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Turbulent flows are strongly chaotic and unpredictable, with a Lyapunov exponent that
increases with the Reynolds number. Here, we study the chaoticity of the surface quasi-
geostrophic system, a two-dimensional model for geophysical flows that displays a direct
cascade similar to that of three-dimensional turbulence. Using high-resolution direct
numerical simulations, we investigate the dependence of the Lyapunov exponent on the
Reynolds number and find an anomalous scaling exponent larger than that predicted
by dimensional arguments. We also study the finite-time fluctuation of the Lyapunov
exponent by computing the Cramér function associated with its probability distribution.
We find that the Cramér function attains a self-similar form at large Re.
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1. Introduction
Turbulence is a complex and chaotic phenomenon characterised by a large number of
interacting degrees of freedom organised hierarchically across multiple scales of motion
(Frisch 1995). Determining whether a turbulent flow remains predictable or, at each
scale, retains any degree of predictability has been a longstanding challenge, tracing back
to the pioneering works by Lorenz, Ruelle, Leith and Kraichnan (Lorenz 1969; Leith
1971; Leith & Kraichnan 1972; Ruelle 1979; Deissler 1986). The nonlinear amplification
of small-scale perturbations led to the formulation of the famous ‘butterfly effect’
(Lorenz 1963). When extended to multiscale systems such as turbulence, these ideas
give rise to the concept of the cascade of errors, in which small-scale perturbations
progressively amplify and propagate to larger scales, gradually spoiling predictability
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at larger and larger scales (Boffetta et al. 1997; Rotunno & Snyder 2008; Boffetta &
Musacchio 2017; Palmer 2024).

A key mathematical tool for studying predictability is the Lyapunov exponent and its
finite-time version (FTLE). Ruelle predicted that the Lyapunov exponent in turbulence is
proportional to the inverse of the smallest time, the Kolmogorov time, and therefore it
increases with the flow’s Reynolds number (Re) (Ruelle 1979). Nonetheless, a turbulent
flow at large Re remains predictable at large scales since the error grows with the
characteristic turnover time of that scale, which is independent of the Reynolds number.
This property is familiar in oceanography and atmospheric flows where the smallest time
scale can be very small (seconds) (Garratt 1994) while the weather remains predictable for
days.

In this work, we consider the surface quasi-geostrophic (SQG) equation, a model
that describes the flow governed by the conservation of buoyancy at the surface of a
rotating, stratified fluid (Blumen 1978; Pierrehumbert, Held & Swanson 1994). Beyond
its geophysical relevance, the SQG model has gained attention in the fluid dynamics
community due to its striking similarities to three-dimensional (3-D) Navier–Stokes (NS)
turbulence while keeping some properties of two-dimensional (2-D) flows. In particular,
the SQG model has two inviscid quadratic invariants, similar to 2-D turbulence (Celani
et al. 2004; Lapeyre 2017; Valade, Thalabard & Bec 2024) with one of the two, the surface
potential energy, displaying, in the presence of forcing and dissipation, a direct cascade à
la Kolmogorov towards the small scales similar to 3-D turbulence (Valadão et al. 2024).
Despite this similarity, previous numerical studies (Pierrehumbert et al. 1994; Ohkitani &
Yamada 1997; Sukhatme & Pierrehumbert 2002) reported that the scaling exponent of
the spectrum of the surface potential energy deviates from the Kolmogorov value −5/3
predicted by dimensional arguments.

Based on very high-resolution direct numerical simulations of the SQG model, we study
the predictability of the direct cascade in relation to the scaling properties of the surface
buoyancy field. At large Reynolds numbers, we observe the recovery of the Kolmogorov
scaling in the surface potential energy spectrum. Further, we measure the finite-time
distribution of the Lyapunov exponent as a function of Re and we find an anomalous
scaling law in which the Lyapunov exponent grows faster than what is predicted on
dimensional grounds, similar to what was observed in 3-D NS turbulence (Boffetta &
Musacchio 2017; Mohan, Fitzsimmons & Moser 2017; Berera & Ho 2018). Despite this
anomaly, we find that the distribution of the FTLE follows an almost universal function,
independent of the Reynolds number of the flow.

The remainder of this paper is organised as follows. In § 2 we review the basic definitions
of the SQG equation and discuss its statistical properties in the turbulent regime. Section
3 discusses the main results obtained in this work through the use of extensive numerical
simulations covering a large range of Reynolds numbers. We split the results into two
subsections: § 3.1 explores the Reynolds dependence on the dimensional scaling properties
of SQG, principally the scaling exponent of the surface potential energy spectrum; § 3.2
addresses the Eulerian predictability and the statistics of the FTLE as functions of
Reynolds number. In § 4, we summarise our results, pointing out directions for future
research.

2. The surface quasi-geostrophic model
The SQG model describes the large-scale dynamics of a rapidly rotating, stably
stratified flow using a 2-D equation for the surface buoyancy field θ(x, t) (Juckes 1994;
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Pierrehumbert et al. 1994; Lapeyre & Klein 2006; Lapeyre 2017; Vallis 2017; Siegelman
et al. 2022):

∂tθ + v · ∇θ = ν∇2θ −μ∇−2θ + f . (2.1)

The incompressibility condition ∇ · v = 0 is enforced through the stream function
ψ(x, t) which defines the velocity field as v(x, t)= (−∇yψ,∇xψ). The relation between
the buoyancy field and the stream function is given by ψ =∇−1θ or, in Fourier space,
ψ̂ = θ̂/k (where k ≡ |k|) and consequently the velocity field can be written in terms of
buoyancy field as

v̂(k)=
(
− iky

k
,

ikx

k

)
θ̂ (k) (2.2)

from which one observes that θ has the dimension of a velocity.
In the absence of forcing and dissipation ( f = 0, ν = 0, μ= 0), the SQG equation (2.1)

conserves two quadratic quantities, the vertically integrated energy (VIE),

V = 1
2 〈ψθ〉, (2.3)

and the surface potential energy (SPE),

E = 1
2 〈θ2〉, (2.4)

where angle brackets stand for spatial average.
The dissipative and forcing terms in the SQG equation represent the effects of scales

not resolved by the model, their specific form being somewhat arbitrary (Smith et al.
2002; Lapeyre & Klein 2006; Burgess, Scott & Shepherd 2015). In (2.1) we introduce
a diffusivity ν and a large-scale damping μ chosen to be active at, respectively, small and
large scales only, while the forcing is active on a narrow range of scales around � f .

Under these conditions, one expects that a turbulent flow develops with a double cascade
phenomenology (Blumen 1978; Pierrehumbert et al. 1994). Within this scenario, SPE is
primarily transferred from the forcing scale to smaller ones (� < � f ), producing the direct
cascade which is eventually dissipated by viscosity at the diffusive scale �ν . Meanwhile,
VIE undergoes an inverse cascade, transferring energy to scales larger than the forcing
(� > � f ) until it is dissipated at the friction scale �μ. In the statistically stationary state,
the SPE and VIE balances are given by

εI = εν + εμ, (2.5)
ηI = ην + ημ, (2.6)

where εI = 〈θ f 〉 and ηI = 〈ψ f 〉 are the input rates, εν = ν〈|∇θ |2〉 and ην = ν〈∇ψ · ∇θ〉
are the small-scale dissipation rates while εμ =μ〈θ∇−2θ〉 and ημ =μ〈ψ∇−2θ〉 are the
large-scale dissipation rates of SPE and VIE, respectively.

Under the assumptions of statistical homogeneity and isotropy, Blumen (1978) first
predicted the power-law behaviour of the energy spectrum E(k)≡ 〈|θ̂ (k)|2〉/2 for
sufficiently large scale separations �ν� � f � �μ. In this case, the spectral energy
densities follow

E(k)� η2/3
μ k−1, 1/�μ� k� 1/� f , (2.7)

E(k)� ε2/3
ν k−5/3, 1/� f � k� 1/�ν (2.8)
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and the diffusive and friction scales are determined on dimensional grounds as

�ν ≡
(
ν3

εν

)1/4

, �μ ≡
(
ημ

μ3

)1/9

. (2.9)

The ratio between the dissipative and forcing scales, i.e. the extension of the inertial range,
defines the Reynolds numbers associated with the flow. For the direct cascade of SPE, in
analogy to 3-D NS turbulence, we define the Reynolds number as

Re≡ ε
1/3
I �

4/3
f

ν
�

(
� f

�ν

)4/3

. (2.10)

Note that in (2.10) Re is based on εI and it is therefore defined a priori. Alternatively, we
could use the VIE dissipation εν resulting in a slightly smaller value of Re, as discussed
below.

The scaling laws in (2.7)–(2.8) can also be obtained from the analogous for SQG of the
exact four-fifths law of turbulence (Valadão et al. 2024; Valade, Bec & Thalabard 2025)
and by assuming self-similarity of the statistics (Frisch 1995). Following this approach,
one expects velocity and surface buoyancy to have the same scaling exponent 1/3, which
corresponds to that of the velocity field in 3-D NS turbulence. This observation allows
us to adapt to the SQG model the dimensional arguments developed by Ruelle for the
predictability of 3-D NS turbulence (Ruelle 1979). According to the latter, the Lyapunov
exponent λ characterising the exponential growth of an infinitesimal perturbation of a
solution of (2.1) should be proportional to the inverse of the smallest dynamical time, i.e.
the Kolmogorov time τν ≡ (ν/εν)1/2:

λ� 1
τν
� 1
τ f

Re1/2. (2.11)

In the following section, we numerically investigate the scaling properties of the surface
buoyancy field and the prediction (2.11).

3. Numerical simulations and results
We explore the statistical properties and the Eulerian predictability of the direct cascade
in SQG at different Reynolds numbers by numerically integrating (2.1) at high resolution
with a pseudo-spectral, GPU-accelerated code. Simulations are performed in a square
domain of size Lx = L y = 2π with periodic boundary conditions, using a regular grid with
resolution N × N ranging from N = 1024 to N = 16 384. Simulations cover more than
two decades in the diffusion coefficient, corresponding to a Reynolds number (2.10) which
varies from Re= 600 to Re= 1 59 000, while the large-scale dissipation coefficient μ is
fixed. For all runs, the system is driven by a constant-amplitude forcing with random
phases, active within a narrow circular shell in wavevector space centred on k f = 3.5
and with a small width �k = 0.5. This forcing provides constant SPE and VIE injection
rates εI and ηI , respectively, with εI ≈ ηI k f since �k� k f . Specific details of the GPU
code performances can be found in Valadão et al. (2025).

The most relevant parameters for the simulations are listed in table 1. All the simulations
are performed in statistically stationary states, including the subset of simulations for
computing the Lyapunov exponent. We also performed a careful study on the sensitivity
of the following results to the maximum resolved wavenumber kmax �ν by increasing
resolution at fixed Re. We found independence of the results on the resolution for
kmax �ν � 1.5.
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Run N Re kmax �ν τν Ttot/τ f Run N Re kmax �ν τν Ttot/τ f

A1 1024 642 5.5 0.0260 — C2 4096 10 600 2.9 0.0075 1520
A2 1024 794 4.7 0.0240 — C3 4096 15 900 2.1 0.0062 1520
A3 1024 1060 3.8 0.0210 — C4 4096 21 200 1.7 0.0054 1520
A4 1024 1590 2.9 0.0180 — C5 4096 25 400 1.5 0.0049 1520
B1 2048 2120 4.7 0.0160 — D1 8192 31 800 2.5 0.0044 9× 287
B2 2048 3180 3.5 0.0130 2270 D2 8192 42 400 2.1 0.0039 9× 287
B3 2048 6350 2.1 0.0099 — D3 8192 63 500 1.5 0.0031 9× 287
B4 2048 7940 1.8 0.0086 2270 E1 16 384 90 800 2.3 0.0026 —
C1 4096 3970 5.9 0.0120 — E2 16 384 159 000 1.6 0.0020 —

Table 1. Relevant parameters of the simulation: Reynolds number, diffusive scale �ν = ν3/4ε
−1/4
ν , diffusive

time τν =√ν/εν , total length of the Lyapunov simulations Ttot (9 independent realisations of length 287τ f
for runs D). Common parameters for all simulations: forcing wavenumber k f = 3.5 and width Δk f = 0.5,
surface potential energy input εI = 24, friction coefficient μ= 1.0, characteristic time at the forcing scale
τ f = ε−1/3

I �
2/3
f = 0.51, maximum resolved wavenumber kmax = N/3 (2/3 dealiasing rule).
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Figure 1. The SPE relative dissipation εν/εI (filled circles) and VIE relative dissipation ην/ηI (open circles),
both as functions of Re. The inset shows ην/ηI as a function of Re on a log–log scale.

3.1. Statistics of the direct cascade
For large separations between the forcing and the dissipative scales, one expects that
almost all the SPE is transferred and dissipated at small scales, while VIE is dissipated
at large scales. This is the essence of the argument developed by Fjørtoft for 2-D
turbulence (Fjørtoft 1953) and verified by numerical simulations of 2-D NS double cascade
(Boffetta & Musacchio 2010). In the present case, using (2.5) and (2.6) and the scaling
relation η� � �ε� this argument gives

ην

ημ
=

(
�μ − � f

� f − �ν
)
�ν

� f
� Re−3/4, (3.1)

where we have used (2.10) to express �ν/� f as a function of Re.
Figure 1 shows the fraction of small-scale dissipation of the inviscid invariants as a

function of the Reynolds number of the flow in statistically stationary conditions. Indeed,
we find that the small-scale relative dissipation of VIE vanishes in the limit of large
Re following the prediction (3.1). On the contrary, since we do not resolve the inverse
cascade and �μ ∼ � f , there remains a constant large-scale SPE dissipation εμ for large Re.
Therefore, the direct cascade transfers only a fraction of the total injected energy
equivalent to εν ≈ 0.45εI for Re � 104.
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Figure 2. Normalised SPE direct cascade fluxes Π(k) of all runs of table 1. The dashed line represents
εν/εI = 0.45.
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Figure 3. Time-averaged spectra E(k) for all simulations. Colour coding is the same as that of figure 2. Inset:
CK as a function of the Reynolds number.

Stationary fluxes of SPE in Fourier space are presented in figure 2 for different Reynolds
numbers. At moderate Re � 3000 the fluxes for k > k f decay quickly as a consequence of
the viscous dissipation. For large Re, however, a plateau of constant flux emerges at a
level corresponding to the viscous dissipation rate εν . We emphasise that SQG turbulence
exhibits large fluctuations in the flux of the direct cascade, as studied in detail in Valadão
et al. (2024). These fluctuations arise from the interplay between the accumulation of
energy in large-scale structures and intense dissipative events triggered by the formation of
filamentary shocks that transfer energy from large to small scales over short time intervals.
Thus, very long integrations are necessary to observe the convergence to the constant flux
plateau of figure 2.

The time-averaged spectra E(k) of SPE are shown in figure 3 for all the runs in table 1.
All spectra exhibit power-law behaviour, E(k)∝ k−β , in an intermediate range of scales,
which becomes wider as Re increases. We observe that at moderate Re, when a scaling
range is already clearly observable, the scaling exponent β deviates significantly from
the dimensional prediction 5/3, a feature already reported by previous investigations at
comparable Reynolds numbers (Pierrehumbert et al. 1994; Ohkitani & Yamada 1997;
Sukhatme & Pierrehumbert 2002). Nonetheless, we find that when Re is sufficiently large,
Re � 104, the scaling of the dimensional prediction (2.8) is closely recovered.

To quantify this important result, we measured the correction ξ to the dimensional
scaling exponent by fitting the intermediate range of the spectra with

EK (k)=CK ε
2/3
ν k−5/3

(
k

k f

)−ξ
, (3.2)
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Figure 4. Scaling exponent correction ξ to the SPE spectrum as a function of Re. Inset: E(k) compensated
with EK (k) given by (3.2). The runs follow the same colour coding as in figure 2.

where ξ and CK are the fitting parameters. In order to estimate the robustness of the
fit, we adopted the following procedure. For each run, we fit the data with (3.2) in a
range of wavenumbers k ∈ [k0, k1] with varying k0 ∈ [3k f , 5k f ] and k1 ∈ [8k f , 10k f ].
This produces a set of parameters ξ and CK for each run, from which we compute the
mean using twice the standard deviation as an estimation of the error.

In figure 4, we plot the dependence of ξ on Re, together with the spectra of figure 3
compensated with the expression (3.2). It is evident that, while for Re � 104, the exponent
correction ξ depends on Re (approximately as Re−3/4), for larger values of Re, the
correction decreases much faster and becomes smaller than 5 % for Re> 2× 104. In this
limit, we also observe the convergence of the dimensionless constant to CK = 5.05± 0.11
(see figure 3).

We remark that this behaviour, which suggests the existence of a minimum Reynolds
number for the recovery of dimensional scaling, is very different from what was observed
in the direct cascade of 3-D NS turbulence, where Kolmogorov scaling is observed as soon
as the spectrum displays a power-law behaviour.

3.2. Predictability of the direct cascade
In this section, we investigate the predictability of the cascade by computing how two
solutions θ(x, t) and θ ′(x, t) separate in time on average. We consider infinitesimally
close solutions so that the average separation rate is given by the maximal Lyapunov
exponent of the flow.

Starting from a solution θ(x, t) of (2.1) in a statistically stationary state, we generate a
perturbed solution as θ ′(x, t)= θ(x, t)+ 2

√
ΔW (x), where W (x) is a Gaussian random

white noise with zero mean and unit variance whileΔ is a small parameter. The SPE error
EΔ is defined, for any time, as

EΔ(t)= 1
2 〈δθ(x, t)2〉, (3.3)

where the difference field is δθ = (θ ′ − θ)/√2 and the normalisation coefficient 1/
√

2
ensures that EΔ = E for two completely uncorrelated fields. At initial time, by definition,
we have EΔ(t)=Δ. We measure the FTLE by computing the growth rate of the error

γτ (t)= 1
2τ

ln
(

EΔ(t + τ)
Δ

)
(3.4)
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and then by rescaling the perturbed field to the initial SPE error

θ ′ ← θ −
√
Δ

EΔ
(θ − θ ′). (3.5)

By repeating the steps (3.4) and (3.5) over many time intervals of the same length τ , we
obtain a distribution of the FTLE along the trajectory. The rescaling procedure (3.5) en-
sures the permanence of the perturbation in the exponential growth regime when Δ and τ
are sufficiently small (Vulpiani, Cecconi & Cencini 2009).

From the definition (3.4) one can compute the FTLE for any time multiple of τ , T = nτ ,
simply by averaging

γT (t)= 1
n

n∑
k=1

γτ (t + kτ) (3.6)

and the Lyapunov exponent is given by the average of the FTLE over a very long trajectory
(and becomes independent of the initial condition):

λ= lim
T→∞ γT (t). (3.7)

In general, the distribution of the FTLE around the Lyapunov exponent, for sufficiently
large T , follows the large deviation principle (Vulpiani et al. 2014) which states that

ρ(γT )= 1
NT

e−T C(γT ), (3.8)

where NT is a normalising factor and C(γT ) is the Cramér function, independent of T
which, in general, vanishes at γT = λ and is positive for γT �= λ (Boffetta et al. 2002). For
not too large fluctuations, the Cramér function can be approximated by a quadratic form:

C(γT )≈ (γT − λ)2
2Ω

, (3.9)

where Ω , proportional to the variance of the distribution ρ(γT ), is obtained from

Ω = lim
T→∞ T 〈(γT − λ)2〉γ , (3.10)

where the angle brackets represent the average over the distribution (3.8) while Ω is
expected to be independent of T in the limit of large T .

We computed the FTLE for simulations at different Reynolds numbers corresponding
to runs B2, B4, C2, C3, C4, C5, D1, D2 and D3 of table 1. For all runs, we excluded
from the statistics the initial transient during which the perturbation aligns with the most
unstable direction of the system. For the three cases at the highest Reynolds numbers, we
compensated for the increased computational cost by averaging over nine independent,
shorter simulations run in parallel, each of which with different realisations of the forcing
f (x) and initial perturbation noise W (x). All rescaling times τ were kept around the
Kolmogorov time scale of the simulation τν , more precisely, between τ/τν ∈ [0.5, 0.8]
depending on the run.

Figure 5 shows a representative realisation of the field θ(x) along with its corresponding
perturbation field δθ(x). The errors accumulate predominantly in filamentary zones
between coherent structures. These regions are dominated by small-scale structures
formed by energy transfer from larger scales (Pierrehumbert et al. 1994). Since such
structures appear intermittently in time, the convergence of the FTLE statistics requires
very long simulations, as discussed below.
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Figure 5. Fields (a) θ(x) and (b) δθ(x) of run D3. The colour code of (a) is based on θ(x)/ supx |θ(x)|. The
colour code of (b) is based on a log scale (= log10(|δθ(x)|/ supx |δθ(x)|)) to facilitate visualisation.
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Figure 6. Energy spectra E(k) (full lines) and error spectra EΔ(k) (dotted lines) for the different runs as
functions of k�ν . The error spectra are computed from the difference field δθ before the rescaling (3.5) to the
initial error.

The distribution of the error field among scales, right before the rescaling, is shown in
figure 6 where we plot, together with the energy spectra E(k), the error spectra defined
in a similar way as EΔ(k)= 〈|δθ̂(k)|2〉/2. We observe that for all simulations, the error is
concentrated at small scales k�ν � 0.1 close to the dissipative range. We remark that the
relative magnitude EΔ(k)/E(k) is very small, ensuring that the perturbation remains in
the linear regime.

Figure 7 presents the FTLE for the different runs as a function of the average time T .
We see that in all the cases, the average FTLE converges, after a long transient and for
T � 200τ f , to the asymptotic value, which represents the Lyapunov exponent of the flow.

From figure 7, it is evident that the Lyapunov exponent increases with the Reynolds
number. As discussed in § 2, we expect that λ follows the Ruelle scaling (2.11). The
latter relies on the spectrum having a Kolmogorov-like power-law behaviour. As shown in
figure 4, the scaling exponent 5/3 is recovered only for Re> 2× 104. Ruelle’s prediction
is therefore expected to hold only for large Re.

In figure 8, we plot the Lyapunov exponents of our simulations as functions of
Re. We find that λ grows with Re faster than that predicted by (2.11) and the best fit
gives λτ f � Re0.7 or, equivalently, λτν � Re0.2. Remarkably, the scaling persists also at
Re< 104, where the spectrum displays a significant correction to the Kolmogorov
exponent 5/3 (see figure 4).

In figure 8 we also plot the scaled variance Ω as a function of Re, which displays a
scaling law compatible with that of the Lyapunov exponent Ωτ f � Re0.7. This indicates
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Figure 7. Convergence of the FTLE as a function of the average time. Light to dark colours represent runs at
increasing Reynolds numbers: B2, B4, C2, C3, C4, C5, D1, D2 and D3.
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Figure 8. Reynolds scaling of the mean FTLE 〈γT 〉 = λ. Non-dimensionalisation is made with (a) τ f and
(b) τν .

that, in the range of Re investigated here, the ratio Ω/λ is approximately constant
(0.24± 0.02) and that the central part of the Cramér function has a self-similar evolution
with Re.

A qualitatively similar behaviour has been observed for the Lyapunov exponent of
3-D turbulence (Boffetta & Musacchio 2017; Mohan et al. 2017; Berera & Ho 2018;
Ge, Rolland & Vassilicos 2023) with a correction to the dimensional scaling (2.11) slightly
smaller than in the present case, λ∝ Re0.64. We remark that the origin of this correction in
3-D turbulence is still unclear since it cannot be simply attributed to intermittency. Indeed,
the multifractal extension of the dimensional prediction (2.11) predicts, for 3-D turbulence,
an exponent smaller than 1/2 (Aurell et al. 1996).

In figure 9(a), we show the Cramér function C(γT ) obtained from the distribution of the
FTLE (3.8) as C(γT )=−(1/T ) log(ρ(γT )/ρ(λ)) at different times T at Re= 21 200 (run
C4). We notice that the convergence towards the asymptotic behaviour of the left tail (γT <

λ) is much faster than that of the right tail (γT > λ). At T � 2/λ, the left tail is already
converged, while the right tail achieves convergence only for T � 7/λ. Figure 9(b) shows
the comparison of the asymptotic behaviour of the Cramér functions C(γT ) computed at
Tλ= 7 for different Re in the range [10 600, 63 500].

Since λ and Ω scale with Re with the same exponent, we rescale both γT and C(γT )

by λ which, according to the quadratic approximation (3.9), predicts the collapse to the
function (x − 1)2/(2Ω/λ).

Figure 9 shows that the quadratic approximation (3.9) with Ω/λ= 0.24 describes well
the core of C(γT ) (for γ � λ), while we observe significant deviations for γT > λ.
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Figure 9. (a) Cramér function for run C4 and different times. (b) Cramér function for different Re at fixed
Tλ= 7. The dashed line represents the quadratic form (x − 1)2/(2Ω/λ) with Ω/λ= 0.24.

This means that the situations in which the dynamics of the system is strongly unpre-
dictable (i.e. with γT � λ) are more frequent than what is expected by Gaussian statistics.
Nonetheless, it is remarkable that the probability of these extreme deviations seems to be
independent of the Reynolds numbers, as shown by the collapse of the right tail of C(γT )

for different Re.

4. Conclusions
In this study, we investigated the statistical properties and predictability of turbulence in
SQG model using high-resolution direct numerical simulations across a wide range of
Reynolds numbers. Our analysis focused on two central aspects: the scaling behaviour of
the energy spectrum in the direct cascade of SPE and the chaotic dynamics characterised
by FTLEs.

Our results indicate that, for Re � 2× 104, the energy spectrum approaches the
Kolmogorov-like scaling E(k)∝ k−5/3. This observation, together with the convergence in
Reynolds of the prefactor CK , suggests that SQG turbulence exhibits a well-defined iner-
tial range – similar to that of 3-D NS turbulence – but it does so only at very large Reynolds
numbers. This regime was not observed by earlier studies at moderate Reynolds numbers.

In terms of predictability, we showed that the Lyapunov exponent scales anomalously
with the Reynolds number as λ∝ Re0.7, exceeding the dimensional prediction λ∝ Re1/2.
The presence of an anomalous scaling is reminiscent of similar behaviour observed in
3-D NS turbulence (Boffetta & Musacchio 2017; Mohan et al. 2017; Berera & Ho 2018;
Ge et al. 2023). In particular, it has been observed that λ∝ Re0.64 (Boffetta & Musacchio
2017). This is in contrast with the scaling of the Lyapunov exponent of Lagrangian
trajectories λL , which has been found to be in agreement with the Ruelle dimensional
prediction λL ∝ τν (Bec et al. 2006) up to minor corrections which can be estimated from
multifractal arguments.

The difference between Eulerian and Lagrangian predictability in NS turbulence can be
ascribed to the fact that the Lagrangian Lyapunov exponent is determined by the viscous
time scale τν , while the Eulerian predictability can be influenced also by the sweeping time
scale τE = �ν/U , where U is the root-mean-square velocity (Ge et al. 2023). Considering
that τE � τν and that τν/τE � Re1/4, the dependence of λ on Re can be rewritten as a
combination of two time scales:

λ= τ−1
ν Reξ = τ−1+4ξ

ν τ
−4ξ
E . (4.1)
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The Ruelle scaling is recovered for ξ = 0, while for ξ = 1/4 the predictability is
determined by the sweeping time. Our results in SQG give ξSQG = 0.2 which is larger
than the value observed in 3-D NS, ξ N S = 0.14, suggesting that the sweeping effect has a
stronger influence on the Eulerian predictability in SQG than in NS.

It is worth noting that the dimensional arguments discussed above do not consider the
effects of intermittency corrections. It would be interesting to develop a multifractal-like
approach for the direct cascade of SQG to check how the observed intermittency (Valade
et al. 2025) affects the dimensional scaling of the Lyapunov exponent.

Beyond the average growth rate of infinitesimal perturbations, we investigated the
statistical properties of FTLEs. Notably, both the variance and the shape of the
associated Cramér function exhibit self-similar behaviour across Reynolds numbers
when appropriately rescaled. The ratio Ω/λ remains approximately constant across Re,
indicating a form of universality in the core of the FTLE distribution.

Although we have studied the predictability problem from the point of view of
the exponential growth of infinitesimal perturbations, it would be very interesting to
investigate in detail the complementary regime of large errors and the statistics of finite-
size Lyapunov exponents (Boffetta & Musacchio 2017). Recent results have been obtained
in the case of a decaying SPE cascade in SQG (Valade et al. 2024), where the authors
were able to connect the hyperdiffusive behaviour of Lagrangian fluid parcels with the
anomalous diffusion of the system.
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