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HOMOLOGICAL DUALITY AND QUASI-HEREDITY 

ISTVAN AGOSTON, VLASTIMIL DLAB AND ERZSEBET LUKACS 

ABSTRACT. This paper represents a general study of the (Yoneda) Ext-algebra A* 
of a finite dimensional K-a\gebraA. Our motivation lies in the problem of establishing 
conditions under which (i) the species of A* coincides with the dual species of A and 
(ii) the quasi-heredity of A (or A*) yields the quasi-heredity of A* (or A, respectively). 
These questions are closely related to the Kazhdan—Lusztig Theory as presented by 
[CPS2]. The main results include introducing the concept of a solid algebra and the 
relevant Theorem 4.5 as well as a rather complete description of the situation in the 
case of monomial algebras in Section 5. 

1. Introduction. Notation and basic definitions. Since the introduction of quasi-
hereditary algebras by Cline, Parshall and Scott in [CPS1] and [PS], the concept has 
proved to be instrumental in a number of areas of representation theory. The quasi-
hereditary algebras arising in most of these applications enjoy some additional prop­
erties. Thus, a Kazhdan-Lusztig theory of Cline, Parshall and Scott ([CPS2]) leads to 
quasi-hereditary algebras whose homological dual is again a quasi-hereditary algebra. 
One of the main objectives of the present paper is to find a natural class of such alge­
bras; the resulting concept of a solid algebra with the related Theorem 4.5 is given in 
Section 4. In the course, we also study the Ext-algebra ,4* of an algebra^ in general. The 
essential components of our machinery include the concepts of top embeddings and the 
subcategory C Q mod-̂ 4 in Section 2 and the functor Ext*:mod-^—>A* -mod in Sec­
tion 3. In Section 5 we deal with monomial algebras; here we present a rather complete 
description, using and extending results of Green and Zacharia ([GZ]). Finally, the fact 
that some of the results in the text cannot be strengthened is illustrated by examples in 
Section 6. 

Some of our results are parallel to those of Cline, Parshall and Scott in [CPS2] al­
though our approach and basic assumptions are different. We should also like to refer to 
the recent study of graded Koszul rings by Beilinson, Ginzburg and Soergel ([BGS]), as 
well as the lectures of P. Smith and R. Martinez-Villa, presented at the Seventh Interna­
tional Conference on Representation Theory in Mexico in August, 1994. 

Let A be a finite dimensional algebra over an arbitrary field K. Let { ex\ i £ / } be a 
fixed complete set of primitive orthogonal idempotents, with the corresponding indecom­
posable projective (right) modules denoted by P(i), and their simple tops by S(i). Without 
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loss of generality we will assume that A is basic, thus 1 = £/e/ e\. Throughout the paper 
we shall denote by S the direct sum of the simple modules S(i); thus SA — A/ radA. 
Whenever it is needed, we shall speak about left ^-modules, too; the corresponding pro­
jective and simple left modules will be denoted by P°(i) and S°(i). 

The Ext-algebra of A will be denoted by A*. It is, by definition, the A^-algebra whose 
underlying vector space is 

e Ext$(s,s)- e e Ext*(s(/),s(/)) 

and the multiplication is defined by the Yoneda product of extensions. That is to say, if 

0 — S ( 0 — * * - i — •*<> —S( / )—0 

and 
O^SV)-+Ym-^.-—+Yo-+S(k)->0 

represent elements of Ext^ (S(/), 5(/)) and Ext™ (£(&), £(/)), respectively, then the corre­
sponding product is represented by the exact sequence 

inExti+m(S(ifc),S(0). 
It is easy to check that in this way one gets an associative A^-algebra which is finite 

dimensional if and only if gl. dim A < oo. Let us also mention that, in the presence of 
the standard ^-duality, (A*)op ~ (Aop)*, and thus we may confine ourselves to studying 
Ext-algebras defined in terms of right A -modules alone. 

In what follows we list some of the properties of A*; the proofs are straightforward. 

PROPOSITION 1.1. Let A be a basic finite dimensional K-algebra and A" its Ext-
algebra as defined above. 

(1) The decomposition A* = 0fc>oExt^(S,iS) defines a graded algebra structure 
on A*. 

(2) If gl. dimA < oo, then for X E mod-̂ 4 the correspondence Exf(X) = 
0£>oExt^(X,£) defines a contravariant functor from mod-,4 to A* -modgr, the 
category of finitely generated graded left A*-modules. 

(3) The elements f = id^/) E Hom^ (S(i), S(i)) C A* for i E I form a complete set 
of primitive orthogonal idempotents in A*. Thus the indecomposable left pro­
jective A*-modules may be identified with P*°(i) = A*fi ~ ExfA (S(/), £) = 
0*>oEx1*(S(i),S). 

(4) If A* is finite dimensional, then mdA* — 0^>i Ext*(S,£) and rad£v4* C 
e*>,Ext£(S,5). 

Notice that in part (4) of the previous statement the containment rad£^4* C 
0^>£ Ext^(S, S) is very often proper, i.e., the filtration given by the powers of the radical 
of A* (radical filtration, for short) will not, in general, coincide with the filtration ob­
tained from the natural grading of A* mentioned in part (1). One of the key points of our 

https://doi.org/10.4153/CJM-1996-046-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-046-0


HOMOLOGICAL DUALITY AND QUASI-HEREDITY 899 

investigation is precisely the question, when will the relation rad1 A* — ^k>t Ext^SjS) 
hold for every L 

This question may also be formulated in terms of the species of the algebras involved. 
Let us recall that for the basic A -̂algebra A with primitive idempotents { et \ i £ / } the 
species S(A) of A is the system (Di9i £ l\iWj,i,j £ I) of division algebras A , finite 
dimensional over/C, andDrZ)y-bimodules/^, where A = e^Aj radA^ei ~ EndA(S(if) 
and i Wj = efadA/ rad2 A)e} ~ D Ext^ (S(z), S(jj). (Here D stands for the standard K-
duality.) When all the division algebras A are equal to K and the bimodules \Wj are 
direct sums of copies of the regular bimodule K (for example, when K is algebraically 
closed) then one may speak about the quiver T(A) of A; hence the complete information 
is contained in an oriented graph having / as its vertex set and dim^ / Wj arrows from the 
vertex / to the vertex/ 

Furthermore, if a species S = (A, i £ h / Wj, i,j £ I) is given, then we may define the 
dual species DS = (A, * £ h / Wj, ij £ I) for which the division algebras are A = A , 
and / Wj = D(j Wj) for ij £ I. — Then it is not too difficult to see that the previous 
question whether the natural grading of A* gives the radical filtration is equivalent to 
asking whether S(A*) = DS(A) holds. For quivers the previous condition translates to 
T(A*) = T(A°P). 

The principal question that we investigate in our paper is the following: given a fi­
nite dimensional quasi-hereditary algebra A, when is the Ext-algebra of A also quasi-
hereditary? Or more generally: what can one say about A or A* if one of them is quasi-
hereditary? 

To this end, let us recall the definition of a quasi-hereditary algebra (cf. [CPS1], 
[DR2]). Let A be a finite dimensional algebra with a fixed ordering e = (e\, e2,..., en) 
of a complete set of primitive orthogonal idempotents. Denote by £/ the idempotent 
£j = ei + e,-+i + • • • + en; for convenience let en+\ = 0. The trace filtration of a module M 
(with respect to the fixed order e) is given by M = Me\A D MejA D • • • D MenA D 0. 
Then we may define the i-th standard module A(i) to be the first non-trivial quotient in the 
trace filtration of the indecomposable projective module P(i). Thus A(z) ^ etAj eiAei+\A. 
Note that A(z) is the largest quotient of P(i) with composition factors S(J) withy < i. The 
algebra A is called quasi-hereditary with respect to the ordering e if A(z') is Schurian, 
i.e., End^ A(z) is a division algebra for 1 < z < n and the trace filtration factors of the 
regular module A A are isomorphic to direct sums of standard modules. In the sequel we 
shall also use the notations U(f) = radA(z) and V(i) = eiAei+\A, with the correspond­
ing left modules denoted by A°(z), U°(i) and V°(i). Thus we have the exact sequences 
0 —> U(i) —> A(z') —> S(i) -+ 0 and 0 -* V(i) -> P(i) —> A(z') - • 0. For the basic properties of 
quasi-hereditary algebras and standard modules we refer the reader to [PS], [DR1 ], [DR2] 
and [DK]. 

One of the main tools in our description is the concept of top submodules or top 

embeddings. Recall that a submodule X C Y is said to be a top submodule (denoted 

by Xc Y) if the embedding of X into Y induces an embedding of topX = Xj radX into 

top Y= Y/ rad Y ([ADL1]). Or more formally: Xc Y if and only if X C Y and radX = 
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XH rad Y. In this case the embedding of X into Y is also called a top embedding. A 

filtration of a module X is called a top filtration if all the terms of the filtrations are top 

submodules of X. An algebra A is called lean with respect to an ordering e of simple 

^-modules if V(i) c radP(/) and V°(i) c radP°(/) f° r 1 < / < «. Further properties of top 

embeddings as well as characterizations of lean algebras can be found in [ADL1] and 

[ADL2]. 

2. The species of an Ext-algebra. For an arbitrary module X E mod-̂ 4 let 

dj+i d; di d\ do 

••^<Pj{X)-^-^<P\{X)^%{X)^X^ 

be a minimal projective resolution of X, with the corresponding syzygies Clj+\(X) = 

Ker4-for/ = 0 , l , . . . . 

DEFINITION 2.1. We say that a module X e mod-A belongs to C(i) = Cf for some 

/ G N if Qj(X) c rad ^ _ i ( I ) fory = 1,2,...,/. For convenience define C(0) = mod-A. 

Finally, let C = CA = H^0 C^. — Similarly, one may define the subcategory C°A C 

4̂ -mod of left A -modules. 

REMARK 2.2. ( i ) I e C^ does not depend on the particular minimal projective 
resolution chosen forX In particular, all projective modules will belong to C. 

(ii) X G C{i) implies X e Cu) for every./ < i. 

(iii) For any i > 1 we have that X e C{i) if and only if Q.X(X) e C{i~X) andQi(Z)c 
rad %(X). If gl. dim^ = t < oo then CA = C{

A
l\ 

(iv) From the definition it is clear that .4 is lean if and only if the right and left standard 
modules A(7) and A°(7) belong to C(1) and C(1)°, respectively. 

The next three lemmas give some of the closure properties of these subcategories. 

LEMMA 2.3. Let 0 —>X—> Y—>Z—> 0 be a split exact sequence. Then for given i G 

N, we have Y e C(i) if and only ifX,Ze C(i). 

PROOF. Consider the sequence 0 —» Q{(X) 0 Qi (Z) —> %(X) 0 %(Z) —•X0 Z—> 0. 

Then clearly Q^X) 0 Q^Z) maps into md(&0(X) 0 fP0(Z)) = radfP0W © rad^P0(Z), 

and this is a top embedding if and only if Q\(X) c rad 5*oW and Q\(Z)c rad ^Po(2)- By 

induction on i and Remark 2.2. (iii) we are done. • 

LEMMA 2.4. LetO—>X^> Y—>Z—>0 6e art exac/ sequence with the map X-^ Y a 
top embedding. Then if X and Z both belong to C^l) then also Y E C^. 
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PROOF. We may assume / > 1. Consider the following diagram: 

0 0 0 

i 1 i 
QI(JQ - • Qi(y) - • ax{Z) -> o 

1 1 1 
%{X) — %{Y) -> %(Z) -> 0 

1 1 i 
* -+ Y -> Z -> 0 
1 I 1 
0 0 0 

HereQi(X),^i(2) G C(/"1), and Qi(JO<=rad2>oW, Oi(Z)crad!Po(Z). Note also that 

the middle row is split, i.e., %{Y) = %{X) 0 %(Z), since Xc Y. Thus we get that 

Q! (X) cradfPo(y), hence Q{ (X) cQx(Y). So by induction on /we get that Qi(F) G C(/-1). 

Also, Qi(y)/Qi(X) = Qi(Z)cradfP0(Z) and rad fP0(Z) is a direct summand of 

rad fP0(y)/Qi(^ thus Q i W / Q i W ^ 

gives that Qx(F) c rad ^Po(F), so by Remark 2.2. (iii), Y G C(0, as required. • 
It is easy to show that the converse of Lemma 2.4 does not hold. Actually, examples 

will be given in the last section showing thatX, Y G C does not imply that Z G C(1) and 
Y,ZeC does not imply thatX e C{X\ 

LEMMA 2.5. Let 0 —>X—»Y—+Z—+0 be an exact sequence with Xc rad Y. Then we 
have: 

(i) ifX G C{i) and Y G C(/+1) then Z G C(/+1); 
(ii) ifZ G C(/+1) a/u/ F is projective then X G C(0; 

(iii) ifZ G <T(0 and X is projective then Y G C(,). 

PROOF, (i) Consider the following diagram with exact rows and columns: 

0 0 
1 I 

0 - n,(y> - n,(Z) 
1 1 1 
0 -> P̂o(F) ^ P̂o(Z) — 0 
i i i 

o -> x -> y -> z -> o 
1 1 1 
X -> 0 -> 0 

Here X C rad Y implies that %{Y) ~ %{Z), and the Snake Lemma gives us an additional 

exact sequence 0 - > n i ( y ) ^ Q i ( Z ) ^ X - > 0 . Since Qx(Y)c rad %{Y) = rad^P0(2) we 

get that Qx(Y)cQ.x(Z). By assumption, X G C(/), and by Remark 2.2. (iii), QX(Y) G 

C(i). Hence by Lemma 2.4 we get that Qj(Z) G C(/). Furthermore, XcradF = 

rad<P0(Y)/Qx(Y). Since Qi(7)crad?0(F), we get by Lemma 1.1. c) of [ADL1] that 

Qi(Z)crad^0(F) = rad %{Z). Hence Z G C{i+l). 

0 - > 

0 - » 

0 - + 

https://doi.org/10.4153/CJM-1996-046-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-046-0


902 ISTVAN AGOSTON, VLASTIMIL DLAB AND ERZSEBET LUKACS 

(ii) This follows from the definition of C(/) and by Remark 2.2. (i) and (iii). 
(iii) Consider the diagram we had in the proof of part (i). Again we get an exact se­

quence 0 —»Q\(Y) —>Q\(Z)—>Ar—»0 which is in this case split, asXis projective. Since 
Qi(Z) G C{i~x\ we get by Lemma 2.3 that Qi(F) G ^ / _ 1 ) . Moreover, Clx{Y) Lci\(Z) L 
rad P̂o(Z) = rad %{Y), hence by Remark 2.2. (iii), Y G C(/), as required. • 

As in the case of Lemma 2.4, it is again easy to construct examples to show that the 
statements of (ii) and (iii) of the previous lemma cannot be strengthened. Examples will 
be given in the last section that F, Z G C does not imply thatX G C(1) and X, Z G C does 
not imply that Y G C(l)-

The next proposition gives one of the most important homological properties of the 
elements of C(l). It turns out (cf. Proposition 2.11) that this property almost completely 
characterizes these modules. The statement generalizes one direction of Theorem 3 of 
[ADL2]. 

PROPOSITION 2.6. IfX G C^ for some i G N, then the natural maps Ext^(topX,S)-> 
Ext^(X, S) are surjectivefor every 0 < k < i and every (semi)simple module S. 

PROOF. We shall proceed by induction on /. Clearly, the statement is true for / = 0. 
For i = 1 this is just Proposition 2 of [ADL2]; actually for the case i = 1, k = 1, the 
converse statement is also proved there. 

Assume now that the statement is proved for / — 1. Clearly, the only case to consider 
is k — /, as X G C^ implies X G (T(/-1) hence by the induction hypothesis we get the 
surjectivity between the Ext^-modules for k < i. 

Thus assume that i > 1 and let *£i be an exact sequence of length k = / between S 
andX: 

Ei:0->5'-^Ai_i->Ai_2-* >Xl^X0-^X-^0. 

Then *E\ is equivalent to a sequence %i via the following diagram: 
£2 : 0 — S — Xk-X -> •• • — Xx -> %(X) -> X -> 0 

II II 1 1 II 
£, : 0 -> S -> A*_, -> ••• -> Xj -> Z0 -> X -+ 0. 

Thus we may write %i as the Yoneda composite of 0—*S—+Xk-\ —-» ^ i —> 
Q i ( ^ ) - ^ 0 a n d 0 - ^ Q i ( X ) — ^ ^ o W - ^ ^ ^ 0 . By assumption we have Qx(X) G <T(/_1), 
hence by induction we get that £2 is equivalent to an exact sequence £3 (shown similarly 
as a Yoneda composite) via: 

£ 2 : 0 - * S - + >X\-* Qi(X) - > 0 - > Qi(X) - » ! P o ( J f ) ^ ^ 0 

II 1 1 1 1 II 
£ 3 : 0 - > 5 - > ^ , ^ t o p Q i ( X ) - * 0 - + t o p Q i ( . Y ) - > % - + X - + 0 . 

Since topQj(X) is semisimple and by i > 1, X G C(1), we get that the last part of the 
sequence is the image of an extension of topX with top £l\(X): 

0 —• topOiC*) -* fP0 -> X —> 0 
II 1 1 

0 -> topQ^X) —> ^0 -* topX —> 0 
Hence we get the surjectivity of the required Ext-maps. • 
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COROLLARY 2.7. Let X G C(i) and S semisimple. Then any extension in Ext*(X, S) 
for 2 < k < i can be represented by a long exact sequence between S and X where the 
kernel-cokernel terms in the interior of the sequence are all semisimple. 

PROOF. We shall give a proof by induction on k. Any long exact sequence *Ej be­
tween S and X is equivalent to a sequence %i via 

£2: 0 — S —**_, — <Pk_2(X) — > %(X)-^X^ 0 

II i 1 I II 
£ i : 0 - » S - > * * _ ! - - • Jk_2 -* > Xo ~^X->0. 

Here the kernel-cokernel terms of %i are the syzygies Qk_\(X),...,Qi(X). Thus £2 is 
the Yoneda product of an extension of S by Q^_i(X) and the A: — 1-long canonical exact 
sequence between £V-i W andX Now, by the assumption it follows that Q^-i € C (1\ 
and thus Proposition 2.6 implies that the first short exact sequence is a lifting of an ex­
tension of Shy top£\-i W- Hence %i is equivalent to the following Yoneda-composite 
£3: 

II I 1 1 1 II 
<£3 :0^ iS^^_1-^topQ^_1(X)^0-^topQ^_1(J0-^ > % -->Ar-*0. 

Consequently, if k = 2 then we are done. If A: > 2 then we may apply the inductional 
hypothesis for the second sequence between the semisimple module top Qk-iW and X 
This gives us the statement. • 

In view of Proposition 1.1. (4) and the remarks following it, the previous observation 
has the following direct consequence for the species of the Ext-algebra^4*. 

COROLLARY 2.8. If A is an algebra where all simple modules belong to CA then the 
species S(A*) of A* is equal to the dual of the species of A, that is S(A*) = DS(A). 

PROOF. We have to show only that for k>2, every extension in Ext^(5, S) is equiv­
alent to a sequence which is the Yoneda product of A: short exact sequences with semisim­
ple outer terms. But this is precisely the statement of Corollary 2.7. • 

The converse of the previous statement is also true. 

PROPOSITION 2.9. Let A be an algebra such that S(A*) = DS(A). Then every simple 
module over A belongs to CA-

PROOF. Assume that there is a simple module S for which S G C ( ' -1 ) \ C(/); and 
assume i is minimal in this respect. Note that / > 2, as S G C(1) always holds. Thus 

t 

Q/_i(5) $ C^x\ more precisely Q/(5) % rad 3^_i(5), hence there exists a simple module 
S' and a short exact sequence £':() —>S'—>Pi-\—»Q/_i(S)—>0 which is the pushout 
of the sequence 0 -> Q;(5) - » # _ 1 (S) —> Q/_ 1 (S) -> 0 and for which S' C rad2 A-1 • By 
Lemma 1 of [ADL2], this implies that one cannot obtain T! as a pullback of an extension 
of a semisimple module with S'. Choose now the element *£ of Ext/(5, S')9 corresponding 
to Tl G Ext1 (Q/_i(5),5"). If it would be possible to split this sequence into the product 
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of short exact sequences with semisimple outer terms (i.e., if *£ would be equivalent 
to such a sequence) then we would get a lifting from the first such sequence to *£', a 
contradiction. Thus S(A*) ^ DS(A). 

Note that by the minimality of/ and by Corollary 2.7, for arbitrary simple modules 
S and Sf and for arbitrary k < i the elements of Ext*(S, S') can always be factored into 
the product of shorter exact sequences with semisimple outer terms. Since *E cannot be 
factored properly in this way, £ ^ rad2 A*. m 

Hence we may formulate the following theorem about the species of the Ext-algebra 
of an algebra A 

THEOREM 2.10. The following statements are equivalent for an algebra A. 
(i) S G CAfar every simple right module S; 

(ii) S° G C% for every simple left module S°; 
(iii) S(A*) = DS(A). 

PROOF. The equivalence of (i) and (iii) is just Corollary 2.8 and Proposition 2.9. For 
the equivalence of (ii) and (iii) let us observe first that if S(A) = (D/? / G /;, Wj, ij G I) 
then S(A°P) = (D°p, i G /;y Wu ij G I) with the modules, Wt being Df -Z^-bimodules in 
a natural way. Then from the fact that (Aop)* = (A*)op we get that condition (iii) is equiv­
alent to the dual condition S((Aopy) = DS(A°P). NOW we may apply the equivalence of 
(i) and (iii) to the algebra Aop. • 

Actually, as we mentioned earlier, under the assumption that the simple modules be­
long to C, one can prove the converse of Proposition 2.6, too. 

PROPOSITION 2.11. Assume that the conditions of Theorem 2.10 are satisfied, i.e., 
every simple A-module S is in CA- Then the following statements are equivalent for a 
module X: 

(i) Xe C(i); 
(ii) the natural map Ext^ (topX, S) —> ExvA (X, S) is surjectivefor every 0 < k < i and 

for every simple module S. 

PROOF. We have to show only that (ii) implies (i) under the assumption on the simple 
modules. Let us note first that for / = 1 the equivalence of these two conditions is stated 
in Proposition 2 of [ADL2]. Thus we may assume / > 1. 

Let us recall from the proof of Proposition 2.9 that if X G C^'^ \ C^ for some 
1 < j < U then there exists an exact sequence *£ G E x t ^ , S), with S simple so that 
£ is the Yoneda product of some sequence *E\ G Ext1 (Q/_i(X),S) and the canonical 
sequence %i £ Exr7-1 (X, Qj-\ (Xfj; moreover the sequence *£] is not in the image of the 
map Ext1 (top Q/_i (X), S) —•» Ext1 (Qy-i (X)9 S). On the other hand, if £ were a lifting of 
a sequence *£' G Ext7 (top X, 5), then by the assumption on the simple modules, and by 
Corollary 2.7, T! could be factored as the product of short exact sequences with semisim­
ple outer terms. This would also result in a lifting of a sequence in Ext1 (top Q/_i (X), S^j 
to *£i, a contradiction. • 
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It is clear that the assumption that all simple modules belong to C is indeed necessary 
for the equivalence, as otherwise one could choose for X a. simple module which is not 
in C^ but trivially satisfying condition (ii). 

3. The functor Ext*. We shall assume in this section that the Ext-algebra^* of the 
finite dimensional algebra ,4 is itself finite dimensional, i.e., gl. dim^ < oo. 

Let us recall first that the functor Ext*: mod-,4 —> *̂ -modgr defined in Proposition 1.1 
is the direct sum of the functors Ext^(—,5) for k > 0. That is, for an arbitrary module 
X E mod-,4 let Ext*(JQ = ExtA(X,S) = 0*>o Ext*(X, S) and similarly define the action 
on morphisms. For a module X E A* -mod^, letZ[/] stand for the shifted graded module, 
i.e., the one for whichZ[/]/ = Xf-j. 

Here are some of the basic properties of Ext*. 

LEMMA 3.1. 

(i) IfX E CA, then we have mdExt*(X) = ®k>x ExtA(X,S) = Ext*(Qi(X))[l] 
and in general for arbitrary I > 1 we have rad£ Ext*(X) = (Bk>t Ex^A(X,S) = 

Ext*(n,(A))M. 
(ii) IfS E CA, that is, if all simple A-modules belong to CA then the condition X E CA 

is equivalent to the condition thatradExf(X) = 0#>i Ex\^(X,S). 

PROOF. The first statement follows from Proposition 2.6 and Corollary 2.7, since 
radeExf(X) = (rad£ A*)X. The second statement is just a reformulation of Proposi­
tion 2.11. • 

The next two lemmas show that Ext*: mod-A —+A* -modgr preserves certain exact se­
quences. 

LEMMA 3.2. Let 0 —*X—> 7 —> Z—* 0 be exact with the map X—> Y a top embedding. 
IfX E C, then the sequence 0—>Ext*(Z) —->Ext*(F) —»Ext*(A')—»0 is also exact. If in 
addition Z E C then the embedding Ext*(Z)—» Ext*(Y) is also a top embedding. 

PROOF. We have to show that the sequences 0—>Ext^(Z,S)^Ext^(y,S)—> 
ExtA(X,S)^>0 are exact for / > 0. Let us assume that the exactness is proved for in­
dices smaller than / and we shall prove it for i. Consider the following commutative 
diagram: 

0 - > X - > Y ^ Z - ^ 0 

i i i 
o —> topx -» t o p r —> topz —• o. 

Here the bottom row is exact by the assumption XcY. Applying now the functor 
Ext^(—,S), we get the following commutative diagram: 

0 -> Ext\{Z,S) - • ExtA{Y,S) -> Ext^S) -+ 0 

T T T 
0 - • Extl

A(top Z,S) -> Extl
A(top Y,S) -> Extl

A(topX, S) -> 0. 
Here the bottom row is exact, since the original sequence was split. Also the beginning of 
the top row is exact by the inductional assumption. Finally, since X E C, the last vertical 
map is surjective by Proposition 2.6, hence the top row is exact also at the last step. The 
second part of the statement follows from Lemma 3.1 .(i). • 

https://doi.org/10.4153/CJM-1996-046-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-046-0


906 ISTVAN AGOSTON, VLASTIMIL DLAB AND ERZSEBET LUKACS 

LEMMA 3.3. Let 0—>X->7-^Z->0 be exact with X C rad 7. If Y E C, then 
the sequence 0—>Ext*(.Y)[l] —*Ext*(Z)—>Ext*(F) —-> 0 zs a/so exacA 7/7« addition Z E 
C ^e/i Ext*(X)[l] C rad Ext* (Z), wMe adding the condition X e C implies that 
Ext*(.Y)[l]cradExt*(Z). 

PROOF. Let us notice first that top Y ~ top Z and the morphism Y—+ top Y may be 
factored through Z via 7—>Z—>topZ ĉ  top Y. Proposition 2.6 implies that the maps 
Ext^(top 7,5)—>Ext^(7,S) are surjective, hence the maps Ext^(Z,5)—>Ext^(7,5) are 
also surjective, and the kernel of this map is just Ext/_1(Jf,5). Thus the first part of the 
statement follows. The second part now follows from Lemma 3.1. (i) since Ext*(A)[l] C 
®*>i Ext^(Z,5) = rad Ext*(Z). Finally, ifX E C is assumed besides the original condi­
tion that 7 E C, then Lemma 2.5. (i) implies that Z £ C. Hence by the previous con­
siderations and by applying Lemma 3.1. (i) for the module X, we get that Ext*(X)[l] c 
rad Ext*(Z), as required. • 

Let us now denote by 5*°(/) andP*°(/) the corresponding simple and indecomposable 
projective left A*-modules. Based on the previous lemmas, we easily get the following 
statements that we shall need in the sequel. 

PROPOSITION 3.4. 

(i) Ext*(S(0)=/*°(0-
(ii) Ext*(P(0)=5*°(/). 

(iii) Ext*(rad/>(/))[1] =mdP*°(i). 

PROOF. The statements of (i) and (ii) are trivial, while (iii) follows from (i), (ii) and 
Lemma 3.3. • 

The next statement establishes a connection between the categories CA and C%>. 

PROPOSITION 3.5. If X,mdX E CA, then Ext*(X) E C^l). Thus if radix E C for 
every i then Ext*(Z) E Q.. 

PROOF. Take the exact sequence 0 —> radX—>X—-> top X—> 0. Then Lemma 3.3 im­
plies that the following sequence is also exact: 

0 -> Ext*(radX)[l] - • Ext* (top X) -> Ext*(X) -> 0. 

Here the middle term is projective by Proposition 3.4. (i). Since rad^ E C by assumtion, 

Lemma 3.3 implies that Ext*(radX)[l] c rad Ext*(topX). Hence Ext*(Z) E C^(1). 
The second statement now follows by straightforward induction. • 

4. Quasi-hereditary algebras with special titrations. In this section we give a 
sufficient condition for an algebra to have a quasi-hereditary Ext-algebra. The condi­
tion is in terms of the existence of certain filiations. The canonical constructions from 
[ADL1] will result in algebras satisfying these conditions. In particular we get that shal­
low, left medial, right medial and replete algebras will have replete, right medial, left 
medial and shallow Ext-algebras, respectively. 
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Let us take an algebra A with a fixed ordering e = (e\, ̂ 2, • • •, e«) of its primitive 
orthogonal idempotents, and let us consider^* with the "opposite order", i.e., with f = 
(fnJn-\ . . . ,/i), where^ = id^/). Take ipt =fi+fi_l +• • -+/j and </?o = 0. Let us denote by 
A*°(/) the corresponding standard left ^*-modules (with respect to this opposite order), 
furthermore let U*°(i) and V*°(i) stand for the radical and the first syzygy of A*°(z). Then 
similarly to the results of Proposition 3.4, one may identify the left standard A* -modules. 

PROPOSITION 4.1. Assume that (A, e) is quasi-hereditary with A(/) G CA and U(i) G 
CA- Then the left standard module A*°(7) of A* is Schurian; moreover, Ext*(A(/)) = 
A*°(/), Ext*(t/(i))[l] = P°(/) andExf(V(i))[l] = U*°(i). 

PROOF. By Lemma 3.1, the condition A(/) G CA implies that radExt*(A(/)) = 
e*>iExt^(A(z),S). Hence we get that top Ext* (A(/)) ~ Hom^ (A(/), £) ~ 
Horn,* (S(/), S(/)) is simple and of type S*°(i). Moreover, since A(i) has no extensions 
with simple modules S(j) fory < z, and Ext^ (A(z), S(i)) ^ 0 if and only if k = 0 (cf for 
example [DR2]), we get that the composition factors of Ext* (A(/)) (with the exception 
of the top factor) are all of type S*°(J) withy > /. Thus Ext*(A(/)) is a homomorphic 
image of A*°(/). 

On the other hand, consider the sequence 0 —»U(i) —> A(/) —•» S(i) —* 0. By Lemma 3.3 
we get that the following sequence is also exact: 

0 -* Ext* (U(i)) [ 1 ] -* Ext* (S(0) -> Ext* (A(/)) -> 0. 

Moreover, Ext*(U(i))[l] C radExt*(S(i)), since Ext*(S(i)) ^ P*°(0bypart(i). Finally, 
using again the fact that U(i) G G , we get by Lemma 3.1.(i) that Ext*((/(/))[1] Q 
v4*(^/_iP*°(0 hence A*°(/) is a homomorphic image of Ext* (A(/)) . Comparing the two 
results we get the statement for Ext*(A(/)). We also get that A*°(/) is Schurian, since the 
simple factor S*°(i) appears only once as a composition factor of A*°(z). 

The statement that Ext*((7(/))[1] = V*°(i) follows immediately from the previous 
considerations. Furthermore, by Lemma 3.1. (i) we have also U*°(i) = radA*°(/) = 
radExt*(A(0) - ®k>iExt*A(A(i),S) = 0*>oExt*(K(/),S)[l] = Ext*(F(i))[l]. The 
proof is now complete. • 

In order to find a subclass of quasi-hereditary algebras which is closed under taking 
Ext-algebras, we introduce now the main concept of this section. 

DEFINITION 4.2. An algebra A with a complete sequence of primitive orthogonal 
idempotents e = (e\, ei,..., en) is called solid if it satisfies the following conditions for 
\<i<n: 

(1) A(/) is Schurian; 

(2) K(/)cradP(/); 
(3) U(i) has a top filtration by S(/)'s and A(/)'s fory < /; 
(4) V(i) has a top filtration by A(/)'s and P(/)'s fory > /. 
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PROPOSITION 4.3. If the algebra (A,e) is solid then it is a lean quasi-hereditary 
algebra with S(i),A(i), U(f) G CAM 1 < i < n. 

PROOF. TO prove the quasi-heredity, observe first, that from the filtration conditions 
on V(j) it is easy to see that the module A A has a A-filtration with standard modules which 
are, by assumption, Schurian. Hence the algebra (A, e) is quasi-hereditary. 

To prove that the algebra^ is lean, it is enough to show that it satisfies condition (2) 
of Theorem 2.1 in [ADL1], i.e., that V(i) c radP(z') and the trace filtration of U(i) is a top 
filtration for every /. The first part is included in the definition of a solid algebra. For the 
second part, it is enough to prove the following observation: A module X has top trace 
filtration if and only if it has a top filtration where the quotients of the consecutive terms 
are homomorphic images of the standard modules. 

One direction of the statement is obvious since a top trace filtration can be refined to 
a top filtration where all the quotients of the filtration are local modules. For the opposite 
direction, assume that X has a filtration with quotients being homomorphic images of 
standard modules. If £ is the largest index for which an image of A(£) will occur as 
a quotient in the filtration then clearly Xsi+\A = 0; moreover Xe^A cX. The rest will 
now follow by downward induction and from the fact that the natural image of a top 
filtration of X when factoring out with the trace submodule Xe^4 remains a top filtration. 
(It is worth mentioning that, unless we factor out with the trace of a projective module, 
it is not true in general that the natural image of a top submodule is necessarily a top 
submodule of the image.) Hence (A, e) is lean. 

Next we shall prove by downward induction on / that A(/) G CA • The statement is clear 
for A(n) since it is projective. So assume the statement for indices larger than /. Then the 
induction hypothesis and Lemma 2.4 imply that V(i) G G , hence by Remark 2.2. (iii) 
we get that A(/) G CA- Thus the statement is proved for A(z'), 1 < / < n. In particular, 
S(\) = A(l) G CA> By induction on / and using Lemma 2.4 we get that U(i) G CA and 
hence by Lemma 2.5. (i) we have that S(i) G CA • This proves the statement. • 

PROPOSITION 4.4. If A is solid with respect to the sequence e = (e\, ei,..., en), then 
the algebras A/Aei+\A and eiAetfor 1 <i<n are also solid. 

PROOF. Clearly, in both cases we may apply induction. Thus it is enough to prove 
that the algebras AjAenA and £2^2 are solid. For the second statement one only has 
to observe that if e G A is an idempotent element, Xc Y in mod-̂ 4 andX = XeA, then 
Xe c Ye in mod-eAe. Thus the top filtrations of U(i) and V(i) will be inherited from A to 
the algebra ejA £2- The rest is easy, as is the case of the algebra A/AenA. m 

Let us mention, that the filtration conditions (3) and (4) for A/Aei+\A and EiAet are 
precisely those that come by natural restrictions from the filtrations for A. 

The main result of this section is the following theorem. 

THEOREM 4.5. Let {A, e) be a solid algebra. Then: 
(a) ((A*)op, f) is solid (hence quasi-hereditary); 
(b) S(A*) = DS(A); 
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(c) dimKA** = dimKA; 
(d) (£iA£i)* ~ A* J (A*ifj-\A*). (Note that the isomorphisms [A/{AeiA)Y ~ 

ifi-\A*ipi-\ hold for any quasi-hereditary algebra (A, e)). 

PROOF. Propositions 4.1 and 4.3 imply that (A*op, f) satisfies condition (1) for solid 
algebras. Condition (2) for (A*op, f) will follow from Proposition 3.4. (iii), Proposition 4.1 
and Lemma 3.2. Conditions (3) and (4) for (A*op,f) are the consequences of Proposi­
tion 4.1 and Lemma 3.2. Thus (A*op, f) is solid, proving part (a). 

Part (b) is an immediate consequence of Proposition 4.3 and the general Theorem 2.10. 
To prove (c), let us recall an earlier observation that the functor Ext* establishes a 

bijection between the factors of the top filtrations of U(i) and V(i) and the top filtrations 
of V*°(i) and £/*°(z); in this bijection simple modules correspond to projective mod­
ules, standard modules correspond to standard modules and projective modules to sim­
ple modules. Repeating the process, we get that A** has the same type of filtrations for 
the modules U**(i) and V**(i) as A does. It is clear that dim^ S(i) = dim/- £**(/), hence it 
is enough to show that the indecomposable projective modules over^4 and A** have the 
same composition factors. But this is easily proved first by induction for A(z) and U(i) 
and then by downward induction for P(i) and V(i). Hence dim*-^ = dimxA**. 

Finally we prove (d). Evidently, the exact functor HomA(£iA, —): mod-̂ 4 —> mod-e^e, 
defines a homomorphism <b:A* —^{eiAsi)* whose kernel satisfies KerO D A*(p;-\A*. 
Actually, this is an epimorphism. To see this, let us observe first that by Proposition 4.3 
the algebra^ is lean, hence Extl

A(S(j\S(lj) = Ext^e.(S(/),S(£)) for anyy, I > i. Next, 
Propositions 4.4 and 4.3 imply that S(j) G C,^, for anyy > i, hence by Corollary 2.7 
every element of feAst)* can be represented by exact sequences with semisimple kernel-
cokernel terms in the interior of the sequence. Since the short exact sequences with 
semisimple outer terms do appear in the image of <D, we get that O is indeed an epi­
morphism. 

Thus to prove (d), it is enough to show that the A^-dimensions of A* / (A*<pj-\A*} 
and (SiAst)* are equal. Now the remark following Proposition 4.4 implies that these two 
algebras satisfy the same filtration conditions, hence an easy induction argument gives 
the equality of dimensions. • 

COROLLARY 4.6. If the algebra (A,e) is shallow (left medial, right medial or re­
plete) then 04*, f) is replete (right medial, left medial or shallow, respectively) on the 
dual species. 

PROOF. The statement follows from the previous theorem and the characterizations 
of shallow, left medial, right medial and replete algebras given in Section 3 of [ADL1]. • 

5. The case of monomial algebras. In this section we shall be dealing with the 
case of monomial algebras. Thus we shall assume that A = KT/I, with T = (To,T\) a 
graph, where T0 = { 1,2,.. . ,«} is the set of vertices, also thought of as paths of length 
0, and T\ is the set of arrows; the corresponding idempotents of A will be denoted by 
e\9e2,...,en. Denote by T2 the set of minimal 0-paths, i.e., paths belonging to / such that 
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they have no proper initial or terminal segments in /. The assumption that A is monomial 
means that / = (r2). We call a path right-minimal 0-path if it belongs to / and it has no 
initial segment in /. 

Having defined r0 , V\, T2, we define the set r* for k — 3,4, . . . as follows: 

F* = {p\Pi ---Pk path \p\ ET\, pj is a path ^ / for 1 <j < k, 
PjPj+\ is a right-minimal 0-path for 1 <j < k — 1}. 

Note that in the definition of Tk the decomposition p — p\pi.. .pk is unique, and we 
will refer to it as the canonical decomposition of p. Finally take f = |Jj£0 T/t and f+ = 

U£,r*. 
Then (cf [GZ]) the Ext-algebra^* of A is isomorphic to the AT-algebra whose multi­

plicative basis is f and the multiplication is defined by: 

p.p'=lpp' ifpp'ef 
\ 0 otherwise. 

At this isomorphism a path in Tk from i to j corresponds to an extension in 
Ext^ (S(z), S(j)^j. In the sequel we shall identify these two algebras. 

Let us start with a technical lemma about the multiplicative structure of A*. 

LEMMA 5.1. 

(i) Ifp = p\p2 .. -Pk is a canonical decomposition andpi G T\ then p\ .. .pi-\ and 
Pi ...pk both belong to T with these canonical decompositions, and thus p is the 
product of these paths in A*. 

(ii) Ifp\pi.. .pt-\ and pi ...pk are canonical decompositions of two paths in f, and 
Pi-\Pi is a 0-path then p\pi.. .pt-\Pi.. .pk £ T. 

(iii) Ifp — p'afip" e f with a, (3 G F\ and a/3 G T2, then the paths p'a and f5p" both 
belong to f, thusp = p'oc • (3p" in A*. 

(iv) Suppose that A is lean with respect to the given order and has Schurian standard 

modules. Ifp = p1 afip" G f with i—^j^kandj < i,k, thenpfoc,fip" G T; in 
particularp G A*fjA*. 

PROOF, (i) is obvious from the definition of f. In (ii) we only need to notice that 
Pi-ipt is right-minimal as a 0-path, since /?,_i ^ / and/?/ consists only of one arrow. 
In order to prove (iii) we observe that a/3 cannot be a part of any canonical component 
of p, thus /3 is an initial segment of a component. Then the right-minimality condition 
implies that (3 itself is a canonical component, so we can apply (i). Finally, we note that 
the conditions on ,4 in (iv) imply that any 2-long path a/3 whose middle vertex is minimal 
belongs to T2, thus we can apply (iii). • 

Let us first prove a general statement about the graph of the Ext-algebra of a monomial 
algebra^. The implication (3) =$> (2) was also proved by Green and Zacharia (see [GZ]). 

THEOREM 5.2. Let A ^ KT/I be a monomial algebra. Then the following are equiv­
alent: 

(1) S(i) G CAfar 1 < J < n; 
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(2) A andA*op have the same graph; 

(3) A is quadratic; 

(4) Ext^(£,£)Crad2(yO. 
If {A, e) is, in addition, lean with Schurian standard modules, then conditions (1)—(4) are 
all equivalent to: 

(5) A(/) G C, A°(0 G Cfor 1 < i < n. 

PROOF. The equivalence of (1) and (2) was proved in Theorem 2.10 in a more gen­
eral setting, for arbitrary algebras. 

Next, the implication (2) => (4) is clear, since the assumption on the graph of A* means 
that the stronger condition of Extl

A(S,S) C rad2 A* for / > 2 is satisfied (cf the remark 
following Proposition 1.1). 

To prove that (4) =̂> (3) suppose that A is not quadratic, i.e.^Yi contains a path/? longer 
than 2. Recall that the AMinear span of T2 is in bijective correspondence with Ext^(S, S). 
Thus condition (4) would imply that/? is the product of two elements of f+. On the other 
hand it is clear that/7 $ T\ T\. Moreover, by the minimality of the elements of T2, /? 
cannot contain a proper zero subpath. Hence/? ^ rad2^4*, a contradiction. 

Finally, we get that (3) => (2), since if T2 consists of paths of length 2 only, then by 
Lemma 5.1. (i) T/ consists of paths of length /, and T, C rad'̂ 4*. 

Assume now that the algebra A is in addition lean with Schurian standard modules. 
Let us show that (1) => (5). It is easy to see that U(i) is the ^-linear span of those non-

ex 

zero paths for which the first arrow is /—»/ withy < /', while V(i) is the span of paths 

with first arrow i—+t and i < L Thus radP(i) = U(i) ® V(i). Now condition (1) implies 

that radP(/) = Q\ ($(/)) € CA and hence by Lemma 2.3 we get that V(i) G CA- Since by 

assumption V(i) c rad P(i)9 we get that A(/) G CA • Using the equivalence of conditions (i) 

and (ii) of Theorem 2.10, we get that (1) => (5). 
To verify that (5) => (l)-(4), we will show that if A is not quadratic, then A(7) ^ CA 

or A°(/) ^ C°A for some 1 < / < n. If A is not quadratic, then there is a path/7 G T2 

of length greater than 2. Let/? = io—>i\—> > /*• Now, it cannot happen that z'o > h 
and 4 > h-\ since otherwise the minimal vertex ij would appear in the interior of the 
path/?, hence by Lemma 5.1. (iv) we would get that/? is not a minimal 0-path. Thus, we 
may assume by the left-right symmetry of condition (5) that z'o < U • But then we get that 
A(/o) ^ C^\ since the path i\ —> ^ 4 is non-zero. This completes the proof. • 

Let us now turn to the question of quasi-heredity. For the idempotents in To as el­
ements of A* we shall also use the notation f,f2,... ,f„ to conform with the general 
notation in this paper. Recall that f = (f„,f„-\9... ,/i) and iff = f +f-\ + • • • +/i, with 
^o = 0. 

The main result of this section is a necessary and sufficient condition for the quasi-
heredity of A*. In order to handle the concept of quasi-heredity efficiently in this setting, 
we need the following technical lemma for algebras with a multiplicative basis. 
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LEMMA 5.3. Suppose the algebra (A,e) has a multiplicative basis *B = ® ] U ^ 
such that (B] — { e\, ei,..., en } is a complete set of primitive orthogonal idempotents 
and $2 is a basis of rad A. Then A is quasi-hereditary with respect to the given order e // 
and only if for any b, b\ c, c' G (B, 

(i) be\c = b'eic1 implies that either beic G Aei+\A or bet = bfe\ andejC = etc'; 
(ii) bet, e;C ^ Asi+\A implies that be^ fi Aei+\A. 

PROOF. Let us notice first that for any b G (B there is precisely one pair of indices 
(if) such that etbej ^ 0 and for this pair b = etbej. 

Since the image of (B{e\ + • • • + e„-\) gives a multiplicative basis for A/AenA, it is 
enough to prove that the conditions (i) and (ii) formulated for / = n hold if and only if 
AenA is a heredity ideal, i.e., AenA is a direct sum of copies of A(n) = P(n) with A(n) 
Schurian. 

Assume first that AenA is a heredity ideal. Then we haveAenA = Y.be'B benA where the 
non-zero summands have simple top isomorphic to S(n). On the other hand the images of 
these summands are independent in AenAj xa.d{AenA). Namely, suppose that 0 ^ cen G 
T.be(B\{c}DenU +Aen mdA for some c e *B andxb G A. Then cen G Y,be<B\{c}benXben + 
Ae„ mdAen = Y,be<B\{c}^ben +Aen radAen for some A*, G K. But the Schurian property 
implies that enradAen = 0, hence c = cen = E/,G(B\{c} K^* a contradiction. Thus the 
number of non-zero summands in T,be<B benA is equal to the number of direct summands 
of top AenA, hence to the number of (indecomposable projective) direct summands of 
Ae„A. Hence a dimension argument shows that EZ><E# benA is a direct sum, with non-zero 
components isomorphic to enA. So the different summands have disjoint bases, implying 
that be„c ^ b'enc' whenever b ^ b' and benc, b'enc' ^ 0; this gives half of condition 
(i). On the other hand, the natural homomorphism enA —•* be„A (for ben ^ 0) is injective, 
hence it maps different basis elements to different basis elements. This implies the other 
half of condition (i) and also condition (ii). 

Now assume that conditions (i) and (ii) are satisfied for (A, e) with / = n. We want to 
show that AenA is a heredity ideal. First, A(n) is Schurian, i.e., en xa.dAen = 0. Otherwise, 
there would be an element b G %. such that enben ^ 0, so e„ - e„ - ben = eno en ' en 

enbe„ ̂  0, contradicting condition (i), since en ^ enb. Next we show that AenA is a direct 
sum of copies of P(n). As above, we can write AenA = E ^ # benA, where the non-zero 
summands are independent by (i). Furthermore, each summand is either 0 or isomorphic 
to enA by conditions (i) and (ii). • 

THEOREM 5.4. Let A = KT/I be a monomial algebra with gl.dim^ < oo. Then 
(A*, f) is quasi-hereditary if and only if (A, e) is lean with Schurian standard modules. 

PROOF. Assume first that (A, e) is lean with Schurian standard modules. According 
to Lemma 5.3, all we have to prove is that for every i and for every p,p\ q, q' G f: 

(i) p -fr q = p' •£ • q' gA*(fi-\A* implies that/? = p' and q = q'\ 
(ii) p -fufi - q $A*(fj-\A* implies that/? -f • q $ A*(pt-\A*. 
To prove (i), assume s = p • f • q— pf' • f- q' ^A*Lpt-\A*. Then by Lemma 5.1. (iv) 

the vertex / is minimal in the path s. If/? ^ p', say, p is a proper subpath of/?' then 
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Lemma 5.1. (iv) implies that s = p -f-x- f- q' with some x G f+. Now it follows from 
the leanness and the Schurian property, together with Lemma 5.1. (ii) that*, xx,xx -JC, . . . 
all belong to f, contradicting the condition that gl. dim,4 < oo. 

In proving condition (ii) we use the same argument as above, showing first that / is a 
minimal vertex in both/? -f and^ • q and then again Lemma 5.1. (ii) implies (together 
with leanness and the Schurian property) that/? -f -q is a non-zero product in A* and the 
path contains no vertices smaller than /. Hence/? -f • q $ A*(fj-\A*. 

Assume now that (A*, f) is quasi-hereditary. To prove that the monomial algebra (A, e) 
is lean with Schurian standard modules, it is enough to show that T has no loops and for 

a 0 

any arrows / —>y andy —»k withy < /, k, the path a/3 is a 0-path in A, i.e., af3 G 1^. The 
former statement follows immediately from the Schurian property of A*, while the latter 
follows from condition (ii) of the quasi-heredity of (A*, f), as described above. • 

Another type of relationship between leanness and quasi-heredity is given in the fol­
lowing theorem. 

THEOREM 5.5. Let A — KY/I be a monomial algebra. If(A,e) is quasi-hereditary 
then either (̂ 4*, f) is lean with Schurian standard modules or the graph of A* has loops. 

PROOF. Suppose (A,e) is quasi-hereditary and the graph of A* has no loops. Let 
p G T*, k > 2 be a path going through the vertices vo, v\,..., V[. By induction on k we 
prove that v i , . . . , v^_i < max { vo, v̂  } . 

Let us first take the case k — 2. Suppose there is 1 < / < I — 1 such that v, > v, for 
0 <j < £ and/? = p'p" where the endpoint of/?' is v,. By the minimality of the 0-path/? 
the subpaths/?7 and/?;/ are not 0 in A. Since A is monomial, the non-zero paths of Y form 
a multiplicative basis of A, satisfying the requirements of Lemma 5.3. The maximality 
of v/ implies that/?7,/?" ^ Aei+\A, hence we may apply condition (ii) of Lemma 5.3 to 
get that/? = p'p" is a non-zero path. This contradicts to the assumption that/? G Yi-

Suppose the statement has been proved for indices up to A:, A: > 2; now we shall 
prove it for k + 1. Let /? = p\pi.. .p/cPk+\ be the canonical decomposition of/?. Let 
p' = /?i/?2.. .pk G Yk.Pk = rs such that/?" = spk+\ G I" .̂ Thus by the induction 
hypothesis no internal vertex of/? can be maximal as it would be an internal vertex of/?' 
or/?". 

Now, to prove that A* is lean with Schurian standard modules, by Theorem 2.1 in 
[ADL1] it is enough to show that/rad2^*// cyjrad^*^A/rad^*// for 1 < ij < n and 
M = max { i j }. So let/? = /?' • p" G f be a path from / toy' with/?',/?" G f+. Then, as 
we proved above, M = max { i j } is bigger than any internal vertex of/?, in particular 
than the endpoint of/?7. So/? G /̂ radA*LpM-\ rad;4*//, proving that (A*, f) is lean. Notice 
that this also proves the Schurian property (i.e., that^J rad^*// QfiA*<Pi-\A*fi) if we take 
into account the assumption that the graph of A* has no loops. • 

The previous two theorems yield the following corollary. 

COROLLARY 5.6. Let A — KY /I be a monomial algebra. If (A, e) is lean and quasi-
hereditary, then so is (̂ 4*, f). 
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PROOF. Since A is quasi-hereditary, gl. dim A < oo and hence by Theorem 5.4 (A* J) 
is quasi-hereditary. This, on the other hand, implies that the graph of A* cannot have 
loops, so by Theorem 5.5 (A*, f) is also lean. • 

6. Examples. 

I ~ . 
EXAMPLE 6.1. L e t ^ = 2 © f 0 •?, and consider 

1 ' * 

Here a is a top embedding and the first two terms of the sequence are in CA but the last 
one is not in C^ (cf. Lemma 2.4). 

1 2 , 
EXAMPLE 6.2. L e t ^ = 2 © 1 3 $ ;?, and consider 

1 2 . 

0 — \ A l 2 3 _ + 3 _ 0 . 

Here a is a top embedding and the last two terms of the sequence are in CA, but the first 
is not in C^ (see again Lemma 2.4). 

1 4 
EXAMPLE 6.3. Let AA = 2 © ] © ] © * 3, and consider 

1 1 

2 2 

Here (3 is a top embedding into the radical of the second term, the last two terms of the 
sequence are in CA, but the first one is not in C^ (see Lemma 2.5). 

1 ~ 
EXAMPLE 6.4. LetAA = 2 3 © f © 3, and consider 

1 ' 

U 2 2 3 3 U" 

Here /} is again an embedding into the top of the radical of the second term, the first and 
the last term of the sequence are in CA but the middle term is not in CA

l) (cf Lemma 2.5). 

EXAMPLE 6.5. Let 4 , = 1 . Here A(l) G C, A(l)° G C° but 5(1) £ C Thus the 

assumption in Theorem 5.2 on the Schurian property of A(z) was really needed to prove 
the implication (5) => (1). (Let us mention here that for this example only the projective 
modules are in CA-) 

EXAMPLE 6.6. Let us consider the following algebra: 

1 2 , 2k - , , , 2£+2 ~,,~ 
^ = 2 0 3 4 0 © • • • © 2*+l 2*+2 © llll © • • • © 2M © ^+3 0 2 £ + 4 ^ 

3 5 5 2*+3 lk+5 21+4 It+4 
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Then S(\) G (T(£+1) \ C^t+2) and all the other simple modules are in CA- Hence observe 
that Ext*(S, S) C rad2 v4* for all 2 < k < I + 1, thus the graph of A* is increased only by 
an element from Extf+2(S, S). This cannot happen for monomial algebras by Theorem 5.2 
and Theorem 2.10. 

EXAMPLE 6.7. Take the following algebra: 

3 4 

AA — 1 83 i ® 2 0 - 5 ® , . 
1 1 

Then A(/) <E G , A(/)° E Q for 1 < / < /i but (7(4) £ G (c/ Proposition 4.1). Let us 
also observe that 

A*A* = I e 2 e I e 3 5 e * 

is not lean with respect to the opposite order (cf. also Proposition 3.5) although^ is lean 
quasi-hereditary; for monomial algebras this cannot happen by Corollary 5.6. 

EXAMPLE 6.8. Let A be given by 

^ = 1 0 1 3 0 4 0 * 0 5 . 
4 4 5 3 

Then we have: 

A*A* = 4 0 1 3 0 ^ 0 * 0 5 . 
5 4 4 5 

Thus ,4 is lean quasi-hereditary but ,4* is not quasi-hereditary (with respect to the opposite 
order), something that cannot happen for monomial algebras by Corollary 5.6.—Notice 
also that here for C = £2^2 we have 

2 3 
Cc = 3 0 4 0 * 0 5 and 

4 5 D 

C*C*= 3
2

5 0 I 0 * 0 5. 

On the other hand for B* = A*/A*(p\A* we have 

B*B* = I 0 I 0 * 0 5. 

Hence (£2^2)* 9^4* /A*<p\A*9 something that cannot happen for solid algebras (see The­
orem 4.5). 

1 2 
2 3 

EXAMPLE 6.9. LetAA = 3 0 ] 0 1 . Then^*v4* = \ 0 \ 0 j 3
3 . Hence^ is quasi-

2 2 

hereditary, monomial, and the graph of ,4* contains a loop, hence the second possibility 
in the implication of Theorem 5.5 actually may occur. 

EXAMPLE 6.10. Let4* = 3 0 2 0 4 0 *. T h e n ^ * = 2
J

3 0 2 0 \ 0 \ . Here 

4̂ is monomial, lean and not quasi-hereditary, but .4* is lean and quasi-hereditary. Hence 
the converse of Theorem 5.5 and Corollary 5.6 is not true. 
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EXAMPLE 6.11. Let us consider the following algebra: 

1 \ 3 \ 0?* 2k+\ 2k+2 ,,,_,, 
A A = 2 0 © 4 9 ®" • • 0 2£J 0 2A+2 0 2*+3 0 ^ 0 2W . 

3 ^ 5 ^ ^ 2A+3 2*+4 2 * + 4 

Then the Ext-algebra is given by: 

Thus A is a monomial algebra, and Ext^+2(5,5)2 rad2^*; hence some new elements of 
the species of A* come from high Ext's. Of course, by Theorem 5.2 there are elements 
of ExtA(S,S) which get into the species, too. 

EXAMPLE 6.12. Let A be given by 

2 5 

AA= \® \ 4 0 3 0 ^ 0 4 
3 3 

Then we have: 
2 

A*A* = ] © 1 5 0 3 © ] © ] and 

2 

*/4** "~ 3 ^ 4 ^ 7 J ^ 3 ^ t - i 0 1 5 , 0 3 0 ^ 0 4 . 
3 3 

Here A is replete but^4 9̂  ^**. Thus in Theorem 4.5 although we have equality for the 
dimensions of A and v4**, in general we cannot state that these two algebras would be 
isomorphic. 
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