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GROUPS AND MONOIDS OF REGULAR GRAPHS 
(AND OF GRAPHS WITH BOUNDED DEGREES) 

PA VOL HELL AND JAROSLAV NESETRIL 

Introduction. A graph X is a set V(X) (the vertices of X) with a system 
E(X) of 2-element subsets of V(X) (the edges of X). Let X, Y be graphs and 
/ : V(X) —* V(Y) a mapping; t hen / is called a homomorphism of X into F if 
lf(x),f(y)] £ -E(F) whenever [x,y] G E(X). Endomorphisms, isomorphisms 
and automorphisms are defined in the usual manner. 

Much work has been done on the subject of representing groups as groups 
of automorphisms of graphs (i.e., given a group G, to find a graph X such that 
the group of automorphisms of X is isomorphic to G). Recently, this was 
related to category theory, the main question being as to whether every 
monoid (i.e., semigroup with 1) can be represented as the monoid of endo­
morphisms of some graph in a given category of graphs. The answer is known 
and affirmative for the category of all graphs [4] and also for several of its 
subcategories [3; 6; 7; 9]. The subcategories involved do not include the 
category of graphs with bounded degrees, and we shall show that in this case 
the answer is negative, namely, there are monoids (respectively groups) that 
cannot be represented as the monoids of endomorphisms (respectively groups 
of automorphisms) of a graph with bounded degrees. This answers a question 
raised by Z. Hedrlin, as to whether the category of graphs with bounded 
degrees is binding (the authors have been informed by private communication 
that L. Kucera has also given an answer to this problem, although he has not 
published his solution). 

Furthermore, we shall investigate sets on which there exist rigid locally 
finite, and rigid regular graphs. (We talk in particular about 3-regular graphs 
but the results could be extended to ^-regular graphs, k ^ 3, using similar 
methods.) 

This investigation allows us to extend the list of groups which can be 
represented as groups of automorphisms of 3-regular graphs - a list started 
by R. Frucht in 1949 [1], when he proved that it contained all finite groups. 
We will show that it also contains all countable groups, and that this is in a 
sense the best possible result. 

Finally, we determine the greatest possible cardinality of a rigid or asym­
metric graph with bounded degrees, and the smallest possible order of a group 
which cannot be represented as the monoid of endomorphisms (respectively 
group of automorphisms) of any graph with degrees bounded by a given 
cardinal. 
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240 P. HELL AND J. NESETRIL 

1. The category of graphs with a-bounded degrees. Let X be a graph, 
x Ç V(X). Put d(x, X) = \{y : [x, y] G E(X)}\. Let a be a cardinal; we say 
that the graph X has a-bounded degrees if d(x, X) < a for each x G V(X). 
Graphs with Xo-bounded degrees are called locally finite. A graph X is k-
regular, if d(x, X) = k for all x (E F(X) . 

Let X be a graph; a sequence Xi, X2, . . . xn of pairwise distinct vertices, such 
that [XJ, xj+i] £ E(X) for all 7 = 1, 2, . . . , n — 1, is called a pa/A 0/ /ewg/A 
n — 1 from xi to xn; if [xi, x j £ E(X), it is called a cyc/e of length n. A graph X 
is connected if there is a path from x to y for each pair x, y £ F(X) . 

Let <^a be the category of all graphs with a-bounded degrees and all their 
homomorphisms. In questions related to full embeddings of categories (all 
necessary concepts concerning categories can be found in [3]) an important 
role is played by rigid objects: a graph is called rigid (respectively asymmetric) 
if it does not possess a non-identical endomorphism (respectively auto­
morphism). For graphs X, F, let M(X, Y) denote the set of all homomorphisms 
of X into F, and let M(X) stand for M(X, X) ; M(X) with composition is the 
monoid of endomorphisms of X. 

A category is called binding if it contains, as a full subcategory, an isomorphic 
copy of the category of all graphs. If a category is binding, then for every 
monoid M, there is an object O such that the monoid of endomorphisms of O 
is isomorphic to M (i.e., in a binding category, every monoid can be repre­
sented as the monoid of endomorphisms of a suitable object, see [3]). 

THEOREM 1. S%a is not binding for any cardinal a. 

By the previous remarks, it suffices to prove the following: 

THEOREM 2. Let a be any cardinal, p = 2max(a ,Ko); let G be a group of order 
greater than 2$ and without elements of order 2 (i.e., g ^ 1 => g2 9e 1). Then for 
each X G &a, M(X) ^ G. 

Note that groups with the prescribed properties do exist (e.g., free groups 
over sets with cardinality greater than 2^). 

Proof of Theorem 2. Each connected graph X Ç 3?a has |F (X) | ^ m = 
max (a, Ko); therefore there are only 2m non-isomorphic connected graphs with 
a-bounded degrees. Let X G S%a. If \V(X)\ > 0 = 2m, then X must have 
more than 2m components (each having cardinality at most m). Thus two of 
them are isomorphic and the automorphism of X interchanging them, while 
leaving everything else fixed, is involutory. If, on the other hand, |F (X) | ^ f$, 
then the order of its automorphism group is at most 2^, while \G\ > 2$. 

Remark. From the preceding proof we conclude that an a-bounded graph X 
cannot be rigid (or even asymmetric) if | F (X) | > 2max(a 'Xo). If a is an uncount­
able regular cardinal, then a connected X £ £%a gives |F (X) | < m = a. Thus 
£%a has less than 2a non-isomorphic connected graphs, and | F ( X ) | ^ 2a 

implies that X is neither rigid nor asymmetric. 
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2. Auxiliary constructions. 

(A) A finite rigid graph. We define the graph Z by: 

V{Z) = { 1 , 2 , . . . , 12} 

E(Z) = {[i,i+ l ] : i = 1,2, . . . , 1 1 } U 

{[1,4], [1,8], [2, 6], [3, 10], [5, 12], [7, 11]}. 

There are exactly 5 pentagons (i.e., cycles of length 5) in Z, namely 
(1, 2, 6, 7, 8), (2, 3, 4, 5, 6), (1, 2, 6, 5, 4), (5, 6, 7, 11, 12) and (7, 8, 9, 10, 11); 
every vertex of Z belongs to at least one of them. 

FIGURE 1 

By examining the mutual position of the pentagons, we conclude that the 
pentagons (1, 2, 6, 7, 8) and (2, 3, 4, 5, 6) have a unique position (i.e., the 
subgraph of Z induced by these two pentagons is not isomorphic to any other 
subgraph induced by two pentagons). 

Z has no triangles; therefore for every homomorphism / : Z —» Z, we have 
f(a) ^ fQ>) if there is a path of length 3 from a to b in Z (and of course also 
if there is a path of length 1, i.e., if [a, b] Ç E(Z)). This condition implies, 
that every homomorphism/ : Z —» Z is one-to-one on the set A = {1, 2, . . . , 8} 
(one merely has to verify t h a t / ( l ) = /(3) is impossible), and because of the 
unique position of the two pentagons (1, 2, 6, 7, 8) and (2, 3, 4, 5, 6), we have 
f(A)=A. 

The graph induced by A is asymmetric and thus f \A = 1A. Since 
(5, 6, 7, 11, 12) is the only pentagon containing the vertices 5, 6, 7 we have 

/ ( l l ) = 11, /(12) = 12; similarly /(9) = 9, /(10) = 10, i.e., / = lviz) and 
Z is a rigid graph. 

(B) Rigid relations. A binary relation R on a set X will be denoted by 
(X, R) and the word "relation" will apply to the couple (X, R) (some authors 
use the term "digraph"). Our relations will all be anti-reflexive, (x, x) £ R, 
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and anti-symmetric, (x, y) (£ R=> (y, x) £ R; the transitive part of them will 
play a special role. 

A relation (X, R) is k-regular if for each x G X, the degree of x is 

d(x,R) = \{y: (x,y) G R}\ + \\y : (y,x) G R}\ = *. 

A mapping/ : X —-> F compatible with the relations R, S (i.e., (x, y) £ R=$ 
(/(#)>/GO) 6 5) will be called a homomorphism of the relation (X, i?) to the 
relation ( F, 5) ; a rigid relation has no non-identical endomorphisms. 

(a) 3-regular rigid relations. Let the set N of natural numbers be partitioned, 
N = A U 5 , let 1 G ^4, and both yl and £ be infinite. Then we define the 
following relation (XN, RAB)' 

XN = {a, b, c, d] \J {et : i G A} U {/* : i G A"} (a, 6, c, d, e*,/* pairwise 
distinct) 

RAB = {(eu a), (a, b), (a, c), (b, c), (6, d), (c, d), (d,/i)} U {(eit ei+1): i G A} 

U { ( / „ / < + i ) : i G A} U {(*„/<) :* '€ 4̂} U { ( / „ e<) : i G 5 } . 

For a natural number fe, let {1, 2, . . . , k} = A U 5 be a partition, 

X* = \a, byc,d}\J {et:i = 1, 2, . . . , k} U { /< : i = 1, 2, . . . , &} 

W {x, 3/, z, w} (X^ a set with 2k + 8 elements), 

RAB = {(*i, a), (a, 6), (a, c), (6, c), (6, d), (c, d), (d,/x)} 

U {(e,, ei+1) : i = 1, . . . , k - 1} U { ( / „ / , + i ) : i = 1, . . . , £ - 1} 

U { ( ^ - , / , ) : ^ ^ } U { ( / „ * < ) : * € 3 } 

^ {(*»/*)» (^»y)» (^»z)» (y»z)» (y,w), (*, «0, (w,c*)}. 

^1 

& — • £ 

T 

^2 ^3 v^4 

fz 74 
FIGURE 2 

*6 w*6 

*w 

y >z 

All the relations (X, RAB), where X is X ^ or Xkl are 3-regular. 
Let (X, R) be any anti-reflexive, anti-symmetric relation and let x, y, z G X. 

The elements x, y, z are said to form a transitive triple xyz if (x, y) G i?, 
(y, z) £ R and (x, 2) G i^. If xyz is a transitive triple a n d / a homomorphism of 
relations, then f(x)f (y)f (z) is again a transitive triple; moreover if xyz and 
^zw are transitive triples, then x, y, z, w are pairwise distinct. 
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Therefore for every homomorphism g : (X, RAB) —> (X, RAB), 

g\\a, b, c, d, 0i , / i} 

is the identi ty (abc, bed are the only transit ive triples if X = XN; if 
X — Xk, g (a) = x is impossible, since there is no v £ Xk with (v, x) £ RAB 
while (ei, a) Ç RAB)> T O see tha t g is the identi ty everywhere, we suppose 
t h a t g(ei) 9e et for an i £ N (i ^ k respectively); then g(et) = ft-i and 
(et,fi) e RAB- This is possible only if g(ei+1) = ft and (ei+1,fi+1) 6 -RAB, 
and, by induction, g(ef) = /,-_i and (ejyfj) £ i?AB for all j ^ 2. This gives a 
contradict ion. Similarly, g(ft) = fu and so g is the identi ty. T h u s all the 
relations (X, RAB) are rigid. 

We note t h a t if A U B and A' \J Bf are two different part i t ions of the same 
set X, then there is no homomorphism / : (X, RAB) —> (X, RA

fB') (whether 
X = J i V o r Z = Xk). 

(b) A modification. We shall modify the relations (X, RAB) to obtain rigid 
relations with some elements of degree 2. Let A \J B be a part i t ion of N 
(respectively {1, 2, . . . , k}) such tha t A and .5 are infinite (respectively such 
t h a t k — 1 £ A, k £ B); let S C N such tha t ^ 4 — 5 and B - S are infinite 
(respectively 5 C {1, 2, . . . , k - 2}). P u t 

RABS = RAB ~ {(eufi) :i G S} - { ( / „ * , ) : i <E 5 } . 

T h e relations (X,RAB
S) are also rigid and {x ^ X : d(x,RABS) = 2} = 5 . 

Moreover, if (A - S) U (B - S) and (A* - S) \J (Br - S) are two different 
part i t ions of N — S (respectively {1, . . . , k} — S), then there is no homo­
morphism (X, RAB

S) -> (X, RA>B>S). 

Note t ha t for X = XN, S may be chosen to be countable. 

3 . Loca l ly f inite rigid graphs a n d regular rigid g r a p h s . In [2; 5; 11], 
it is shown t h a t there exists a rigid graph X with | F ( X ) | = a, unless a is a 
finite cardinal in the range 1 < n < 8. In a t tempt ing to find a corresponding 
result for locally finite graphs we must realize, firstly, t ha t "b ig" sets will not 
admi t a locally finite rigid graph, according to the remark following Theorem 2, 
and secondly, t h a t under the more restrictive hypothesis of 3-regularity, we 
cannot hope even for all finite numbers, since there are no 3-regular graphs with 
odd number of vertices. 

However we were able to characterize all cardinals a such t ha t there is a 
locally finite (respectively 3-regular) rigid graph X with | F ( X ) | ^ a. 

T H E O R E M 3. Let a be a cardinal. A locally finite rigid graph X with \ V(X) \ ^ a 
exists if and only if there exists a 3-regular rigid graph X with \V(X)\ ^ a. 

A 3-regular rigid graph X with \V(X)\ ^ a exists if and only if a S 2X o . 
If a is finite, X can be chosen finite; if a is countable, X can also be chosen 

countable. 
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Proof. If there is a locally finite rigid graph X with |F (X) | ^ a, then 
according to the Remark in § 1, a ^ |F (X) | ^ 2Xo. Since a 3-regular graph 
is locally finite, it remains to construct 3-regular rigid graphs with the corre­
sponding cardinalities. In § 2, (B),(a) we have some 3-regular rigid relations; 
to transform them into graphs we shall use the following product (which is a 
modification of the product introduced in [4]): 

Let (X, R) be a relation, Z the graph from § 2, (A) ; define the graph 
(X,R)*Z = F by 

V(Y) = XKJ (RX V{Z)) 

E(Y) = \[«x,y),z),((x,y),z')]: b,y) 6 R, [*, *'] G E(Z)} 

U { [ * . ( ( * , y ) , 9 ) ] : fey) G i ? } U { [ x , ((y,*) , 12) ] : (y, *) ^ ) . 

Remark. Note that d(x, F) = dix, R) for each x G X, and d(x, F) = 3 
for each x G 7 ( F ) - X . 

LEMMA. Le£ (X, i?), (F, 5) &£ anti-reflexive, anti-symmetric relations, let 
d(x, R) ^ 2 for each x G X. 

If (X, R) is a rigid relation, then (X, R)*Z is a rigid graph; if there is no 
homomorphism (X, R) —» (F, S), then there is no homomorphism 

(X,R)*Z-+ (Y,S)*Z. 

Proof. The proof is analogous to that of [4]. One is essentially using 
(a) each vertex of Z belongs to a pentagon in Z; 
(b) no vertex x £ X (y G F respectively) belongs to a pentagon in 

(X,R)*Z (respectively (F, S)*Z); 
(c) Z is a rigid graph. 

To complete the proof of Theorem 3 we put 

X = (Xai RAB)*Z for a finite (A \J B any partition of 1, . . . , a, 

a - 1 £ A,a £ B), 

X = (XN, RAB)*Z for a = Xo ( i W 5 any partition of N into infinite sets), 

X = VJ {(XN, RAB)*Z : A U B is a partition of iV into infinite sets} 

fora = 2 s ° (the first U denotes here the disjoint union of graphs). 

Remark. A family of graphs {Xt : i £ 1} such that each Xt is rigid and such 
that there is no homomorphism Xt —* Xj for i ^ j , is called mutually rigid. 
When all the graphs Xt (i £ 7) are connected, then {Xt : i £ 7} is a mutually 
rigid family if and only if U {X* : i £ 7} is a rigid graph (compare with the 
definition of X for a = 2Xo in the preceding proof). Thus by the Lemma and 
§ 2, (B),(a) we have 2No mutually rigid 3-regular graphs. 

Using the Lemma, the previous two Remarks, and §2, (B),(b), we can 
construct a mutually rigid family {X* : i £ 7} of a ^ 2Ko connected graphs, 
such that (for i £ 7) Xt has at vertices of degree 2 (and all other vertices of 
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degree 3), where each at is at most countable. If a and au i G / , are finite, all 
Xt may be finite. 

4. Representation of countable groups by 3-regular graphs. The 
reason why &a, a ^ 4, is not binding is that there are groups of large order. 
Indeed, in [1] and [10] it was proved that all finite groups can be represented 
as groups of automorphisms of 3-regular graphs. Now we are in a position to 
generalize this result: 

THEOREM 4. Let G be any group of at most countable order. Then there exists 
a 3-regular graph X such that M(X) = G; if G is finite, then X may also be 
chosen finite. 

Note that if M(X) is a group, then it is the group of automorphisms of X. 

Proof. Let G' = G — {1}. According to the previous paragraph we can 
construct graphs F, Y0, g G G', which satisfy: 

(i) V(Y), V(Yç), g G G' are pair wise disjoint sets; 
(ii) { 7} \J { Yg : g G G'} is a mutually rigid family of connected graphs; 

(iii) there is a one-to-one correspondence denoted g —> xg between the set G' 
and the vertices of Y which are of degree 2 ; all the other vertices of Y 
are of degree 3; 

(iv) each Yg has two vertices, say yg
l, yg

2
y of degree 2, and all others are of 

degree 3; 
(v) for each [x,y] Ç E(Y) (respectively [x,y] G E(Yg),g Ç G') either 

x or y belongs to a pentagon of Y (respectively Yg) ; 
(vi) the vertices xg, yg

j (for g G G',j = 1, 2) do not belong to any pentagons 
of F or Yg. 

((v) and (vi) follow from the definition of (X, R)*Z). 
Now we define the graph X by 

V(X) = 7 ( F ) X G U f f e , hgj) :geG,h£ G'J = 0, 1, 2} 

V{(y,g,hg):ye V(Yh),g Ç G, h £ G'}, 

E(X) = {[(*,£), (y, g)] : [x,y] 6 E(Y),ge G} 

V{l(xh,g),(g,hg,0)];geG,heG'} 

V [[(g, hgj), (g, hgj + 1)] : g G G, h e G'J = 0, 1} 

Vi[(g,hg,2),(hg,g,0)]:geG,heG'} 

U {[(y, g, hg), (*, gt hg)] : [y, z] e E{Yh), g G G, h G G'} 

U {[W, g, hg), (g, hgj)] :j=l,2,geG,he G'} 

(X is a variation of the Cayley colour graph in which for every vertex is 
' 'substituted" a copy of the graph F). 
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Y>X{(g,hg)\ 

Yh-iX{(hg,g)} 
FIGURE 3 

Clearly X is 3-regular. 
Let a G G; define Fa V(X) -* V(X) by 

Fa«x, g)) = (*, go) for x G V(Y), g t G, 

Fa((g, hg,j)) = (ga, hgaj) for g G G, A G G' , j = 0, 1, 2, 

Fa((y, «, **)) = (y, ^ , *#*) for y G V(Yh), g G G, A G G'. 

For each a £ G, Fa is an automorphism of X; if a ^ 5, then Fa y£ Fb. To see 
that a -+ Fais an isomorphism of G onto ikf (X), it remains to show that every 
endomorphism F of X, is of the form F = Fa for a suitable a £ G. According 
to (vi) and the definition of E(X)} the edges [(xh, g), (g, hg, 0)], 
[fe» *^, i - 1), fe» *|[,i)], [fe, % j)> ( V , g> H)] and [(g, Ag, 2), (hg, g, 0]) 
(for g (z G, h G G', j = 1, 2) do not have a vertex in common with any 
pentagon of X. Let F G i lf(Z); by (v) and (ii) a copy of Y (Yh, h G G', 
respectively) is mapped under F onto a copy of F (Yh respectively). That is, 
for each g G G there exists a g' G G such that F((x, g)) = (x, gf) (for all 
x G V(Y)), and a g" G G such that F((y,g,hg)) = (y,g",hg,f) (for all 
y G F ( F 0 ) . Let a G G be such, that 

F((x, 1)) = (x, a) for all x G 7 ( F ) . 
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We see easily, t ha t then 

H(y, h g)) = (y, a, ga) for y G V(Yg), g G G' 

and therefore F((x, g)) = (x, ga) for all x G V(Y), g G G; and T7 = / v 
Note t h a t if G is finite, we may choose Y and Yg finite (see § 3) and then X 
will also be finite. 

In any case the graph X we constructed is connected, and hence a t most 
countable. 

Remark. In the proof of Theorem 2 we considered some groups of very large 
order, which cannot be represented by 3-regular graphs. Their order however, 
is unnecessarily large. In fact, Theorem 4 gives the best result concerning 
representation of groups by 3-regular graphs in the following sense: 

For every uncountable cardinal a, there is a group G of order a, such that 
M( X) ^k G for each locally finite (in particular, 3-regular) graph X. 

Indeed, let Alt (a) be the al ternat ing group on a (i.e., the group of all those 
permuta t ions on a elements, which have finite support and are even) ; the order 
of Alt (a) is a, and Alt (a) is a simple group (see [8, §§ 4 and 9]). Suppose, t h a t 
M{X) = Alt (a) for a locally finite graph X. Since Alt (a) is simple, we m a y 
assume without loss of generality t h a t X is connected, hence | F ( X ) | S Ko < a. 
This is impossible in view of the following s ta tement : 

If M{X) ^ Alt (a), then \V(X)\ ^ a. 

Proof. Let M(X) ^ Alt (a) and | V(X)\ < a. In Alt (a) one can find two sets 
of permutat ions , say {/*} ^« and {gi} iea, such tha t 

ft °fj = fi °ft a n d gi ° gj = gj ° gi f o r a11 *» J £ «» 

fi off = 1 and giO gi = 1 for all i G a, 

and ft o gj = gj ofi if and only if i ^ j . 

T o see this, it is enough to part i t ion the set a into a disjoint 5-tuples, and define, 
for each 5-tuple (a, b, c, d, e), the permutat ions ft and gi by 

fi = (a, b) (c, d), gi = (a, b) (c, e). 

Hence, X has 2 sets of automorphisms, to be denoted also by {ft} ie<x and 
{gi} i<ia, satisfying the relations. For each i £ a, let St be the set of all unordered 
pairs [x, y] of distinct vertices of X, such t ha t 

fi(gi(x)) * gi(fi(x)),fi(gi(y)) * gt(ft(y))9 and 

fi(x) = y or gi(x) = y. 

Each set St is non-empty and of cardinali ty a t most equal to | F ( X ) | . There­
fore, there exists a pair [x, y] t h a t belongs to more than | F ( X ) | of the sets 5*. 
For each such set Su either [y, z] G St for a suitable z G V(X), or [x, w] G Si 
for a suitable w G V(X) (otherwise ft(gt(x)) = gi(fi(x))). Let z G F ( X ) be 
such t ha t both [x, y] and [;y, s] belong to more than | F ( X ) | of the sets S*. Le t 
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Si, S2, S3 be three such sets, and let 

fi(y) =f2(y) = My) = x, gi(y) = g2(y) = g*(y) = z. 

Then gi(f2(y)) = .Mgify)), thus gi(x) = f2(z), and g2(fi(y)) = fifaiy)), 
so that g2(x) =fi(z). Moreover, gz(fi(y)) = fi(ga(y)), thus gz(x) = / i ( s ) , 
and gz(f2(y)) = f2(gz(y))> therefore g3(*) = f2(z). Hence gi(x) = g2(x) and 
2i(/i0y)) = ^ i W = g2(*) = / i ( z ) =/i(gi(y))» which is a contradiction. 

COROLLARY. The following two statements are equivalent: 
(1) For every group G of order a there exists a S-regular graph X such that 

the group of automorphisms of X is isomorphic to G. 
(2) The cardinal a is at most countable. 

5. Large rigid and asymmetric graphs in, S%a. This paragraph should be 
considered as an extension of § 3, where, in effect, we proved that there exists 
a connected rigid graph l Ç f s » with | V(X)\ = 0 if and only if 0 ^ Ko; and 
that there exists a rigid graph X G ^ K o with | F ( Z ) | = 0 if and only if 
j8 ^ 2Ko. (In this section the Greek letters a, /5, 7, etc. denote always infinite 
cardinals.) 

THEOREM 5. Let a be any uncountable cardinal. 
(a) If a is a regular cardinal, then there exists a connected rigid graph X G ë%a 

such that I F (X) | = 13 if and only if 13 < a. 
(b) If a is a singular cardinal, then there exists a connected rigid graph 

I Ç * such that I V(X)\ = 13 if and only if 13 ^ a. 

Proof, (a) As mentioned in § 1, if a is regular then each X G 3%a which is 
connected has | F (X) | < a; if /3 < a, then by [2] or [11] there exists a connected 
rigid graph X with \V(X)\ = p. Clearly, this X belongs to &a. 

(b) According to the proof of Theorem 2, each X G S%a which is connected 
satisfies |F (X) | fg a. In view of part (a) of this proof, it remains only to 
construct a connected rigid graph X G S%a with | V(X) \ = a. Since a is singular, 
there exist pairwise disjoint sets B, Bb (b G B) such that \B\ < a, 
\Bb\ < a (b G B) and \B \J {JbeBBb\ = a. Let XB and Xb be graphs such 
that 
(1) V(XB) = B, V(Xb) = Bb, for all b G B, 
(2) every edge of XB} respectively Xb, belongs to a triangle of XB, respect­

ively Xb, 
(3) for each b G B, the pair XB, Xb is mutually rigid. 
The existence of such graphs can be deduced from [2] (or [11]) and [6]. Let 
xb G V(Xb) for each b G B. Then the graph X defined by 

V(X) = V(XB) U U V(Xb) and 

E(X) = E(XB) W U E{Xb) U {[6, *,] : 6 € 5} 
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has «-bounded degrees and is connected. It is also rigid, for the edges [b, xb] 
(b 6 B) do not belong to any triangles of X and hence/ \XB = 1XB for every 
homomorphism/ : X —> X; thus f(b) = b (for all b G B) and hence/(x6) = xbl 

f is the identity. 

Once we know how large the connected rigid graphs can be, we will be able 
to determine how large the rigid ones can be also. 

Let X be a graph; to change X into a relation, we define an orientation o 
of X to be an anti-reflexive, anti-symmetric relation o{X) = (V(X), R) such 
that [x, y] G E(X) if and only if exactly one of (x, y) G R, {y, x) G R holds. 

Now let X be a rigid and connected graph, |F (X) | = ft. Firstly, o(X) is a 
rigid relation for every orientation o; secondly if o and o' are two different 
orientations, i.e., o(X) and o'(X) two different relations, then there is no 
homomorphism o(X) —>o'(X). There are 2^ different orientations of X, i.e., 
{o(X)*Z : o an orientation of X] is a mutually rigid family of connected 
graphs, and it has the cardinality 2^. Thus by choosing a sufficiently large 
subset 0 of the set of all orientations of X we can construct a rigid graph 

Y = U [o(X)*Z] with | F ( 7 ) | = 7 
oeo 

for any 7 satisfying f3 ^ 7 ^ 2<* (|F(o(X)*Z)| = |F (X) | since Z is finite). 
Moreover if X G ^ a , then Y G ̂ « as well. 

Hence, if a is singular, then by the previous Theorem we have a rigid graph 
X Ç S%a with I F(X) | = 7 for every 7 ^ 2a. It seems that if a is regular, there 
is a rigid graph X £ ^ a with | F(X) | = 7 for every 7 < 2a; but the situation 
is not so simple and depends on the sophistication of the set theory. If we 
assume the generalized continuum hypothesis then 7 < 2a if and only if 
7 ^ a, and therefore it will suffice to find a rigid graph Y G &a with 
| F ( F ) | = a; if there exists a /3 < a such that 2^ ^ a, then the desired Y can 
be constructed as indicated, from a connected rigid X Ç ^? a with |F (X) | = f$ 
(such exists in view of Theorem 5 (a)). A regular cardinal a for which 

fi < a =» 20 < a 

(if such a cardinal exists) is called strongly inaccessible. In a set theory in 
which the generalized continuum hypothesis is valid a cardinal is strongly 
inaccessible if and only if it is inaccessible. Comparison with the Remark in 
§ 1 gives: 

COROLLARY, (a) If a is an uncountable regular cardinal, a not inaccessible, 
and if we assume the generalized continuum hypothesis, then a rigid graph 
X Ç g%a with \ViX)\ = 7 exists if and only if 7 < 2". 

(b) If a is singular or a = Ko, then a rigid graph X G 3%a with \V(X)\ = 7 
exists if and only if 7 ^ 2a. 

Finally we observe that both Theorem 5 and its Corollary remain valid if 
we replace each word "rigid" by "asymmetric". 
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6. The smallest order of groups non-representable in S&«. P. Erdôs 
suggested (in a private conversation) the following question: for a given 
cardinal a, what is the smallest cardinal 0(a) such that there exists a group G 
of order 0(a) which cannot be represented as the monoid of endomorphisms 
of any graph with «-bounded degrees (i.e., X G &a =» M(X) $ê G). Such 
fi(a) exists in view of Theorem 2 (and /3(a) is at most the cardinality of the 
power-set of the power-set of 2max<a'K<>)). 

The Corollary in § 4 states that 0(4) = Ki; according to the Remark 
preceding it 0(5) = 0(6) = . . . = 0(XO) = Xi- Moreover 0(1) = 2, 0(2) = 
0(3) = 3, as can easily be seen. Therefore it remains only to determine 0(a) 
for a uncountable. 

For a countable, we have already indicated (§§ 3 and 4) the correspondence 
between the possible sizes of rigid graphs in S%a and the possible orders of 
groups representable in S%a. A similar correspondence exists for a uncountable. 

THEOREM 6. Let a be any uncountable cardinal. 
(a) For every group G of order 0 < a there is a graph X G £%a such that 

M(X) ^ G. 
(b) If 0 > a, then there exists a group G of order 0 such that, for each X G S%a, 

M(X) Ç)k G. 
(c) If a is a regular cardinal, then there exists a group G of order a such that, 

for each X G ^ « , M(X) £ G. 
(d) If a is a singular cardinal, then for every group G of order a there is a 

graph X G &<* such that M(X) ^ G. 

Proof. To prove (a) and (d), we take a connected rigid Y' G S%a such that 
| F ( F ' ) | = 0 :g a (equality holding only if a is singular) which exists by 
Theorem 5, and choose a set 0 of 0 different orientations of Y' and perform 
the product o(Y')*Z for each o G 0. Then for every group G of order 0 
we have graphs Y, Yg, g G G' = G — {1}, which satisfy (i), (ii), (v) and 
(vi) where xg,g G G', are pairwise distinct vertices of Y, a n d ^ 1 9^ yg

2 G V(Yg) 
( g G G), and moreover Y, Yg ( g G G) belong to ^?a . Therefore the graph X 
defined in § 4 is also in g%a and AT( X ) ^ G. 

If 0 ^ a (equality holding only if a is regular), let G be the alternating 
group on 0, and suppose, as we may, that M{X) =G = Alt(0) for a connected 
graph X G ^ a . Then |F (X) | < 0, since \V(X)\ S a ^ 0 and if a = 0, then 
a is regular and |F (X) | < a. However, this is impossible according to the 
Remark in § 4. 

COROLLARY, (a) 0(X2) = K2 if Kz w an uncountable regular cardinal. 
(b) 0(K2) = K2+i # K2 w singular or X2 = Ko-

If 0(a) denotes the smallest cardinal such that there exists a group G of 
order 0(a) which cannot be represented as the group of automorphisms of any 
graph in g%a, then 0(a) = 0(a) for any cardinal a > 1, 0(1) = 3. 
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