conditioned on coherent and

incoherent regions in the following. Figure 9 replots the root-mean-square profiles of full
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Figure 8. Boundary layer flow structure for Ra = 1010 at the top and bottom walls. (a) Decomposition of
a snapshot into coherent and incoherent (in grey) flow regions at z = δT . For the coherent shear-dominated
regions, we overlay horizontal streamlines and indicate their local flow direction. (b) Corresponding
temperature field in plane at z = 0.1 ≈ 25δT . Grey area corresponds to T > T0 = 0.5. (c) Same snapshot with
the decomposition similar to (b) for z = H − δT close to the top wall. (d) Corresponding temperature field at
z = 0.9 ≈ 25δT . Grey area corresponds now to T < T0. Note that all plots are shown at the coarse resolution
of 100 × 100 square boxes (which were used to calculate the local mean-flow magnitude and orientation) and
not at the original spectral resolution of the DNS run.

and horizontal velocity and temperature profiles for Rayleigh numbers Ra = 108, 109 and
1010. We have chosen these three Rayleigh numbers of our series to provide a one-to-one
comparison with DNS data in a closed cylindrical cell at Γ = 1 of Scheel & Schumacher
(2017). They are also shown in the figure. Vertical profiles, which have been taken over
the full cross-section (denoted as case G4 in the following), are shown in the left column
of figure 9. Profiles conditioned on shear-dominated regions are displayed in the middle
column (case G4C), while those for the cylindrical cross-section of the closed container
(case G1) are shown in the right column. From the bottom row of the figure, it is clear
that the temperature profiles of G4, G4C and G1 for all three Ra agree. This suggests that
the temperature boundary layers are alike in all cases. This is different for the velocity
field, for which the horizontal velocity fluctuations (displayed in top row) show a clear
trend. The thickness scale decreases from G4 to G4C and even more from G4C to G1.
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Figure 9. Vertical profiles of the velocity and temperature fluctuations for Rayleigh numbers Ra = 108, 109

and 1010. The figure compares averages over the full cross-section at Γ = 4 (a,d,g) with averages over the
coherent shear-dominated regions (b,e,h) and with averages over the full circular cross-section in a closed
cylindrical cell at Γ = 1 (c, f,i) from Scheel & Schumacher (2017). Panels (a–c) are for Uh

rms, panels (d–f ) for
Urms and panels (g–i) for Trms. The dashed lines in each panel mark the location of the first local maximum
away from the wall, and indicate the corresponding fluctuation thickness. The colour coding, which is indicated
in panel (c), holds for all panels.

The close agreement of G4C and G1 clearly supports the dominance of shearing motion
in the boundary regions in closed cylindrical cells, imposed by the prominent LSC. It is in
line with a reduced fluctuation thickness. For fluctuations with respect to the full velocity
field, we do detect a decrease of the thickness from G4 to G4C, but not from G4C to G1
for the two lower Ra. We suspect that this might be caused by prominent coherent up-
and downwelling motions at the sidewalls for the lower Ra which effectively enhance the
thickness (Schumacher & Scheel 2016).
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Unlike G1 and G4C, for which the velocity and temperature boundary layers have
comparable thicknesses, the G4 case shows that the velocity boundary layer is much
thicker than the temperature thickness, suggesting a different mechanism in G4. We recall
that the notion of the velocity boundary layer is only nominal in the sense that they are
based on fluctuation profiles and the mean velocity variation within that region is quite
small (see figure 4).

7. Final discussion

Our DNS of the turbulent Rayleigh–Bénard convection encompass a Cartesian domain
with Γ = 4, with no-slip horizontal walls and periodic boundary conditions for the
side faces. These simulations of up to Ra = 1011 are aimed at approaching the original
canonical case of a plane convection layer between a pair of infinitely extended rigid plates.
We demonstrated that a standard mean-flow profile (obtained by combining averages with
respect to time and the entire horizontal cross-sectional plane) have very small magnitudes,
and that efforts to match them to laminar boundary layer profiles produced no conclusive
results. To the extent that we can define the boundary layers, they give very small shear
Reynolds numbers (see below). In the long-time limit, which we have followed for 1600
Tf at Ra = 109, the velocity mean profiles have to converge to limt→∞〈ui〉A,t(z) → 0
due to statistical homogeneity in x and y. The simulations by Hartlep et al. (2003) (for
Ra ≤ 1 × 107) also showed that the mean flow contained very little kinetic energy, but De
et al. (2018) found a long-time periodicity in the mean flow for low Rayleigh numbers,
Ra ≤ 2 × 106.

Rather than having a mean-flow profile with small velocity fluctuations, we are faced
with small mean velocity amplitudes in the presence of velocity fluctuations that are up to
2 orders of magnitude larger when the statistics are taken over finite time intervals τtotal,
as seen from comparisons of table 2 with the data in figure 5. This central result also
holds when the aspect ratio of the simulation is varied. It is our view that fluctuations will
be relevant for all configurations which includes closed cells of Γ � 1, see e.g. figure 9.
But their relevance is strongest in the statistically homogeneous plane layer with periodic
boundary conditions in the horizontal direction – the configuration that comes closest to
the original physical problem of turbulent convection (Spiegel 1962), as relevant for most
geo- and astrophysical applications.

We also showed that the corresponding shear Reynolds numbers, which are based
on mean-flow quantities for a finite averaging time, remain very small because the
characteristic velocities U∞ are small. The strong fluctuations cause the fluctuation
thicknesses of temperature and velocity (defined as the near-wall maxima of the
root-mean-square profiles) to differ by an order of magnitude for the highest Rayleigh
numbers, as summarized in table 3. This difference increases with Rayleigh number
(although the Prandtl number is held fixed at order unity); it becomes particularly
pronounced for Ra ≥ 109, a range beyond which previous larger-aspect-ratio DNS studies
rarely advanced.

Furthermore, our analysis revealed that the velocity boundary region in the present
configuration is a carpet of differently oriented time-dependent and shear-dominated
(coherent) regions interspersed by regions of incoherent flow. The latter regions occupy
approximately 60 % of the plate area for all Rayleigh numbers. This heterogeneous
composition crystallizes particularly for Ra � 109, underlying again the importance of
DNS with larger aspect ratios and high Rayleigh numbers. The incoherent regions in the
present flow can be as large as the entire cross-section of a cylindrical cell at Γ ∼ 1.
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Γ ≈ 1 to 3 (Fleischer et al.)
Γ = 1/2 (Niemela et al.)
Γ = 1 (Scheel et al.)
Γ = 1/10 (Iyer et al.)

Figure 10. Boundary layer thickness-based Rayleigh number Raδ vs Rayleigh number Ra. We have collected
for comparison data from other simulations including Scheel & Schumacher (2017) and Iyer et al. (2020); also
plotted are experimental data from Fleischer & Goldstein (2002) and Niemela et al. (2000). Note that all listed
data from previous sources use δT = 1/(2Nu) to calculate the boundary layer thickness-based Rayleigh number
Raδ . Only the present data use δT,rms for the determination of Raδ . The corresponding Rayleigh numbers
Raδ = Raδ,rms are found in table 1.

The coherent regions are the near-wall footprint of the circulation rolls which form the
large-scale turbulent superstructure pattern (Pandey et al. 2018; Stevens et al. 2018). They
change their orientation continually and thus result in a net zero mean flow, as stated above.

Finally, we showed that the velocity fluctuation thicknesses decrease when they are
conditioned on shear-dominated patches in the near-wall region. They are then closer
to those scales which are obtained in turbulent convection in closed cylindrical cells of
aspect ratio Γ � 1. The geometry of the closed cell enforces a LSC which is mostly shear
dominated in the vicinity of the walls, as already shown in Schumacher et al. (2016), where
the time dependence of the orientation has been eliminated. This causes smaller velocity
thickness scales that are, however, still larger than the thermal boundary layer thickness
at Pr ∼ 1. Nevertheless, the fluctuation thickness is the consistently definable velocity
boundary layer scale for the present turbulent convection flow.

The present results also raise many questions on the possible transition mechanisms
of the boundary layer to a turbulent regime and the possible consequences for the global
heat transfer. Differently from wall-bounded shear flows, we detect velocity fluctuations
everywhere, even though at different strengths; see again figure 9. Furthermore, we do not
observe a Rayleigh-number dependence of the ratio of coherent (‘laminar’) to incoherent
(‘turbulent’) regions. The time scales, at which these complex spatio-temporal patterns
change, become increasingly shorter with increasing Rayleigh number. A variation of the
threshold for the decomposition into coherent and incoherent boundary regions practically
did not affect this Rayleigh-number independence.

The spatio-temporal heterogeneity of the velocity boundary layer, which we detected
here, suggests to us the prevalence of local, rather than global, instability mechanisms,
which would bring us back to the marginal stability concept of the boundary layer, see e.g.
Howard (1966) and for a detailed boundary layer model with plume formation, Theerthan
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& Arakeri (1998). However, figure 10 shows a power-law fit of Raδ,rms = ARaγ with a
very small exponent γ = 0.077 and A ≈ 41. The resulting Raδ,rms are, by at least a factor
of 4, smaller than Howard’s critical Rayleigh number of Raδ ∼ O(103). Additional data
from experiments show that, even at Ra ∼ 1017, a thickness-based Rayleigh number Raδ
barely reaches a value of 103. This challenges the original marginal stability concept. This
question and higher Rayleigh-number simulation in the present configuration form the
subject of further study.
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