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ON THE HOLONOMY LIE ALGEBRA AND THE NILPOTENT
COMPLETION OF THE FUNDAMENTAL GROUP
OF THE COMPLEMENT OF HYPERSURFACES

TOSHITAKE KOHNO

§1. Introduction

The purpose of this paper is to establish the following isomorphism
of Lie algebras.

Main THEOREM. Let X be the complement of a hypersurface S in the
complex projective space PY. Then the tower of nilpotent complex Lie
algebras associated with the fundamental group n(X, x) and the holonomy
Lie algebra gy attached to S are isomorphic. In particular, if S is the
union of hyperplanes \ 7' S, in P¥, the nilpotent completion of n/(X, x) is
isomorphic to the nilpotent completion of

Lib (Xh Xg, MY Xm+1)/‘M

where we denote by Lib (X, X,, - - -, X,,..) a free Lie algebra generated by
X, X, -, Xpi over C, and o is the homogeneous ideal generated by the
following elements

D XX,
mX,X +---+X)], 1Zj<p
where the hyperplanes S,,---,S,, satisfy HNS, N --- NS, x¢ for a
generic plane Hand HNS, N --- NS, NS, =¢ if k&{v, -+, v}

For a smooth manifold we have a surjective homomorphism from the
tower of the nilpotent completion of the holonomy Lie algebra to the
tower of the nilpotent complex Lie algebras associated with the funda-
mental group (cf. [C]). Our main theorem guarantees that this map is
an isomorphism in the case of the complement of hypersurfaces (cf. [A]
Theorem 2).

In Section 2 we review the notion of holonomy Lie algebras and
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minimal algebras and we formulate the Sullivan’s theorem of fundamental
groups. The key lemma to prove our main theorem is the vanishing of
certain Massey products. We shall discuss this in a more general situa-
tion in Section 4. In Section 5, we interpretate our main theorem by
means of Poincaré-Koszul series. I would like to thank Professor
Kazuhiko Aomoto for giving me helpful suggestions.

§2. Holonomy Lie algebras and minimal algebras

Let X be a simplicial complex. Let [w], -, [w,] be a basis of
H(X;C). Let H(X;C) AN H(X; C) be the vector subspace of H*X; C)
generated by the decomposable elements, i.e., the elements x e H*X; C)
which can be written in the form 3} «; (0] U [0,]. Let [v], ---,[v] be a
basis of H'(X; C) A H(X; C). We write [o] U [0,] as a linear combina-
tion of [v], - - -, [v,]

[0d U o] = 3 cb/lu .

Let Lib(X,, X,, - - -, X,,) be a free Lie algebra generated by X,, - - -, X,, over
C. Let A be the homogeneous ideal of Lib (X, ---, X,) generated by
following elements

Z c}lc’j[Xh Xj] ’ 1 § k é S .
©J

Following Chen [C], we form the quotient Lie algebra
g = Lib (Xh Xz, Tty Xm)/'/V .

It can be shown that this Lie algebra does not depend of the choice of
the bases. We call the obtained Lie algebra the holonomy Lie algebra
of X. In particular, if X is the complement of a hypersurface S in P¥,
we call this Lie algebra the holonomy Lie algebra attached to S and we
denote it by g;.

The following proposition gives an important example of a holonomy
Lie algebra.

ProrosiTioN 2.1. Let X be P¥ minus a finite number of hyperplanes
S, S;, -+, Snsi. The holonomy Lie algebra attached to the configuration
S is described in the following way. Let Lib(X,X,, -, X,..) be a free
Lie algebra generated by X, X, - -+, X,,., over C. Let A" be the homogeneous
ideal generated by the following elements
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D 275X,
II) [ij’-le+"'+Xup]’ 1§j§p

where the corresponding hyperplanes S,, ---,S,, meet each other at one
point in a generic plane H and S, N --- NS, NS, NH=¢ if ke
{vi, -+, v,}. The holonomy Lie algebra attached to the configuration g is

isomorphic to the Lie algebra Lib (X, - -, X, .)/A .

Proof. We denote by H; the hyperplane in C¥ defined by H; = S; N
P¥ —8,.) for 1 <j<m. We have the family of hyperplanes {H}<;<n
in CY. We put X =C¥ — (| J™, H,. Let f; be a linear defining equation
of H,, We denote by o, the differential form dlogf;. It is known that
the cohomology ring H*(X; C) is generated by [v;], 1<j<m ([B]). In
particular, H*X; C) is generated by [w, A\ 0,]. We can choose a basis
of H*X; C) in the following way. To each family of indices v, ---,v,
defined in the statement of the propositions, we associate the family of
elements of H*X; C)

Vvlvk = [a)vl /\ wuk] 2 1 é k ép .
By using the relations
o, No,, +o,No,, +0, No, =0
it can be proved that these elements form a basis of H*X; C). Let ¢}’
be a number defined by
[o; \ o] = Z¢:1 c;’,{;Vp,q
»,
Then, we have
1 (l X Vi ] = yk)
el =3-1 (@@=, J>xw
0 (otherwise) .

Thus we get the holonomy Lie algebra Lib (X, -.., X,)/4/” where A7 is
the homogeneous ideal generated by

[ij?Xv1+ "'+va] 1§j§p

‘where H,,---,H,_ meet each other in a generic plane L in CV and H,,
n---NH,NHNL=g¢if kefy,---,v,}. We can prove that this Lie
algebra is isomorphic to the Lie algebra Lib (X, ---,X,.)// in the

statement of the proposition by using the fact that
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X+ -+ X, X1 —-0X, + - +X,X]
is an element of 47, which completes the proof.
(2.2) NorarioN. We denote by

Lib(X,l’ aXm)= Fole(Xn ’Xm)DFIle(Xl, 3Xm)
DT Lb(X, - X)) D e

the lower central series of Lib(X,, - - -, X,,) defined by
I, Lib(X, -, X,)=[Lib(X, -, X,), [, Lib(X,, ---, X,)] .

Let us review briefly Sullivan’s theorem of the nilpotent completion
of fundamental groups ([M]). In the followings, we deal with differential
graded algebras over a field 2 (k= Q,R or C). We denote by A’ the
degree j part of a differential graded algebra (d.g.a.) A.

(2.3) NorarioN. Let V be a graded vector space. We denote by
A(V) the free graded-commutative algebra generated by V. If V is
homogeneous of degree r, A(V) (also denoted by 4,(V)) is the symmetric
algebra when r is even and is the exterior algebra when r is odd.

(2.4) DEerFINITION. By a (nilpotent) Hirsch extension of a differential
graded algebra A, we mean an inclusion A C B of d.g.a. such that B is
isomorphic to A ® 4,(V) as a graded algebra and the differential of B
sends V into A’+!,

(2.5) DEerFiNITION. We shall say that a d.g.a. M is a minimal algebra
if the following conditions are satisfied.
a) M°=k,
b) There exists an increasing filtration
k=MycMcMc...-cMcC.-.

such that M, is a subalgebra of M, M, c M,,, is a Hirsch extension for
each j and (7., M; = M.
c¢) The differential of M, d is decomposable, i.e.,

dMc M, \ M,
where M, is the augmentation ideal of M defined by ®,,, M’.

(2.6) DrriNiTION. Let A be a d.g.a. over k. An i-minimal model of
A is a d.g.a. #(i) and a homomorphism of d.g.a. p: #(i) — A such that
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a) #(i) is a minimal algebra,

b) #(i) is generated by the elements of degree i, and

c) p*:H(A#@{)— H'(A) is an isomorphism in degree i and is injec-
tive in degree =i + 1.

By a theorem of Sullivan ([M]), .#(i) exists and is unique up to
isomorphism for a connected d.g.a. A. Let X be a smooth manifold. Let
A (i) be the i-minimal model of the algebra of C-valued C=-differential
forms on X. We shall call the algebra .# (i) the i-minimal model of X.

@27 Let C= Mx1), C Mz(1), C - -+ C M 1); C --- be the increas-
ing filtration of .#,(1) defined inductively in the following way. Let
A (1), be the subalgebra of .#,(1) generated by x such that dx = 0 and
degx = 1. We define #;(1),,, to be the subalgebra of .#;(1) generated
by x e #4(1) such that dxe #;(1), (n = 1) and degx = 1. We shall call
the above filtration the canonical series of the 1-minimal model .# ,(1).

(2.8) Let A;(1); = @y A1)k be the decomposition of .# (1), by its
degree. Then we have the following increasing sequence of vector spaces

C=uu;AC M 1iC - C M-+

Let #; denote the dual vector space Hom (#4(1)}; C). We have the fol-
lowing sequence

De—F «— L «—— L ¢— -+,

Let {0,} be a basis of .#,(1)} and let {»}} be the dual basis. When do,
is written in the form

Z T;ﬂlwp /\ wq
g

in (1), we define [0}, 0}] to be 3,77 0F. In this way the complex
vector spaces .#; have the structure of nilpotent Lie algebras.

(2.9) Let G be a group. We denote by
G=1I''DI''D>---DI';D---
its lower central series. By using the central extension
0O—> 1,0, —> G, —> G, —>1

we can inductively define the complex Lie group G/I', ® C ([FGM], [S2]).
We shall call the sequence
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0«—GI'®C«— -+ «—GII' Ce—---

the tower of the nilpotent completion of G over C. Sullivan’s theorem can
be formulated in the following way.

THEOREM 2.10 (Sullivan [M], [S2]). Let

"'(-—ij'——gji-l(_—_"'

be the tower of nilpotent Lie algebras constructed from the 1-minimal model
A (1) (see (2.8)). We have the following isomorphisms via exponential maps

- < P, < Py —— e

N

L <—7t1(X)/Pj®C<~—— WI(X)/FJ+1®C<—— LI I

By taking a projective limit, we can conclude that ¥ = lim %, is the Lie
e—_

algebra associated with the nilpotent completion of =,(X) over C.

(2.11) DgerFiniTION. In view of (2.10), we shall call the sequence of
Lie algebras

e Ly Ly — -

defined in (2.8) the tower of nilpotent complex Lie algebras associated with
7 (X).

§3. The vanishing of Massey products

Let W be a smooth projective variety and let D be a divisor with
normal crossings. We denote by X the complement W — D. We shall
use the notations of [M]. Let D? be the subvariety of D consisting of
points X such that mult, D > p. We denote by Dr — D its normaliza-
tion. We denote the ambient variety W by D°.

Let Ay be the differential graded algebra over Q whose degree n part
is defined by

3.1) v = @ H*%(D"; ¢f)
»
and the differential d: 4% — A% is defined by the Gysin homomorphism.

We shall use the following results of Deligne and Morgan ([M]) to prove
the vanishing of certain Massey products.

TrEOREM 3.2 (Deligne, Morgan [M]). i) There exists an increasing
filiration " in Ay, which is called a weight filtration, and a decreasing
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filtration F in A, ®, C such that the induced filtration in V = H"-?(D?; &)
is (n + p)-opposed to its complex conjugate, i.e.,

(3.3) F (Gry (V) @ 72 (Gri(V)) = Gry (V)

where ¢ = n + p.

i) Let A 4(j)q be the j-minimal model of X over Q. Then, M (j)q is
isomorphic to the j-minimal model of Aj.

iii) There exists an increasing filtration W in M 4(j)e and a decreas-
ing filtration & in M 4(j) such that

(a) The differential d and the product A are strictly compatible with
W and F in the sense of [M].

(b) The filtration ¥ and % induce the mixed Hodge structure on
H (A () which is compatible with the mixed Hodge structure on H'(X)
with respect to the homomorphism p* defined in (2.6).

(3.4) DerFmNiTION. Following Kraines [Kr], let us define the Massey
product on the first cohomology. Let 7, ---,7, be the elements of
H'(X; R). We shall say that {r,, ---,7,} is a Massey system if there exists
a collection of 1-forms S={m,;; 1<i<j<p,j—i<p-—1} which
satisfies the following conditions M1) and M2).

M1) m,, is closed and its cohomology class [m, ] is 7.
fori=1,.---,p and

M2) dm,; = > iZim,, /\ my,,,; if i <j.

Then > ?zim,, /\ m,,,, turns out to be a closed form. We denote its
cohomology class by <7, ---,7,>s, and we call it the Massey product of
Ty, -+, 7, with respect to the system S. In general, this cohomology class
depends on the defining system. We shall say that the Massey product
Ty, -+, 7,y is zero if (7,, ---,7,>s = 0 for any defining system S.

ProposITION 3.5. Let W be a smooth projective variety with H(W; C)
=0 and let D be a divisor with normal crossings. Let X be W — D. We
have the following decomposition of the 1-minimal model.

D D) = ()

Pz

where A y(1)P? is the (p, p)-part of M (1) in the category of mixed Hodge
structure. We have a complex (M x(1)*?, d) and we have
i) HYAM(1)*?)=0if p=3.

Proof. Let us preserve the notations of (3.2). Let «a: HY(D'; C) —
H*W; C) be the Gysin homomorphism. We have the following isomorphism
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H(X;C)=HW;C)® Kerw.

In our situation, we have H'(X; C) = Ker . By means of the part i) of
the theorem (8.2), it turns out that the cohomology HX; C) contains
only degree (1, 1) part in the mixed Hodge structure. Let

C= -///X(l)o c V/{X(l)x c-.--C -//lx(l)j (G

be the canonical series of the 1-minimal model of X defined in (2.8). We
bave 4 ,(1), = A(H'(X; C)). We can make .#,(1), into a bigraded algebra
in such a way that the elements of H'(X;C) have the bidegree (1.1)
and the bidegrees are compatible with the exterior products. Induc-
tively we can assign the bidegrees to the elements of .#,(1) in such a
way that the differential d preserves the bidegrees and the bidegrees are
compatible with the exterior products. In this way we have the follow-
ing decomposition of the 1-minimal model

MK(1) = pCi‘)O M ()77 .

This decomposition is related to the filtration 4 and # in (3.2) in the
following manner.

FAM D) = ® AV,
T oM x(D) = B M1
2jzq

which completes the proof of i). Since the differential d is strictly com-
patible with the filtrations, d preserves bidegrees and we have the complex
(A (1?7, d). For the part ii), let us observe that the homomorphism
o: M 3(1) — Ay induces a bidegree preserving homomorphism p*: H*(# 4(1))
— H¥X; C) from the part iii) of the theorem (3.2). From the definition
of the 1-minimal model .#4(1), homomorphism p*: H*# 4(1)) - H¥(X; C)
is injective. We have the following decomposition of H*X; C) in the
mixed Hodge structure ([D], [M]).

(3.6) H(X;C) = @ H™(X;C).
2€p+qs4

Let x be an element of .#4(1)*? such that dx =0 and p > 3. By means

of the decomposition (3.6), we have p*(x) =0 in H*X;C). From the

injectivity of p*, it follows that x must be a coboundary in .#  (1)7-*.
Under the same hypothesis as in (3.5), we have the following corollary.
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CoroLLARY 3.7. For any Massey system {I, ---,7,}, (T.€ H(X; C)) the
p-tuple Massey products (1, ---,7,» are null if p > 3.

Proof. Let {1, ---,7,} be a Massey system with a defining system
of 1-forms

S={m,;; 1<i<j<p, j—i<p-1}.

We have 7, ; in #4(1) such that p(m, ;) = m,,;. We can prove inductively
that bidegree m,; = (j —i+ 1,j—i+1). If p =3, we have (I}, -+, 7)s
=0 by (3.5). We can use the same agrument for any defining system S,
which completes the proof.

§4. Proof of the main theorem

For the proof of our main theorem we need several lemmas. Let W
be a smooth projective variety and let D be a divisor with normal cros-
sings. As in Section 3, we assume that H(W; C) = 0.

(4.1) Norations. Let A be the complex vector space H(X; C). We
have an isomorphism H,(X; C) = Coker a* ® H(W; C) where a* denotes
the dual of the Gysin homomorphism «: H °(13‘; C) — H¥W; C). The vector
space A has a natural bigrading

A= A—1,0 @ Ao,—1 ® A—l,—l

dual to the bigrading of the first cohomology in the mixed Hodge struc-
ture. Let Lib (4) denote the free Lie algebra generated by A. By using
the bigrading in A, we can make Lib (A) into a bigraded Lie algebra in
such a way that the brackets products are compatible with the bidegrees.

Let 0~ &Z <« Ly« -« L, < --- be the tower of nilpotent Lie
algebras associated to the fundamental group #,(X) in the sense of (2.11).
The Lie algebra %, is an abelian Lie algebra. Let «,: A — %, be the
identity homomorphism. By lifting this homomorphism we have a homo-
morphism from the free Lie algebra Lib(A) to the tower of complex
nilpotent Lie algebras associated with the fundamental group. Let us
note that 4 = A_, _, from the hypothesis H(W;C) =0. Let 7, be
Ker (Lib (A) - %,) and let J, denote the vector space defined by
Z./ILib(A), 7.]. We have the following isomorphisms

H( 4 4(1)) = H(Z,) = Hom (J,, C) .
The Lie algebra #, has the bigrading 7, = ®,., ;7% induced from
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the bigrading of Lib (A) defined in (4.1). Let C= A1), C --- C A1),
C .- be the canonical series of the 1-minimal model of X in the sense
of (2.7). Let V, be the vector space which is used to construct the Hirsch
extension A x(1),_, C M x(1),, i.e., A 4(1), is isomorphic to A x(1),_, ® A(V,)
as C-algebras.

LEmma 4.2. Let #3(1) = @,5, #5(1)"? be the bigrading defined in
(3.5). This bigrading induces the bigrading in V, of the following form

V.=@ Vpr,
y=1

Proof. We prove by induction with respect to n. In the case n =1,
the vector space V, is isomorphic to A = Ker (HY(D") — H¥W)), therefore
we have V, = V}'. Let us assume that V, is decomposed ®,,, V2? for
k< n. We want to prove V,,, = @,un,, VB4 Let xe V,,, be a homo-
geneous element. Let us assume that bidegree x < (n,n). Since the
differential d preserves bidegrees, we have bidegree dx < (n, n). By the
definition of the canonical series of the 1-minimal model (2.7), dx must
be written in the form

dx = 3¢5 N\ Y

with some ¢, ;€ C and y,, ¥, € #4(1),. By the hypothesis of the induction
y; must be contained in .#;(1),.,, hence x must be an element of .#;(1),,
which contradicts the fact that x is a homogeneous element of V,,,.

LeEMMA 4.3. Let J;*~* be the bidegree (—2, —2) part of J,. Then
we have i) J;*-? is independent of k if k> 2. ii) J, has a decomposition
Jp=J7D (Gl Jy»P) for k= 2.

Proof. Let j,: #5Q), — M x(1),,, be the inclusion. By the construc-
tion of the 1-minimal model, we have the following exact sequences:

23
(4.4.7) 0> Vi —> HA M 3(1),) 2> HY (M £(1),..)
(4.4.2) 0> V,,, —> HY( M (1),) > H(X; C) —> 0

where p* is the homomorphism induced from p:.#yy — 4A;. By using
the isomorphism H*(.#4(1),) = Hom (J,, C), we have the exact sequence

(4.4.1y 0—>V,,,—> Hom(J,, C) —> Hom (J,,,, C) .

By (4.2) the vector space V, has a decomposition @,., V2?. On the
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other hand any element of H*X; C) has bidegree (2.2). By using the
exact sequence (4.4.1) we have a decomposition

Sy =7 O(D i)

b2k
for k> 2, where J;*"* is isomorphic to the homology group Hy(X; C) and
Dpors1 JE»7? is isomorphic to Hom (V,, C), which completes the proof.

(4.5) Norations. Since J;*~* is independent of k if 2 > 2, we shall
denote it by J. Let # be the homogeneous ideal of Lib (A) such that
FZI7, Lib(A)] = J. Let us consider the following commutative diagram

0> Fooi—> Il FulFes  —0

o[ el

Joi —> I, —25 Hom (V,.,, C) —> 0

Lo l

0 0 0

where we denote by p, (j = 1, 2, 3) the canonical surjections.

LEMMA 4.6. Let us assume n > 2. Then, i) the ideal 7, contains the
n-th lower central series. I',Lib(A) as a subideal, i1) the homomorphism
p. restricted on I', Lib (A) is surjective and iii) we have the equality

b, Lib (A)) = @ Jim77.

pn+l

Proof. 1) By the theorem of Sullivan (2.10), %, is isomorphic to the
Lie algebra associated to the Lie group #,(X)/I’, ® C. Hence, the n-th
lower central series I', Lib (A) contained in the Ker (Lib (A) — #,), which
proves the assertion i).

ii) The homomorphism ¢&|I", Lib(A) is surjective, since ¢ factors
through the canonical surjection

I, Lib (&) —> I'(Lib (A)[F i) = I ol F s -

By the commutativity of the diagram in (4.5), we have the assertion ii).
iii) By the decomposition of (4.3) we have

J,=JD(D Ji").

p2n+1

By the proof of (4.3) the homomorphism ¢ gives an isomorphism
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Hom (V.., C) = & J;77.

pzn+l

By means of the assersion i) the homomorphism p,|I", Lib (4): I", Lib (4)
— @Ppzns: JP7P is surjective, which completes the proof of the assertion
iii).

By using Lemma 4.6, we have the following proposition.

ProposrTiON 4.7. If n > 2, we have
J, =J &, Lib (A)/I,.,Lib(4) 4 # N I', Lib (4))) .
Moreover the intersection of £, (Nuz: Fx 1S iSomorphic to the ideal ¢.

Proof. Let us consider the kernel of the surjective homomorphism

p2lanlb(A)F,,le(A)»——) @ J;P,-p.

pzn+1

The kernel is generated by I',.,Lib(A) and # N I',Lib(A), therefore
@psns1 J777? is isomorphic to

I, Lib (AT, Lib (A) + # N I', Lib (4)) .

The second assertion follows from the fact that the intersection of the
lower central series of Lib (A) is zero.

We obtain the following corollary which permits us to compute com-
binatorially the succesive quotients of the lower central series of the
fundamental group of X = W — D up to torsion.

CororrLARY 4.8. Let 7, (X)=I'm(X) D 7 (X) D --- be the lower
central series of the fundamental group. Then

(I (@ (XN (X)) ® C)*
= I', (Lib (A)/(Ls.: (Lib (A)) + 7 N I, (Lib (A))) .

To prove our main theorem let us observe the following lemma.

LeMmmA 4.9. Let X be a simplicial complex. Let % be the Lie algebra
associated with the nilpotent completion of the fundamental group. Let ¢
be the subideal of Ker (Lib (X, - -, X,) — Z5) generated by all elements
of degree 2. Then, Lib(X,, --., X,)/.# is isomorphic to the holonomy Lie
algebra g.

Proof. Let .#4(1), be A(x, ---, x,). We choose p: A4 4(1), — £(X) such
that o(x;) = 0;, 1 <j < m. Let A4(1), be A1) A(y,, - --,y,) with the
differential d such that
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dyk = Z T'x, A Xy .
1,7

Hence >, ;7 [w; A\ ;] = 0 in H*X; C). Let us preserve the notations
of Section 2. Let X,,---,X,; Y, -, Y, be the dual basis of x, -, x,;
Vi > Y. From the definition of the Lie algebra %, we have

[X, X1 =2 T51Y, in £ .

On the other hand, we have >, ;757 >, ¢t [y:] = 0, therefore we have the
following relation

0,5k —
2Tk, =0.
7

It follows that >3, cf (X, X,] = >, ;. ¢k, 727Y, =0 in Lib (X, ---, X,))/.7,
which means the inclusion 4" C #. We obtain the surjective homo-
morphism

g—> Lib(X,, -, X,).7 .

By comparing the dimension of the degree 2-part, we have our lemma.
By means of the Lefschetz type theorem of [LH], if we take a generic
plane H, the inclusion j: H — P¥ induces an isomorphism

jerm(EH —HNS)—>,(PY — S).

Then, we have an isomorphism of the 1-minimal model of H — H N S and

that of P¥ — S, which permits us to consider the case N =2. Let

p: (W, D) — (P, HN S) be a resolusion of the singularities of H N S such

that D is a divisor with normal crossings. We can apply the arguments

(4.2)~(4.9) to our situation, which completes the proof of our main theorem.
From (4.8) we get the following corollary.

CororLARY 4.10. Let X = P¥ — |\ J™}'S,, where S, denotes a hyperplane.
Then, the lower central series of the fundamental group of X is strictly
decreasing uncless the hyperplanes are in general position.

§5. Examples and discussion

We give two typical examples of fundamental groups.

ExampLE 5.1. Let S = (U7, L; be a family of n lines in C* such that
" L; = {0}. Then, the corresponding holonomy Lie algebra g; is iso-
morphic to
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Lib (X, - - -, X))

where /" denotes the homogeneous ideal generated by
[Xi, }ijj] l<i<n—1).
=1

Let gg=1D I, D1, > --- be the lower central series. Then,

dim I/, = n and dim [T, = —%—ZL .

The following remark is suggested to the author by the referee.

Remark 5.1.1. In the situation of the above example we have the
following results. Let &(gs) be the enveloping algebra of g,. We put
deg X, =1 for 1 <j < n, and we make &(gs) into the graded algebra in
such a way that the products are compatible with the degrees. Let ,8(gs)
denote the degree p part of &(gs) and let %(p) be dim ,£(gs). Our envelop-
ing algebra &(gs) has the following free resolution

n-1 pz n ‘ol ¢
0—> @' —> E(gs)" —> 6(gy) —> C

where & is the augmentation and p’ (i = 1, 2) are defined in the following
way

P o) = S u X, for () ¢ 6@

and

J

wi ,9R, =, 9R
2u’,...,u;l:< u',_f_,..., u’ /)
o ) = )4 jZ=:1 70X,

where R, denotes [X,,, >, X, 1<i<n-—1 and 4/dX, is the right
derivation. Since b,(C* — S) =n and b,(C* — S) == n — 1, we have the
following reccursive equation

p)=ni(p—1) —(n — Di(p — 2) .
It follows immediately that

_ (—1pri—1
o)==

By means of the theorem of Witt (see [MKS]), we have
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s [}

(1 — tr)-#-D — i Up)er
1 p=0

I

p

where ¢(p) = rank I',/I",,,. Therefore we can computeY¢(0), ¢(1), ¢(2), - - -
inductively. In our case
2 1
W) = L
;:o Py (—1)}
where we denote by P,_g(t) the Poincaré polynomial of C* — S.

Let us introduce certain Poincaré-Koszul series for discussing our
main result from this point of view. Let

C=uQ1),C M), - - C M), -+

be the canonical series of .#,(1). We put #,(1), = A(V,) and #(1);.,
= Mx(1); ® A(V,,,) for j = 1. A 4(1) has the natural structure of a graded
algebra such that degx =1 for xeV, (j =1,2,--.). Let us introduce
another degree such that degx=j—1 for xeV, (j=1,2,---). We
extend this degree to .# (1) such that the bidegrees are compatible with
the product structure. We denote by #;(1) the degree k part with
respect to this degree. The gradation /(1) = ®;z0 .20 A x(1)%, induces
the gradation

H(#;C) = gHz(ﬁ: C)
n=0

by means of Theorem 2.10, where we denote by # the nilpotent comple-
tion of =,(x) over C.

THEOREM 5.1.2. We have the following equalities

- = 1
X P = 1 — )-eU-» —
Supe = [10-) D
where
o P
Ut) = 3 ( (—1)* dim H2-*(#; C))t” ,
t=0 \k=0
Xp) = dim ,&(gs)
and

o(j) = rk Fj(”l(X»/an(ﬂl(X» .

Proof. Let C = 3 ,50.20 C% be a bigraded vector space. Let U(t) be
the Poincaré-Koszul series defined by
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® »
5 (Z (—1)" dim Cg—n)tp .
p=0 \n=0

‘With respect to the bigradation # (1) = ®,z0,nz0 A x(1)z, Wwe have

UA(Vj)(t) = (1 —_ (._.t)f)go(j.q) .
Hence,

o0

Ux(t) = U.,lx(l)(t) =[] @ — (—=t))v-n,

j=1

On the other hand, we have
i XUp)t? = ﬁ 1 — #7)-eu-n
p=0 FA

from the theorem of Witt, which completes the proof.

ExampLE 5.2. Let X be {(x,y,2)e C? 2° = x* — »*, 22 0}. Then, we
have dim H(X; C) = 38 and this cohomology is generated by the following
differential forms

0 = dlog (x* — y9),
—}ydx + $xdy

w; =

2

(xz _ ya)n/s
o — _—3Ydx + fxydy
2 (xz - yz)s/s *

The corresponding Lie algebra g is Lib (6%, ¥, 0¥)/«/ where o/ is generated
by [0*% 0f] (j = 1,2). The author studies the relation between the
Alexander polynomial of algebraic curves and the rational differential
forms in [Ko2].

(5.3) Final remarks. The following construction gives a necessary
condition for X to be K(x,1). Let C,(n(X); C) be the standard j-chains
of the group #,(X). We have a homomorphism

¢t Ci(m(X); C) —> Hom (£ (1), C) ,
which induces a homomorphism
¢t Hy(z(X); C) —> H, (lim z,(X)/I" ® €)
k
(see [Ko2]). Suppose that X has a homotopy type of a n-dimensional

CW complex. If we assume that X is K(x, 1), we have the following
necessary condition (C).
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(C) Let c be a cycle in Cy(z(X); C). Then, ¢,(c) must be exact in
the complex

> Hom (A (1)’; C) ——> Hom (4 ,(1)/~'; C) —> .

The condition (C) is satisfied if .#,(1) is isomorphic to the minimal

model /.
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