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ON 2-ABSORBING IDEALS OF COMMUTATIVE RINGS

AYMAN BADAWI

Suppose that R is a commutative ring with 1 ^ 0 . In this paper, we introduce the
concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper
ideal / of R is called a 2-absorbing ideal of R if whenever a,b,c e R and abc e I,
then ab 6 / or ac e / or be € / . It is shown that a nonzero proper ideal / of R is
a 2-absorbing ideal if and only if whenever 7i7273 C / for some ideals h, 72, 73 of R,
then hl2 C 7 or 7273 C I or 7X73 C / . It is shown that if 7 is a 2-absorbing ideal of
R, then either Rad(7) is a prime ideal of R or Rad(7) = ? 1 n / )

2 where Pi,P2 are the
only distinct prime ideals of R that are minimal over 7. Rings with the property that
every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing
ideals of valuation domains and Priifer domains are completely described. It is shown
that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal
of R is either a maximal ideal of R or M2 for some maximal ideal M of ROT M\M2

where MX,M2 are some maximal ideals of R. If RM is Noetherian for each maximal
ideal M of 7?, then it is shown that an integral domain R is an almost Dedekind
domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2

for some maximal ideal M of R or M\M2 where M\,M2 are some maximal ideals of
R.

1. INTRODUCTION

We assume throughout that all rings are commutative with 1 ^ 0 . Suppose that
R is a ring. Then T(R) denotes the total quotient ring of R, Nil(fl) denotes the set
of nilpotent elements of R , Z(R) denotes the set of zerodivisors of R, and if / is a
proper ideal of R, then Rad(7) denotes the radical ideal of / . We start by recalling some
background material. A nonzero proper ideal / of a ring R is said to be Q-primal if
Z{R/I) = Q/I for some prime ideal Q of R containing / . A prime ideal P of a ring R
is said to be a divided prime ideal if P C (x) for every x € R\P; thus a divided prime
ideal is comparable to every ideal of R. An integral domain R is said to be a divided
domain if every prime ideal of R is a divided prime ideal. An integral domain R is said
to be a valuation domain if x | y (in R) or y \ x (in R) for every nonzero x,y € R. It is
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known that a valuation domain is a divided domain. If / is a nonzero ideal of a ring R,
then I'1 = { i £ T(R) | xl C R} . An integral domain R is called a Priifer domain if
II~l = R for every nonzero finitely generated ideal / of R. An integral domain R is said
to be a Dedekind domain if II~l = R for every nonzero ideal / of R. An integral domain
R is called an almost Dedekind domain if RM is a Dedekind domain for each maximal
ideal M of R.

In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation
of prime ideal. A nonzero proper ideal / of R is called a 2-absorbing ideal of R if whenever
a, b, c € R and abc € /, then ab € / or ac 6 / or be € /. A more general concept than
2-absorbing ideals is the concept of k-absorbing ideals. We only state the definition of
k-absorbing ideals. Suppose that k is a positive integer such that fc > 2. A nonzero
proper ideal / of R is called a k-absorbing ideal of R if whenever a\, a2,..., a* € R and
aia2 • • • at € / , then there are (k -1) of the at's whose product is in /. It is easily proved
that a nonzero proper ideal / of a principal ideal domain R is a 2-absorbing ideal of R
if and only if / is a prime ideal or / = p2R for some prime element p of R or / = p\p2R
where p\,p2 are distinct prime elements of R. Also, it is easily proved that if P and Q
are some nonzero prime ideals of a ring R, then P f~l Q is a 2-absorbing ideal of R. For
nontrivial 2-absorbing ideals see Example 2.11, Example 2.12, Example 3.5, and Example
3.11.

Among many results in this paper, it is shown (Theorem 2.13) that a nonzero proper
ideal / of R is a 2-absorbing ideal if and only if whenever /1/2/3 C / for some ideals
A, I2, h of R, then hh C / or I2I3 Q I or hh Q I It is shown (Theorem 2.4) that if /
is a 2-absorbing ideal of R, then either Rad(7) is a prime ideal of R or Rad(7) = Pi n P2

where Pi, P2 are the only distinct prime ideals of R that are minimal over / . Rings with
the property that every nonzero proper ideal is a 2-absorbing ideal are characterised in
Theorem 3.4. It is shown (Corollary 2.7) that a 2-absorbing ideal of a ring R is a Q-
primal ideal for some prime ideal Q of R. An example of a Q-primal ideal that is not a
2-absorbing ideal is illustrated in Example 3.12. For a valuation domain R, it is shown
(Proposition 3.10) that a nonzero proper ideal / of R is a 2-absorbing ideal if and only
/ = P or / = P2 where P = Rad(7) is a prime ideal of R. For a Priifer domain R, it is
shown (Theorem 3.14) that a nonzero proper ideal / of R is a 2-absorbing ideal if and
only if / is a prime ideal of R or I = P 2 is a P-primary ideal of R or / = Px n P2 where
Pi and P2 are nonzero prime ideals of R. It is shown (Corollary 3.16) that a Noetherian
domain R that is not a field is a Dedekind domain if and only if a 2-absorbing ideal of
R is either a maximal ideal of R or M2 for some maximal ideal M of R or MXM2 where
M\, Mi are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of
an integral domain R, then it is shown (Proposition 3.17) that R is an almost Dedekind
domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for
some maximal ideal M of R or M\M2 where M\,M2 are some maximal ideals of R. It is
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shown (Theorem 3.6) that if P is a divided prime ideal of a ring R and / is an ideal of R
such that Rad(/) = P, then / is a 2-absorbing ideal of R if and only if / is a P-primary
ideal of R such that P 2 C /.

2. B A S I C P R O P E R T I E S O F 2 -ABSORBING IDEALS

THEOREM 2 . 1 . Suppose that I is a 2-absorbing ideal of a ring R. Then Rad(/)
is a 2-absorbing ideal of R and x2 G / for every x € Rad(7).

PROOF: Since / is a 2-absorbing ideal of R, observe that x2 G / for every x € Rad(J).
Let x,y, z G R such that xyz G Rad(/). Then (xyz)2 = x2y2z2 G / . Since / is a 2-
absorbing ideal, we may assume that x2y2 G / . Since (xy)2 = x2y2 e I, xy € Rad(/). 0

We recall the following lemma.

LEMMA 2 . 2 . ([4, Theorem 2.1, p. 2]).

Let I C P be ideals of a ring R, where P is a prime ideal. Then the following

statements are equivalent:

(1) P is a minimal prime ideal of I;

(2) For each x G P, there is ay G R\P and a nonnegative integer n such that

yxn e I.

THEOREM 2 . 3 . Suppose that I is a 2-absorbing ideal of a ring R. Then there
are at most two prime ideals of R that are minimal over I.

PROOF: Suppose that J = {Pi | Pt is a prime ideal of R that is minimal over / } and
suppose that J has at least three elements. Let Pi, P2 G J be two distinct prime ideals.
Hence there is an xi G Pi \ P2, and there is an x2 G P* \ P\. First we show that xxx2 € / .
By Lemma 2.2, there is a c2 ^ Pi and a C\ & P2 such that c^x" G / and c\x^ G / for
some n,m ^ 1. Since £1,12 & Pi n P2 and / is a 2-absorbing ideal of R, we conclude
that oiX\ € / and C\x2 € / . Since x\,x2 & Pi D P2 and c2xi,cii2 € I C Pln P2, we
conclude that c2 € P2 \ Pi and Ci € Pi \ P2, and thus ci, c2 ^ Pi n P2. Since C2X1 € /
and Cix2 G I, we have (ci + c^)xix2 G / . Observe that Ci + c2 & Pi and ci + c2 & P2.
Since (ci + c2)xi & Pi and (ci + c2)x2 & Pi, we conclude that neither (ct •+• c2)xi e /
nor (ci + c2)x2 G / , and hence xix2 G / . Now suppose there is a P3 6 J such that P3

is neither P! nor P2. Then we can choose yx G Pi \ (P2 U P3), y2 G P2 \ (Pi U P3), and
J/3 G P3 \ (Pi U P2). By the previous argument yiy2 G / . Since / C Pi n P2 n P 3 and
2/iJfc € / , we conclude that either yi 6 P3 or y2 G P 3 which is a contradiction. Hence J
has at most two elements and that completes the proof. D

THEOREM 2 . 4 . Let I be a 2-absorbing ideal of R. Then one of the following

statements must hold:

(1) Rad(/) = P is a prime ideal of R such that P2 C / .
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(2) Rad(/) = Pi n P2, P1P2 Q I, and Rad(7)2 C / where Pu P2 are the only
distinct prime ideals of R that are minimal over I.

PROOF: By Theorem 2.3, we conclude that either Rad(7) = P is a prime ideal of
R or Rad(J) = Pi n P2, where Pi P2 are the only distinct prime ideals of R that are
minimal over / . Suppose that Rad(7) = P is a prime ideal of R. Let x, y G P. By
Theorem 2.1, we have x2,y2 G / . Now x(x+ y)y G /. Since / is a 2-absorbing ideal, we
have x(x + y) = x2 + xy G / or (x + y)y = xy + y2 G 7 or xy G / . It is easily proved that
each case implies that xy G 7, and thus P2 C 7 .

Now suppose that Rad(7) = Px D P2, where Pi P2 are the only distinct prime ideals
of R that are minimal over I. Let x,y G Rad(7). Then xy € / by the same argument
given above, and hence Rad(J)2 C / . Now we show that PiP2 C /. First observe that
w2 G / for each w G Rad(J) by Theorem 2.1. Let Xi G Pi \ P2 and x2 € P2\ Pi-
Then xxx2 G / by the proof of Theorem 2.3. Let zx G Rad(J) and z2 G P2 \ Px. Pick
yi G Pi \ P2. Then yxz2 G / by the proof of Theorem 2.3 and zx + j/i G Pi \ P2. Thus
z\z2 + y\z2 = [z\ + yi)z2 G / , and hence Z\z2 G /. A similar argument will show that if
zx G Rad(J) and z2 G Pi \ P2, then zxz2 G /. Hence PXP2 C 7. D

THEOREM 2 . 5 . Let I be a 2-absorbing ideal of R such that Rad(J) = P is a
prime ideai of 7? and suppose that / ^ P. For each x G P \ / iet Bx = {y G 7i | yx G / } .
Then Bx is a prime ideai of R containing P. Furthermore, either By C Bx or Bx C By

for every x, y G P \ 7.

PROOF: Let x G P \ / . Since P2 C 7 (by Theorem 2.4), we conclude that P C Bx.
Suppose that P # Bx and yz G Bz for some y, z G 7J. Since P c B,, we may assume
that y & P and z & P, and thus j/z £ 7. Since yz G Bx, we have yzx G 7. Since 7 is a
2-absorbing ideal of R and y-j 0 7, we conclude that either yx G 7 or zx G 7, and thus
either y G 2?z or z G Bx. Hence Bx is a prime ideal of 72 containing P.

Let x,y G P \ 7 and suppose that z G Bx\By. Since P C By, z £ BX\P. We show
that By C Bx. Let u; G 73y. Since P C £„, we may assume that w G By\P. Since z £ P
and w & P, we conclude that ziu £ 7. Since z(x + y)w G 7 and ziu, zy 0 7, we conclude
that (x + y)w G 7. Hence wx G 7 since (x + y)iu G 7 and wy G 7. Thus u; G By C Bx. D

THEOREM 2 . 6 . Let I be a 2-absorbing ideal ofR such that I ^ Rad(7) = PiHP2

where Px and P2 are the only nonzero distinct prime ideals of R that are minimal over
I. Then for each x G Rad(7) \ I, Bx = {y e R | xy G 7} is a prime ideal of R containing
Pi and P2. Furthermore, either By C Bx or Bx C By for every x, y G Rad(7) \ 7.

PROOF: Let x G Rad(7) \ 7. Since P ^ C 7 by Theorem 2.4, we conclude that
xPi C 7 and xP2 C 7. Thus Pi C Bx and P2 C Bx. Suppose yz G Bx for some y, z G R.
Since Pi C Bx and P2 C Bx, we may assume that y,z & Pi and y, z £ P2l and thus
yz & I. Since yz e Bx, we have yzx G 7. Since 7 is a 2-absorbing ideal of R and yz £ 7,
we conclude that either yx G 7 or zx G 7, and thus either y G Bx or z G Bx. Hence Bz
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is a prime ideal of R. By using an argument similar to that in the proof of Theorem 2.5,
one can easily complete the proof. D

Recall that a nonzero proper ideal / of a ring R is said to be Q-primal if Z(R/I)
= Q/I for some prime ideal Q of R containing / .

COROLLARY 2 . 7 . Suppose that I is a 2-absorbing ideal of R such that I ^
Rad(/). Then I is a Q-primal ideal of R where Q = Ux6Rad(/)\/£x (recall that Bx = {y €
R\yxe I}).

PROOF: Let a,6 6 R \ I such that ab G /. We show that a,b G Bs for some
/ G Rad(/) \ /. By Theorem 2.3, we conclude that either Rad(7) = P is a prime ideal
of R or Rad(7) = Px D P2, where Pi, P2 are the only distinct prime ideals of R that
are minimal over /. Suppose that Rad(/) = P is a prime ideal of R. Hence either
a € P \ / or 6 g P \ / , and thus either a,6 G Ba or a,b G Bb. Since / / Rad(7),
D = {Bx | x G Rad(7) \ 7} is a set of linearly ordered (prime) ideals of R by Theorem
2.5. Thus Z(R/I) = UBX€D(BX/I) is an ideal of R/I.

Now suppose that Rad(7) = Pi DP2, where Pi, P2 are the only distinct prime ideals
of R that are minimal over 7. Since ab G Rad(7), without loss of generality we may
conclude that either a € Rad(7) \ 7 or a G Px \ P2 and b G P2 \ Pi. If a £ Rad(7) \ 7,
then a,b E Ba. Suppose that a € Pi \ P2 and b £ P2 \ Pi. Since 7 ^ Rad(7), there is a
d G Rad(7) \ 7. Since Pi C Bd and P2 C Bd by Theorem 2.6, we have a, b G Bd. Again,
since 7 / Rad(7), D = {Bx \ x € Rad(7) \ 7} is a set of linearly ordered (prime) ideals
of 7? by Theorem 2.6. Thus Z{R/I) = UBx€D(Bx/I) is an ideal of R/I. D

In Section 3, we give an example (see Example 3.12) of a Q-primal ideal I oi R such
that Rad(7) = P is a prime ideal of R and P2 c 7, but 7 is not a 2-absorbing ideal of R.

THEOREM 2 . 8 . Suppose that I is an ideal ofR such that I ^ Rad(7) and Rad(7)
is a prime ideal of R. Then the following statements are equivalent:

(1) 7 is a 2-absorbing ideal of R;

(2) Bx = {y £ R | yx 6 7} is a prime ideal of R for each x e Rad(7) \ I.

PROOF: (1) => (2). This is clear by Theorem 2.5.
(2) => (1). Suppose that xyz G 7 for some x, y, z G R. Since Rad(7) is a prime ideal

of R, we may assume that x G Rad(7). If x G 7, then xy € I and we are done. Hence
assume that x G Rad(7) \ 7. Thus yz G fl*. Since 7?x is a prime ideal of R by Theorem
2.5, we conclude that either yx G 7 or zx G 7. Thus 7 is a 2-absorbing ideal of Pt. D

THEOREM 2 . 9 . Let I bean ideal ofR such that I jL Rad(7) = Pi D P2 where Pi
and P2 are nonzero distinct prime ideals ofR that are minimal over I. Then the following
statement are equivalent:

(1) 7 is a 2-absorbing ideal of R;
(2) PiP2 C 7 and Bx = {y G R | yx G 7} is a prime ideal of R for each

x G Rad(7) \ 7.
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(3) Bx = {y e R | yx G / } is a prime ideal of R for each x G (Pi U P2) \ I.

PROOF: (1) =*> (2). This is clear by Theorems 2.4 and 2.6.
(2) => (3). Let x G Pi \ P2. It is clear that yx G / if and only if y G P2. Since

P1P2 S / , we conclude that Bx = P2 is a prime ideal of R. Let z G P2 \ Px. By a similar
argument as before we conclude that Bz = Pi is a prime of R. Since Bd is a prime ideal
of Pi for each d G Rad(7) \ I, we are done.

(3) => (1). Let xj/z € / . We may assume that x € (Pi U P2) \ I. Thus yz € £?„.
Since Bx is a prime ideal of R by Theorem 2.6, we conclude that either yx 6 / or zx G /,
and hence / is a 2-absorbing ideal of R. D

THEOREM 2 . 1 0 . Let I be a 2-absorbing ideal of a ring R such that I ^ Rad(7).
For each x G Rad(7) \ /, Jet Bx = {y G R \ yx G / } . Then :

(1) Ifx G Rad(J) \ / and y € R such that yx & I, then Byx = Bx.

(2) Ifx, y G Rad(/) \ / and Bx is properly contained in By, then Bfx+dy = Bx

for every f,deR such that fd & Bx. In particular, if x,y G Rad(7) \ /
and Bx is properly contained in By, then Bx+y = Bx.

PROOF: (1) Let x,y e Rad(J) \ / . Since Bx c By, it is clear that Bx C Byx. Let
c 6 Byx. Since cyx G I, we conclude that cy G Bx. Since Bx is a prime ideal of R by
Theorems 2.5, 2.6 and y g Bx because yx # I, we have ex € / . Hence c € Bx, and thus
Bx = Byx.

(2) Let x,y € Rad(7) \ /. Since Bx C By, it is clear that Bx C Bfx+dy. Suppose
that Bx / Bfx+dy. Since Bx,Bfx+dy,By are linearly ordered by Theorems 2.5, 2.6 and
Bz is properly contained in By, there is a z £ ByC\Bfx+dy such that 2 0 flx. Since zy € I
and z(/x + dy) € /, we conclude that zfx € / . Hence zf G Bx, a contradiction since
neither z G Bx nor / G Sx. Thus Bx = B}x+dy. D

EXAMPLE 2.11. Suppose that Pi = Z[x,y] where Z is the ring of integers and x, y are
indeterminates, Pi = (x, 2)R, P2 = (y, 2)R are prime ideals of Pi, and let / = PiP2 =
(4,2x,2y,xy)R. Then Rad(J) = Pj D P2 = (2,xy)R. Since £2 = {z G # | 2z G
/} = (2, x, y)R is a (maximal) prime ideal of R, it is easy to see that B^ = B2 for each
d G Rad(J) \ / . Hence / is a 2-absorbing ideal of R by Theorem 2.9.

EXAMPLE 2.12. Suppose that Pi = Z[x,y,z] where x, y,z are indeterminates,
P = (2,x)fl is a prime ideal of R, and / = (4,2x, 2y, xy, xz, x2)R. Then P2 C I and
Rad(7) = P. Now B2 = (2, x, j/)Pi is a prime ideal of Pi, Bx = (2, x, y, z)R is a (prime)
maximal ideal of R, and B2+1 = B2. It is easy to see that if d G P \ / , then either
Bd = #2 o r Bd = Bx. Thus / is a 2-absorbing ideal of R by Theorem 2.8. Observe that
/ is not a primary ideal.

Part of this paper was presented at a commutative ring conference in Cortona, Italy
(June, 2004). During the conference, Bruce Olberding asked the author the following
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question: Let / be a 2-absorbing ideal of a ring R and suppose that / i J2/3 C 7 for some
ideals 7i,72, h of R, does it follow that / i / 2 C / or / 2 / 3 C / or 7i73 C 7? The answer to
the question is yes as in the following result.

THEOREM 2 . 1 3 . Suppose that I is a nonzero proper ideal of a ring R. The
following statements are equivalent:

(1) I is a 2-absorbing ideal of R;

(2) Ifhhh Q I for some ideals IUI2,I3 of R, then IXI2 C I or 7273 C I or

hh C / .

PROOF: Since (2) => (1) is trivial, we only need to show that (1) =*• (2). Suppose
that J1/2/3 C / for some ideals I\, I2, 73 of R- By Theorem 2.4, we conclude that Rad(7)
is a prime ideal of R or Rad(7) = P\ n P2 where P\ and P2 are nonzero distinct prime
ideals of R that are minimal over / . If / = Rad(J), then it is easily proved that I\I2 C 7
or I2h C 7 or 7i73 C / . Hence assume that 7 ^ Rad(J). We consider two cases.

Case I. Suppose that Rad(7) is a prime ideal of R. Then we may assume that
7i C Rad(7) and h g 7. Let x e h \ 7. Since xl2l3 C 7, we conclude that 7273 C Bx.
Since Bx is a prime ideal of R by Theorem 2.8, we conclude that either I2 C Bx or
h Q Bx. If I2 C Bd and 73 C Bd for each d€ h\I, then IJ2 C 7 (and 7X73 C 7) and
we are done. Hence assume that that I2 C By and 73 % By for some y € h \ 7. Since
{Su; I w e 7i \ 7} is a set of prime ideals of R that are linearly ordered by Theorem
2.5 and 72 C By and 73 g By, we conclude that 72 C Bz for each z 6 7i \ 7, and thus
7,72 C 7.

Case II. Suppose that Rad(7) = P\C\P2 where Pi and P2 are nonzero distinct prime
ideals of R that are minimal over 7. We may assume that h C Pi. If either 72 C P2

or 73 C P2, then either 7i72 C 7 or 7i73 C 7 because PXP2 C 7 by Theorem 2.4. Hence
assume that I\ C Rad(7) and 7i 2 -f- By an argument similar to that one given in case
I and Theorem 2.5, we are done. D

3. ON 2-ABSORBING IDEALS IN PARTICULAR CLASSES OF RINGS

THEOREM 3 . 1 . Suppose that I is a P-primary ideal of a ring R. Then I is a

2-absorbing ideal of R if and only if P2 C 7. In particular, M2 is a 2-absorbing ideal of

R for each maximal ideal M of R.

PROOF: Suppose that 7 is a 2-absorbing ideal of a ring R. Then P 2 C I by Theorem
2.4(1). Conversely, suppose that P 2 C 7 and xyz € 7. If either x G 7 or yz € 7, then
there is nothing to prove. Hence assume that neither x € 7 nor yz € 7. Since 7 is a
P-primary ideal of R, we conclude that x € P and yz € P. Thus x,y E P or x,z € P.

Since P 2 C 7, we conclude that xy € 7 or xz € 7. D

COROLLARY 3 . 2 . Suppose that P is a nonzero prime ideal of R. Then
p(2) = p 2 # p n R is a 2-absorbing ideal of R.
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PROOF: It is well-known that P(2) is a P-Primary ideal of R. Since P2 C P<2>, P<2)
is a 2-absorbing ideal of R by Theorem 3.1. D

The following lemma is useful in the proof of our next result.

LEMMA 3 . 3 . Suppose that R is a zero-dimensional ring with exactly two distinct
maximal ideals such that Nil(R) ^ {0}, Nil(i?)2 = {0} andNil(R) = wR for each nonzero
w € Nil(i?). Then R is ring-isomorphic to R/M2 © R/M2 where Mi is a maximal ideal
of R such that M2 ^ Mi and Mi is a maximal of R such that M$ = M2. Furthermore,
each nonzero proper ideal of R is a 2-absorbing ideal of R.

PROOF: Let Mi, M2 be the two distinct maximal ideals of R. Since Nil(i?) = MiM2

and Nil(/?)2 = {0}, we conclude that M2M% = {0}. Since M2, M2 are co-maximal, R is
ring-isomorphic to D = RjM\ © R/M\. Since Nil(i?) ^ {0}, we conclude that at least
one of the maximal ideals of R is a non-idempotent ideal. Hence we may assume that
Ml / Mi, and thus there is an element mi £ Mi such that mx ^ M2 . Now suppose
that M2 7̂  M2. Then there is an element m2 € M2 such that m2 & M\. Since (0, m2

+ Mj2), (mi + M2,0) are nonzero nilpotent elements of D, (0, m2 + M%) € (mi -I- M2,0)D
by hypothesis, which is impossible. Thus Mf = M2. Hence Nil(D) = {0} © (Mi/Mf).
Since wD = Nil(Z?) for each nonzero w e Nil(£)), we conclude that Nil(D) is the only
proper non-maximal ideal of D. Thus every nonzero proper ideal of D is a 2-absorbing
ideal of D, and hence every nonzero proper ideal of R is a 2-absorbing ideal of R. D

Recall that an element x € R is said to be a 7r-regular element of R if there is a
positive integer n and an element y G R such that x2ny = xn. If every element of R is
a 7r-regular element, then R is called a 7r-regular ring. It is well-known [4, Theorem 3.1]
that a ring R is a 7r-regular ring if and only if R is a zero-dimensional ring.

THEOREM 3 . 4 . Every nonzero proper ideal of a ring R is a 2-absorbing ideal of
R if and only if R is zero-dimensional (that is, R is a 7r-reguJar ring) and one of the
following statements hold:

(1) R is quasi-local with maximal ideal M = Nil(fl) ^ {0} such that M2 C xR
for each nonzero x € M.

(2) R has exactly two distinct maximal ideals such that either R is ring-
isomorphic to Fi © F2 where Fi and F2 are fields or Nil(fl)2 = {0} and
Nil(i?) = wR for each nonzero w € Nil(il).

(3) R is ring-isomorphic to Fx © F2 © F3 where Fu F2, F3 are fields.

PROOF: Suppose that R is quasi-local with maximal ideal M = Nil(i2) ^ {0} such
that M2 C xR for each nonzero x 6 M. Since every nonzero proper ideal / of R is an
M-primary ideal of R and M2 C /, we conclude that every nonzero proper ideal of R
is a 2-absorbing ideal of R by Theorem 3.1. Suppose that R is zero-dimensional and
the second condition holds. If Nil(i?) = {0}, then it is easily proved that every nonzero
proper ideal of R is a 2-absorbing ideal of R. If Nil(i?) ^ {0}, then every nonzero proper
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ideal of R is a 2-absorbing ideal of R by Lemma 3.3. Suppose that R is ring-isomorphic
to D = Fi © F2 © F 3 where F\, F2, F3 are fields. Since every nonzero proper ideal of D

is either a maximal ideal of D or a product(intersection) of two distinct maximal ideals
of D, we conclude that every nonzero proper ideal of D is a 2-absorbing ideal of D, and
hence every nonzero proper ideal of R is a 2-absorbing ideal of R.

Conversely, suppose that every nonzero proper ideal of R is a 2-absorbing ideal of
R. We show that R is a zero-dimensional ring. Let w € R. If w is a unit of R or a
nilpotent of R, then w is a 7r-regular element of R. Hence assume that w i s a nonunit
non-nilpotent element of R. Then w4R is a nonzero proper ideal of R, and hence it is a
2-absorbing ideal of R. Since w4 e w4R, we conclude that w2 € w4R, and thus w is a
7r-regular element of R. Hence R is a vr-regular ring, and thus R is a zero-dimensional
ring.

Next we show that R has at most three distinct maximal ideals. Suppose that
Mi,M2, M3 are distinct maximal ideals of R. Then / = MiM2M3 = MinM2r\M3 = {0},
for if / / {0}, then / = Rad( / ) is a 2-absorbing ideal of R which is impossible by Theorem
2.4. Since M\M2M3 = {0}, R has at most three distinct maximal ideals.

Now suppose that R has exactly three distinct maximal ideal Mi,M2,M3. Since
MXM2M3 = {0}, we conclude that R is ring-isomorphic to R/M\ © R/M2 © R/M3, and
thus the third condition holds.

Suppose that R has exactly two distinct maximal ideals Mi, M2. If Nil(ft)
= M\M2 = {0}, then R is ring-isomorphic to R/M\ © R/M2. Hence assume that
K\\{R) = MiM2 ^ {0}. Suppose that Nil(i?)2 ^ {0}, Then there are nonzero ele-
ments w\, w2 e Nil(iZ) such that w\iv2 ^ 0. Since wiiv2R is a 2-absorbing ideal of R, we
conclude that w^ € M\M2 = Nil(i?) C wiW2R by Theorem 2.4. Hence w\ = Wiw2k for
some nonzero k £ R, and thus iui(l - w2k) = 0. Hence w\ = 0 since 1 — w2k is a unit of
R, a contradiction. Thus Nil(/2)2 = {0}. Suppose that w is a nonzero nilpotent element
of R. Since wR is a 2-absorbing ideal of R, we conclude that Nil(i?) = M\M2 C wR by
Theorem 2.4, and hence the second condition holds.

Finally suppose that R is a quasi-local ring with maximal ideal Nil(/?) ^ {0}. Sup-
pose that w is a nonzero element of Nil(/?). Since wR is a 2-absorbing ideal of R, we
conclude that Nil(/?)2 C wR by Theorem 2.4. Thus the first condition holds. D

E X A M P L E 3.5.

(a) Let Z be the ring of integers, R = Z%, and D = Zvt © F where p is a
prime number of Z and F is a field. Then every nonzero proper ideal of R

is a 2-absorbing ideal and every nonzero proper ideal of D is a 2-absorbing
ideal.

(b) Let 1Z be the ring of all real numbers and X, Y be indeterminates. Set
R = n[[X,Y}]/(XY,X2 - Y2,X3,Y3). Then every nonzero proper ideal
of R is a 2-absorbing ideal.
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Recall that a prime ideal of R is called a divided prime if P C (x) for every x € R\P.

THEOREM 3 . 6 . Suppose that P is a nonzero divided prime ideal of R and I is
an ideal of R such that Rad(7) = P. Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;

(2) I is a P'-primary ideal of R such that P2 C 7.

PROOF: (1) => (2). Suppose that / is a 2-absorbing ideal of R. Since Rad(J) = P is
a nonzero prime ideal of R, P2 C 7 by Theorem 2.4(1). Now let xy e 7 for some x,y € R
and suppose that y & P. Since x € P and P is a divided ideal of R, we conclude that
x = yk for some k € R. Hence xy = y2k € 7. Since y2 & I and 7 is a 2-absorbing ideal
of 71, we conclude that yk = x E I. Thus / is a P-primary ideal of R.

(2) =>(1). This is clear by Theorem 3.1. D

THEOREM 3 . 7 . Suppose that Nil(fl) and P are divided prime ideals of a ring R
such that P ^ Nil(Ti). Then P2 is a 2-absorbing ideal of R.

PROOF: First we observe that Nil(il) C P2 since P ^ Nil(J?) and Nil(R) is divided.
By Theorem 3.6 it suffices to show that P2 is a P-primary ideal of R. Suppose that
xy = PiQi + • • • +pnQn S P2 where the p^s and the <fc's are in P, and suppose that y £ P.
Since P is a divided ideal of R, we conclude that xy = yc\qi H 1- ycnqn e P2 where the
Cj's are in P. Hence y(x-C\q\ Cnqn) = 0 6 Nil(fl). Since y g Nil(iJ) (because y & P)
and Nil(7?) is a prime ideal of R, we conclude that x — c ^ — • • • - Cnqn = w 6 Nil(iZ).
Since Nil(Ji) C P2, we conclude that x = cxqi + • • Cnqn + w € P2, and thus P2 is a
P-primary ideal of R. D

If R is an integral domain, then Nil(iJ) = {0} is a divided prime ideal of R. Hence
we have the following corollary.

COROLLARY 3 . 8 . Suppose that P is a a nonzero divided prime ideal of an in-
tegral domain R. Then P2 is a 2-absorbing ideal of R.

The following is an example of a prime ideal P of an integral domain R such that
P2 is not a 2-absorbing ideal of R.

EXAMPLE 3.9. Suppose that R = Z + 6xZ[x] and P = 6iZ[x] (where Z is the ring of
integers and x is an indeterminate). Then P is a prime ideal of R. Since 6x2 € P\P2

and B6x2 = {y e R \ 6x2y 6 P2} = 6Z + 6xZ[x] is not a prime ideal of R, P2 is not a
2-absorbing ideal of R by Theorem 2.8.

PROPOSITION 3 . 1 0 . Suppose that R is a vaiuation domain and / is a nonzero
proper ideal of R. Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;

(2) I is a a P-primary ideal of R such that P2 C I;

(3) I = P or I = P2 where P = Rad(7) is a prime ideal ofR.
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PROOF: (1) =• (2). Suppose that / is a 2-absorbing ideal of R. Then Rad(/) = P

is a prime ideal of R. Since R is a divided domain, / is a P-primary ideal of R such that
P2 C / by Theorem 3.6.

(2) =» (3). Suppose that / is a P-primary ideal of R such that P 2 C / . Since R is a
valuation domain, we conclude that either / = P or I = P 2 by [5, Theorem 5.11, p. 106].

(3) => (1). Suppose that either / = P or / = P 2 where P = Rad(J) is a prime ideal
of R. If / = P , then / is a 2-absorbing ideal of R. If / = P 2 , then / is a 2-absorbing
ideal of R by Corollary 3.8. D

The following is an example of a prime ideal P of an integral domain R such that
P 2 is a 2-absorbing ideal of R, but P 2 is not a P-primary ideal of R.

EXAMPLE 3.11. Suppose that R = Z + 3xZ[x] (where Z is the ring of integers and x
is an indeterminate) and let P = 3xZ[x] be a prime ideal of R. Since 3(3i2) £ P2, we
conclude that P 2 is not a P-primary ideal of R. It is easy to verify that if d £ P\P2,
then either Bd = {y £ R \ yd £ / } = P or Bd = 3Z + 3xZ[x] is a prime ideal of R.
Hence P 2 is a 2-absorbing ideal by Theorem 2.8.

Next we show that for each n ^ 2, there is a valuation domain R with maximal
ideal M and Krull dimension n that admits an M-primal ideal / such that Rad(7) = P
is a prime ideal of R , P2 C I, and the Krull dimension of R/I is n - 1, but I is not a
2-absorbing ideal of R.

EXAMPLE 3.12. Suppose that n ^ 2 and D be a valuation domain with quotient field
K and Krull dimension n — 1. Let X be an indeterminate and set R = D + XK[[X}].
Then R is a valuation domain with Krull dimension n. Let P = XK [[X]] be a prime
ideal of R and let Q be a nonzero prime ideal of R such that Q ^ P. Then it is clear that
P C Q. Set I = XRQ. Then / is an ideal of R such that Rad(J) = P and Z(R/I) = Q/I
by [1, Proposition 2.1]. Hence / is not a primary ideal of R. Since R is a valuation
domain and X £ P \P2, we have P 2 C / and / is not a 2-absorbing ideal of R by
Proposition 3.10. By construction it is clear that the Krull dimension of R/I is n - 1.

Before we state our next theorem, the following lemma is needed.

LEMMA 3 . 1 3 . Suppose that I is a 2-absorbing ideal of a ring R and let S be a

multiplicatively closed subset of R. IfIRs ^ {0}, then IRs is a 2-absorbing ideal ofRs-

P R O O F : Suppose tha t xyz £ IRS for some x, y,z £ Rs- Then there are elements

s £ S, and Xi,x2,x3 € R such that xyz = (xi/s)(x2/s)(x3/s) = i ix 2 i 3 / s 3 e IRs- Thus,
Xix2x3 e I. Since / is a 2-absorbing ideal of R, we have xix2 £ I or Xix3 £ I or x2x3 € / ,
and thus xy £ IRs or xz £ IRs or yz £ IRS. D

THEOREM 3 . 1 4 . Suppose that R is a Priifer domain and I is a nonzero ideal of

R. Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;
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(2) / is a prime ideal of R or I = P2 is a P-primaxy ideal of R or I = Pi n P2

where P\ and P2 axe nonzero prime ideals of R.

PROOF: Suppose that / is a nonzero 2-absorbing ideal of R. Then either Rad(7) = P
is a prime ideal of R or Rad(J) = Pi DP2 where Pi, Pi are the only minimal prime ideals
of R over / by Theorem 2.4. Suppose that Rad(7) = P is a prime ideal of R and
I / P. Then / is a Q-primal ideal of R by Corollary 2.7, and P C Q because P2 C. I
by Theorem 2.4. Since IRQ is a 2-absorbing ideal of RQ by Lemma 3.13 and RQ is a
valuation domain, we conclude that IRQ is a Pfl<j-primary ideal of RQ by Proposition
3.10. Hence IRQ D R is a P-primary ideal of R by [5, Corollary 3.10, p. 68]. It is easy
to verify that IRQ (1 R = I (for a proof see [2, Lemma 1.3]). Hence / = IRQ n R is a
P-primary ideal of R. Since P2 C / by Theorem 2.4 and J ^ P, we conclude that / = P2

by [5, Proposition 6.9(4), p. 132].
Next suppose that Rad(/) = Pi C\Pi where Plt Pi are the only minimal prime ideals

of R over /. Assume that / / Rad(/). Then / is a Q-primal ideal of R by Corollary
2.7. Since Pi C Q and P2 C Q and i?g is a valuation domain, either PIRQ C PIRQ or
P2RQ C PIRQ, which is impossible. Thus / = Rad(7) = Pi n P2.

For the converse, just observe that if I = P2 is a P-primary ideal of R, then I is a
2-absorbing ideal of R by Theorem 3.1. D

Recall that an integral domain R is said to be a Dedekind domain if every nonzero
ideal of R is invertible.

THEOREM 3 . 1 5 . Let Rbea Noetherian domain that is not a fieJd. Tie following
statements are equivalent:

(1) R is a Dedekind domain;

(2) If I is a 2-absorbing ideal ofR, then I is a maxima] ideai of R or I = M2

for some maximal ideal M of R or I = M1M2 where Mi,M2 are some
maximal ideals of R;

(3) If I is a 2-absorbing ideal ofR, then I is a prime ideal of R or I = P2 for
some prime ideal P of R or I = / \ n P2 where Pi, P2 are some prime ideals
ofR.

PROOF: (1) ^ (2). Since R is a one-dimensional ring, every nonzero prime ideal of
R is maximal. Suppose that I is a 2-absorbing ideal of R. Then either Rad(7) = M is
a a maximal ideal of R or Rad(J) = Mi D Af2 = AfiM2 for some distinct maximal ideals
MX,M2 of R by Theorem 2.4.

(2) =>• (3). This is obvious.
(3) => (l). Let M be a maximal ideal of R. Since every ideal between M2 and M is

an M-Primary ideal and hence a 2-absorbing ideal of R by Theorem 3.1, the hypothesis in
(3) implies that there are no ideals properly between M2 and M. Hence R is a Dedekind
domain by [3, Theorem 39.2, p. 470]. D

https://doi.org/10.1017/S0004972700039344 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039344


[13] Commutative rings 429

Recall that an integral domain R is said to be an almost Dedekind domain if RM
is a Dedekind domain for each maximal ideal M of R (that is, RM is a Noetherian
valuation domain for each maximal ideal M of R and hence R is a one-dimensional ring.)
The following result is a characterisation of an almost Dedekind domain in terms of 2-
absorbing ideals. The proof of the following result is similar to the proof of Theorem
3.15, and hence it is left to the reader.

PROPOSITION 3 . 1 6 . Let R be an integral domain that is not a field and sup-
pose that RM is Noetherian for each maximal ideal M of R. The following statements
axe equivalent:

(1) R is an almost Dedekind domain;

(2) If I is a 2-absorbing ideal of R, then I is a maximal ideal of R or I = M2

for some maximal ideal M of R or I = M\M2 wiere M\,M2 axe some

maximal ideals of R;

(3) If I is a 2-absorbing ideal of R, then I is a prime ideal of R or I = P2 for
some prime ideal PofRorl — PiflP? where Px, P2 are some prime ideals
ofR.
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