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ON 2-ABSORBING IDEALS OF COMMUTATIVE RINGS

AYMAN BADAWI

Suppose that R is a commutative ring with 1 # 0. In this paper, we introduce the
concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper
ideal I of R is called a 2-absorbing ideal of R if whenever a,b,c € R and abc € I,
then ab € I orac € I or bc € I . 1t is shown that a nonzero proper ideal I of R is
a 2-absorbing ideal if and only if whenever I1 IoI3 C I for some ideals Iy, I, I3 of R,
then I1J; C I or ;I3 C I or I1I3 C I. It is shown that if ] is a 2-absorbing ideal of
R, then either Rad(I) is a prime ideal of R or Rad(I) = P, N P, where P;, P, are the
only distinct prime ideals of R that are minimal over J. Rings with the property that
every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing
ideals of valuation domains and Priifer domains are completely described. It is shown
that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal
of R is either a maximal ideal of R or M? for some maximal ideal M of R or M M,
where M), M, are some maximal ideals of R. If Ry, is Noetherian for each maximal
ideal M of R, then it is shown that an integral domain R is an almost Dedekind
domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M?
for some maximal ideal M of R or My M, where M;, M, are some maximal ideals of
R.

1. INTRODUCTION

We assume throughout that all rings are commutative with 1 # 0. Suppose that
R is a ring. Then T(R) denotes the total quotient ring of R, Nil(R) denotes the set
of nilpotent elements of R , Z(R) denotes the set of zerodivisors of R, and if I is a
proper ideal of R, then Rad([) denotes the radical ideal of I. We start by recalling some
background material. A nonzero proper ideal I of a ring R is said to be Q-primal if
Z(R/I) = Q/I for some prime ideal Q of R containing I. A prime ideal P of a ring R
is said to be a divided prime ideal if P C (z) for every z € R\ P; thus a divided prime
ideal is comparable to every ideal of R. An integral domain R is said to be a divided
domain if every prime ideal of R is a divided prime ideal. An integral domain R is said
to be a valuation domainif z | y (in R) or y | z (in R) for every nonzero z,y € R. It is
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known that a valuation domain is a divided domain. If I is a nonzero ideal of a ring R,
then I-! = {z € T(R) | zI C R} . An integral domain R is called a Priifer domain if
II7! = R for every nonzero finitely generated ideal I of R. An integral domain R is said
to be a Dedekind domain if II-! = R for every nonzero ideal I of R. An integral domain
R is called an almost Dedekind domain if Rps is a Dedekind domain for each maximal
ideal M of R.

In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation
of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever
a,b,c € Rand abc € I, then ab € I or ac€ I or bc € I. A more general concept than
2-absorbing ideals is the concept of k-absorbing ideals. We only state the definition of
k-absorbing ideals. Suppose that k is a positive integer such that ¥ > 2. A nonzero
proper ideal I of R is called a k-absorbing ideal of R if whenever a,,qa,,...,ax € R and
a1as - - - ax € I, then there are (k -1) of the a;’s whose product is in I. It is easily proved
that a nonzero proper ideal I of a principal ideal domain R is a 2-absorbing ideal of R
if and only if I is a prime ideal or I = p?R for some prime element p of R or I = p;p, R
where pi, py are distinct prime elements of R. Also, it is easily proved that if P and Q
are some nonzero prime ideals of a ring R, then P N Q is a 2-absorbing ideal of R. For
nontrivial 2-absorbing ideals see Example 2.11, Example 2.12, Example 3.5, and Example
3.11.

Among many results in this papér, it is shown (Theorem 2.13) that a nonzero proper
ideal I of R is a 2-absorbing ideal if and only if whenever I,[5]; C I for some ideals
I, I;,I3 of R, then '], C I or I)J3 C I or I1I3 C I. It is shown (Theorem 2.4) that if I
is a 2-absorbing ideal of R, then either Rad([) is a prime ideal of R or Rad(I) = PN P,
where P,, P, are the only distinct prime ideals of R that are minimal over I. Rings with
the property that every nonzero proper ideal is a 2-absorbing ideal are characterised in
Theorem 3.4. It is shown (Corollary 2.7) that a 2-absorbing ideal of a ring R is a Q-
primal ideal for some prime ideal @ of R. An example of a Q-primal ideal that is not a
2-absorbing ideal is illustrated in Example 3.12. For a valuation domain R, it is shown
(Proposition 3.10) that a nonzero proper ideal I of R is a 2-absorbing ideal if and only
I = P or I = P? where P = Rad(l) is a prime ideal of R. For a Priifer domain R, it is
shown (Theorem 3.14) that a nonzero proper ideal I of R is a 2-absorbing ideal if and
only if I is a prime ideal of R or I = P? is a P-primary ideal of R or I = P, N P, where
P, and P, are nonzero prime ideals of R. It is shown (Corollary 3.16) that a Noetherian
domain R that is not a field is a Dedekind domain if and only if a 2-absorbing ideal of
R is either a maximal ideal of R or M? for some maximal ideal M of R or My M, where
M,, M, are some maximal ideals of R. If R)s is Noetherian for each maximal ideal M of
an integral domain R, then it is shown (Proposition 3.17) that R is an almost Dedekind
domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M? for
some maximal ideal M of R or M; M, where M,, M, are some maximal ideals of R. It is
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shown {Theorem 3.6) that if P is a divided prime ideal of a ring R and I is an ideal of R
such that Rad(/) = P, then I is a 2-absorbing ideal of R if and only if I is a P-primary
ideal of R such that P2 C I.

2. BASIC PROPERTIES OF 2-ABSORBING IDEALS

THEOREM 2.1. Suppose that I is a 2-absorbing ideal of a ring R. Then Rad(I)
is a 2-absorbing ideal of R and % € I for every = € Rad(I).

PROOF: Since I is a 2-absorbing ideal of R, observe that z* € I for every = € Rad([).
Let z,y,z € R such that zyz € Rad(I). Then (zyz)? = z%y?22 € I. Since [ is a 2-
absorbing ideal, we may assume that z2y? € I. Since (zy)? = z2y? € I, zy € Rad(l). [
We recall the following lemma.

LEMMA 2.2. ([4, Theorem 2.1, p. 2]).
Let I C P be ideals of a ring R, where P is a prime ideal. Then the following
statements are equivalent:
(1) P is a minimal prime ideal of I;
(2) Foreachz € P, thereis ay € R\ P and a nonnegative integer n such that
yz" € I.
THEOREM 2.3. Suppose that I is a 2-absorbing ideal of a ring R. Then there
are at most two prime ideals of R that are minimal over 1.

PROOF: Suppose that J = {P,; | P; is a prime ideal of R that is minimal over I'} and
suppose that J has at least three elements. Let P, P, € J be two distinct prime ideals.
Hence there is an z; € P, \ P, and there is an z, € P, \ P;. First we show that z,z, € I.
By Lemma 2.2, there is a ¢; ¢ P, and a ¢; € P, such that ¢;z] € I and ¢;z* € I for
some n,m 2 1. Since z;,z; € P, N P> and I is a 2-absorbing ideal of R, we conclude
that coz; € I and ¢1z; € I. Since 13,22 &€ PN P, and cxy,¢290 € I C Py N Py, we
conclude that c; € P, \ P, and ¢; € P, \ P, and thus ¢;,¢c; ¢ P, N P,. Since ¢z, € 1
and ¢z; € I, we have (¢; + ¢z)x122 € I. Observe that ¢; +¢; € P, and ¢; +¢; € P.
Since (¢, + c2)11 € P and (¢ + c2)z2 € Py, we conclude that neither (¢; + c3)z, € 1
nor (¢; + ¢;)z3 € I, and hence z,z2 € I. Now suppose there is a P; € J such that P
is neither P; nor P,. Then we can choose y; € P\ (P2UP;), y» € P, \ (P, U P3), and
ys € P3\ (P U P,). By the previous argument 3,y € I. Since ] C PN PN P; and
1y € I, we conclude that either y; € P; or y, € P; which is a contradiction. Hence J
has at most two elements and that completes the proof. 1]

THEOREM 2.4. Let I be a 2-absorbing ideal of R. Then one of the following
statements must hold:

(1) Rad(I) = P is a prime ideal of R such that P C I.
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(2) Rad(l) = PPN P, PP, C I, and Rad(I)? C I where P, P, are the only
distinct prime ideals of R that are minimal over I.

PRrOOF: By Theorem 2.3, we conclude that either Rad(I) = P is a prime ideal of
R or Rad(I) = P, N P,, where P, P, are the only distinct prime ideals of R that are
minimal over I. Suppose that Rad(I) = P is a prime ideal of R. Let z,y € P. By
Theorem 2.1, we have 22,52 € I. Now z(z+ y)y € I. Since I is a 2-absorbing ideal, we
have z(z+y) =z’ +zye€Tor (z+y)y=zy+y® € I or zy € I. 1t is easily proved that
each case implies that Ty € I, and thus P2°C I .

Now suppose that Rad(I) = P, N P,, where P, P, are the only distinct prime ideals
of R that are minimal over I. Let z,y € Rad(l). Then zy € I by the same argument
given above, and hence Rad(I)? C I. Now we show that P,P, C I. First observe that
w? € I for each w € Rad(J) by Theorem 2.1. Let 2, € P,\ P, and 72 € P, \ P,.
Then z,z; € I by the proof of Theorem 2.3. Let z, € Rad(I) and z, € P, \ P,. Pick
y1 € P, \ P,. Then y12; € I by the proof of Theorem 2.3 and z; +y, € P, \ P,. Thus
2122 + Y122 = (21 + 1)%2 € I, and hence 212, € I. A similar argument will show that if
z; € Rad(I) and z; € P, \ P, then 2,2, € I. Hence PP, C I. 0

THEOREM 2.5. Let I be a 2-absorbing ideal of R such that Rad(I) = P is a
prime ideal of R and suppose that I # P. For eachz € P\ I let B, = {y € R| yz € I}.
Then B, is a prime ideal of R containing P. Furthermore, either B, C B; or B, C B,
for every z,y € P\ I.

PROOF: Let z € P\ I. Since P? C I (by Theorem 2.4), we conclude that P C B;.
Suppose that P # B, and yz € B, for some y,z € R. Since P C B,, we may assume
that y & P and z € P, and thus yz & I. Since yz € B;, we have yzz € I. Since [ is a
2-absorbing ideal of R and yz ¢ I, we conclude that either yz € I or 2z € I, and thus
either y € B; or z € B;. Hence B, is a prime ideal of R containing P.

Let z,y € P\ I and suppose that z € B; \ B,. Since P C B,, z € B, \ P. We show
that B, C B;. Let w € B,. Since P C B,, we may assume that w € B, \ P. Since z ¢ P
and w & P, we conclude that zw ¢ I. Since z(z + y)w € I and zw, zy & I, we conclude
that (z + y)w € I. Hence wz € [ since (z+y)w € I and wy € I. Thus w € By C B,. 0

THEOREM 2.6. Let I be a 2-absorbing ideal of R such that I # Rad(I) = PNP,
where P, and P, are the only nonzero distinct prime ideals of R that are minimal over
I. Then for each z € Rad(I)\I, B, ={ye R|zy € I} is a prime ideal of R containing
P, and P,. Furthermore, either B, C B, or B, C B, for every z,y € Rad(I) \ I.

ProoF: Let z € Rad(I)\ I. Since PP, C I by Theorem 2.4, we conclude that
2P, C I and zP, C I. Thus P, C B; and P, C B,. Suppose yz € B, for some y, z € R.
Since P, C B, and P, C B;, we may assume that y,z € P, and y,z ¢ P, and thus
yz € I. Since yz € B, we have yzz € I. Since I is a 2-absorbing ideal of R and yz & I,
we conclude that either yz € I or zz € I, and thus either y € B; or z € B;. Hence B,
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is a prime ideal of R. By using an argument similar to that in the proof of Theorem 2.5,
one can easily complete the proof. 0

Recall that a nonzero proper ideal I of a ring R is said to be Q-primal if Z(R/I)
= /I for some prime ideal @ of R containing I.

COROLLARY 2.7. Suppose that I is a 2-absorbing ideal of R such that [ #
Rad([). Then I is a Q-primal ideal of R where Q = Uzeraq(r)\1B; (recall that B, = {y €
R|yz e I}).

PROOF: Let a,b € R\ I such that ab € I. We show that a,b € B; for some
f € Rad(I) \ I. By Theorem 2.3, we conclude that either Rad(I) = P is a prime ideal
of R or Rad(I) = P, N P,, where P,, P, are the only distinct prime ideals of R that
are minimal over I. Suppose that Rad(I) = P is a prime ideal of R. Hence either
a € P\Iorbe P\I, and thus either a,b € B, or a,b € B,. Since I # Rad(l),
D = {B; | z € Rad(I) \ I} is a set of linearly ordered (prime) ideals of R by Theorem
2.5. Thus Z(R/I) = Up,ep(B:/I) is an ideal of R/I.

Now suppose that Rad(I) = P, N P, where P, P, are the only distinct prime ideals
of R that are minimal over I. Since ab € Rad([), without loss of generality we may
conclude that either a € Rad(I)\Jora € P\ P, and b€ P,\ P,.. If a € Rad(J) \ I,
then a,b € B,. Suppose that a € P, \ P, and b € P; \ P,. Since I # Rad([), there is a
d € Rad(I)\ I. Since P, C By and P, C B, by Theorem 2.6, we have a,b € By. Again,
since I # Rad(I), D = {B, | z € Rad(I) \ I} is a set of linearly ordered (prime) ideals
of R by Theorem 2.6. Thus Z(R/I) = Up,ep(B;/I) is an ideal of R/I. 0

In Section 3, we give an example (see Example 3.12) of a Q-primal ideal I of R such
that Rad(/) = P is a prime ideal of R and P? C I, but I is not a 2-absorbing ideal of R.

THEOREM 2.8. Suppose that I is an ideal of R such that I # Rad(I) and Rad([)
is a prime ideal of R. Then the following statements are equivalent:
(1) 1 is a 2-absorbing ideal of R;
(2) B:={y € R|yzx €I} is a prime ideal of R for each z € Rad(I) \ I.
ProOOF: (1) = (2). This is clear by Theorem 2.5.

(2) = (1). Suppose that zyz € I for some z,y,z € R. Since Rad(I) is a prime ideal
of R, we may assume that z € Rad(J). If z € I, then zy € I and we are done. Hence
assume that z € Rad(J) \ I. Thus yz € B;. Since B, is a prime ideal of R by Theorem
2.5, we conclude that either yz € I or zz € I. Thus I is a 2-absorbing ideal of R. 0

THEOREM 2.9. Let [ be an ideal of R such that I # Rad(I) = P,N P, where P,
and P, are nonzero distinct prime ideals of R that are minimal over I. Then the following
statement are equivalent:

(1) I is a 2-absorbing ideal of R;
(2) PBP, C I and B, = {y € R| yz € I} is a prime ideal of R for each
z € Rad(I)\ I.
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(3) B;={y€ R|yz €1} isa prime ideal of R for eachz € (P,UP)\ 1.

PrOOF: (1) = (2). This is clear by Theorems 2.4 and 2.6.

(2) = (3). Let z € P\ P,. It is clear that yz € I if and only if y € P;. Since
P, P, C I, we conclude that B, = P, is a prime ideal of R. Let z € P, \ P,. By a similar
argument as before we conclude that B, = P, is a prime of R. Since By is a prime ideal
of R for each d € Rad(I) \ I, we are done.

(3) = (1). Let zyz € I. We may assume that z € (P, U P)\ I. Thus yz € B;.
Since B, is a prime ideal of R by Theorem 2.6, we conclude that either yz € I or 2z € I,
and hence I is a 2-absorbing ideal of R. 0

THEOREM 2.10. Let I be a 2-absorbing ideal of a ring R such that I # Rad(I).
For each z € Rad(I)\ I, let B, = {y € R|yz € I}. Then :

(1) Ifr € Rad(J)\ I and y € R such that yz ¢ I, then By, = B,.

(2) Ifz,y € Rad() \ I and B; is properly contained in B, then By, .4y = B,
for every f,d € R such that fd ¢ B,. In particular, if z,y € Rad(I) \ I
and B, is properly contained in B,, then B,., = B,.

PROOF: (1) Let z,y € Rad(I)\ I. Since B, C By, it is clear that B, C B,,. Let
¢ € By;. Since cyz € I, we conclude that cy € B;. Since B; is a prime ideal of R by
Theorems 2.5, 2.6 and y ¢ B; because yz ¢ I, we have cz € I. Hence ¢ € B,, and thus
B, = By;.

(2) Let z,y € Rad(I) \ I. Since B, C B,, it is clear that B; C By, 4,. Suppose
that By # Bjzi4y- Since Bz, Byriqy, By are linearly ordered by Theorems 2.5, 2.6 and
B, is properly contained in By, there is a z € By N By; .4, such that z g B,. Since zy € |
and z(fz + dy) € I, we conclude that zfz € I. Hence zf € B, a contradiction since
neither z € B; nor f € B,. Thus B; = By,44y. a

EXAMPLE 2.11. Suppose that R = Z[z,y] where Z is the ring of integers and z,y are
indeterminates, P, = (z,2)R, P, = (y,2)R are prime ideals of R, and let ] = P,P, =
(4,2z,2y,zy)R. Then Rad(I) = PN P, = (2,zy)R. Since B, = {z € R| 2z €
I} = (2,z,y)R is a (maximal) prime ideal of R, it is easy to see that By = B, for each
d € Rad(I) \ I. Hence [ is a 2-absorbing ideal of R by Theorem 2.9.

EXAMPLE 2.12. Suppose that R = Z[x,y,z] where z,y,z are indeterminates,
P = (2,z)R is a prime ideal of R, and I = (4, 2z, 2y, zy,zz,2?)R. Then P2 C I and
Rad(I) = P. Now B; = (2,z,y)R is a prime ideal of R, B, = (2,z,y,2)R is a (prime)
maximal ideal of R, and By, = B;. It is easy to see that if d € P \ I, then either
By = By or By = B;. Thus I is a 2-absorbing ideal of R by Theorem 2.8. Observe that
I is not a primary ideal.

Part of this paper was presented at a commutative ring conference in Cortona, Italy
(June, 2004). During the conference, Bruce Olberding asked the author the following
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question: Let I be a 2-absorbing ideal of a ring R and suppose that I, I;I; C I for some
ideals I, I, I; of R, does it follow that I1Io C I or I3 J3 C I or I;I3 C I? The answer to
the question is yes as in the following result.

THEOREM 2.13. Suppose that I is a nonzero proper ideal of a ring R. The
following statements are equivalent:
(1) I is a 2-absorbing ideal of R;
(2) If L1 I,I; C I for some ideals I}, I;,I5 of R, then I, C I or I.I; C I or
LI;CI.

PROOF: Since (2) = (1) is trivial, we only need to show that (1) = (2). Suppose
that I, ;I3 C I for some ideals I}, I, I3 of R. By Theorem 2.4, we conclude that Rad{I)
is a prime ideal of R or Rad(I) = P, N P, where P, and P, are nonzero distinct prime
ideals of R that are minimal over I. If I = Rad([), then it is easily proved that I; I, C |
or I,I3 C I or I1I; C I. Hence assume that I 3 Rad(I). We consider two cases.

Case I. Suppose that Rad(J) is a prime ideal of R. Then we may assume that
Iy CRad(J) and I) € I. Let z € I} \ I. Since zI2l3 C I, we conclude that I,I3; C B,.
Since B; is a prime ideal of R by Theorem 2.8, we conclude that either I C B; or
I3C B, IfI, C Bygand I3 C B, for each d € I; \ I, then I)I, C I (and I,I; C I) and
we are done. Hence assume that that I, C B, and I3 € B, for some y € I, \ I. Since
{By, | w € I\ I} is a set of prime ideals of R that are linearly ordered by Theorem
2.5and I, C B, and I3 € B,, we conclude that I, C B, for each z € I, \ I, and thus
LI, CL _

Case II.  Suppose that Rad(I) = P NP, where P, and P, are nonzero distinct prime
ideals of R that are minimal over /. We may assume that I, C P,. If either I, C P,
or Iy C P,, then either 1], C I or I; I3 C I because PP, C I by Theorem 2.4. Hence
assume that I; C Rad([) and I} € I. By an argument similar to that one given in case
I and Theorem 2.5, we are done. 0

3. ON 2-ABSORBING IDEALS IN PARTICULAR CLASSES OF RINGS

THEOREM 3.1. Suppose that I is a P-primary ideal of a ring R. Then I is a
2-absorbing ideal of R if and only if P? C I. In particular, M? is a 2-absorbing ideal of
R for each maximal ideal M of R.

PROOF: Suppose that I is a 2-absorbing ideal of a ring R. Then P? C I by Theorem
2.4(1). Conversely, suppose that P? C I and zyz € I. If either £ € I or yz € I, then
there is nothing to prove. Hence assume that neither z € I nor yz € I. Since I is a
P-primary ideal of R, we conclude that £ € P and yz € P. Thus z,y € Porz,z € P.
Since P? C I, we conclude that sy € I or zz € I. 0

COROLLARY 3.2. Suppose that P is a nonzero prime ideal of R. Then
P®@ = P?Rp N R is a 2-absorbing ideal of R.
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PROOF: It is well-known that P is a P-Primary ideal of R. Since P? C P?), p(
is a 2-absorbing ideal of R by Theorem 3.1. 0

The following lemma is useful in the proof of our next result.

LEMMA 3.3. Suppose that R is a zero-dimensional ring with exactly two distinct
maximal ideals such that Nil(R) # {0}, Nil(R)? = {0} and Nil(R) = wR for each nonzero
w € Nil(R). Then R is ring-isomorphic to R/M? & R/M, where M, is a maximal ideal
of R such that M? # M, and M, is a maximal of R such that M} = M,. Furthermore,
each nonzero proper ideal of R is a 2-absorbing ideal of R.

PROOF: Let M;, M, be the two distinct maximal ideals of R. Since Nil(R) = M; M,
and Nil(R)? = {0}, we conclude that MZM2 = {0}. Since M2, M2 are co-maximal, R is
ring-isomorphic to D = R/M? ® R/M2. Since Nil(R) # {0}, we conclude that at least
one of the maximal ideals of R is a non-idempotent ideal. Hence we may assume that
M? # M, and thus there is an element m; € M, such that m; ¢ M2 . Now suppose
that M2 # M. Then there is an element my € M, such that my ¢ MZ. Since (0,m,
+ M2), (my, + M2, 0) are nonzero nilpotent elements of D, (0, m; + MZ) € (m; + M2,0)D
by hypothesis, which is impossible. Thus MZ = M,. Hence Nil(D) = {0} ® (M,/M3?).
Since wD = Nil(D) for each nonzero w € Nil(D), we conclude that Nil(D) is the only
proper non-maximal ideal of D. Thus every nonzero proper ideal of D is a 2-absorbing
ideal of D, and hence every nonzero proper ideal of R is a 2-absorbing ideal of R. 0

Recall that an element z € R is said to be a 7-regular element of R if there is a
positive integer n and an element y € R such that 2?*y = z". If every element of R is
a m-regular element, then R is called a 7-regular ring. It is well-known [4, Theorem 3.1]
that a ring R is a -regular ring if and only if R is a zero-dimensional ring.

THEOREM 3.4. Every nonzero proper ideal of a ring R is a 2-absorbing ideal of
R if and only if R is zero-dimensional (that is, R is a m-regular ring) and one of the
following statements hold:
(1) R is quasi-local with maximal ideal M = Nil(R) # {0} such that M*> C zR
for each nonzeroz € M.
(2) R has exactly two distinct maximal ideals such that either R is ring-
isomorphic to F) & F, where F\ and F, are fields or Nil(R)? = {0} and
Nil(R) = wR for each nonzero w € Nil(R).
(3) R is ring-isomorphic to Fy & F» @ F3 where Fy, F,, F; are fields.

PROOF: Suppose that R is quasi-local with maximal ideal M = Nil(R) # {0} such
that M2 C zR for each nonzero z € M. Since every nonzero proper ideal I of R is an
M-primary ideal of R and M? C I, we conclude that every nonzero proper ideal of R
is a 2-absorbing ideal of R by Theorem 3.1. Suppose that R is zero-dimensional and
the second condition holds. If Nil(R) = {0}, then it is easily proved that every nonzero
proper ideal of R is a 2-absorbing ideal of R. If Nil(R) # {0}, then every nonzero proper
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ideal of R is a 2-absorbing ideal of R by Lemma 3.3. Suppose that R is ring-isomorphic
to D = F, @ F; & F3 where Fy, F, F; are fields. Since every nonzero proper ideal of D
is either a maximal ideal of D or a product(intersection) of two distinct maximal ideals
of D, we conclude that every nonzero proper ideal of D is a 2-absorbing ideal of D, and
hence every nonzero proper ideal of R is a 2-absorbing ideal of R.

Conversely, suppose that every nonzero proper ideal of R is a 2-absorbing ideal of
R. We show that R is a zero-dimensional ring. Let w € R. If w is a unit of R or a
nilpotent of R, then w is a wm-regular element of R. Hence assume that w is a nonunit
non-nilpotent element of R. Then w*R is a nonzero proper ideal of R, and hence it is a
2-absorbing ideal of R. Since w* € w*R, we conclude that w? € w*R, and thus w is a
w-regular element of B. Hence R is a w-regular ring, and thus R is a zero-dimensional
ring.

Next we show that R has at most three distinct maximal ideals. Suppose that
M, My, M3 are distinct maximal ideals of R. Then I = MM, M; = MiNnM,NM; = {0},
forif I # {0}, then I = Rad([) is a 2-absorbing ideal of R which is impossible by Theorem
2.4. Since My M>M; = {0}, R has at most three distinct maximal ideals.

Now suppose that R has exactly three distinct maximal ideal M,;, M,, M3. Since
M, M, M; = {0}, we conclude that R is ring-isomorphic to R/M; & R/M; & R/M;, and
thus the third condition holds.

Suppose that R has exactly two distinct maximal ideals M;, M,. If Nil(R)
= MM, = {0}, then R is ring-isomorphic to R/M; & R/M,. Hence assume that
Nil(R) = MM, # {0}. Suppose that Nil(R)> # {0}. Then there are nonzero ele-
ments wy, wy € Nil(R) such that wyw, # 0. Since wywo R is a 2-absorbing ideal of R, we
conclude that w; € M1M, = Nil(R) C wywyR by Theorem 2.4. Hence w; = wjwsk for
some nonzero k € R, and thus w; (1 — wyk) = 0. Hence w;, = 0 since 1 — w,k is a unit of
R, a contradiction. Thus Nil(R)? = {0}. Suppose that w is a nonzero nilpotent element
of R. Since wR is a 2-absorbing ideal of R, we conclude that Nil(R) = M;M; C wR by
Theorem 2.4, and hence the second condition holds.

Finally suppose that R is a quasi-local ring with maximal ideal Nil(R) # {0}. Sup-
pose that w is a nonzero element of Nil(R). Since wR is a 2-absorbing ideal of R, we
conclude that Nil(R)? C wR by Theorem 2.4. Thus the first condition holds. 0

ExAMPLE 3.5.

(a) Let Z be the ring of integers, R = 23, and D = Z,: @ F where p is a
prime number of Z and F is a field. Then every nonzero proper ideal of R
is a 2-absorbing ideal and every nonzero proper ideal of D is a 2-absorbing
ideal.

(b} Let R be the ring of all real numbers and X,Y be indeterminates. Set
R =R[[X,Y]]/(XY,X? — Y? X3,Y3). Then every nonzero proper ideal
of R is a 2-absorbing ideal.
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Recall that a prime ideal of R is called a divided prime if P C (z) for every z € R\ P.

THEOREM 3.6. Suppose that P is a nonzero divided prime ideal of R and I is
an ideal of R such that Rad(I) = P. Then the following statements are equivalent:
(1) I is a 2-absorbing ideal of R;
(2) I is a P-primary ideal of R such that P? C I.

PROOF: (1) = (2). Suppose that I isa 2-absorbing ideal of R. Since Rad(I) = P is
a nonzero prime ideal of R, P? C I by Theorem 2.4(1). Now let zy € I for some z,y € R
and suppose that y € P. Since z € P and P is a divided ideal of R, we conclude that
z = yk for some k € R. Hence zy = y?k € I. Since 3> & I and I is a 2-absorbing ideal
of R, we conclude that yk = z € I. Thus I is a P-primary ideal of R.

(2) =(1). This is clear by Theorem 3.1. 0

THEOREM 3.7. Suppose that Nil(R) and P are divided prime ideals of a ring R
such that P # Nil(R). Then P? is a 2-absorbing ideal of R.

PROOF: First we observe that Nil(R) C P? since P # Nil(R) and Nil(R) is divided.
By Theorem 3.6 it suffices to show that P? is a P-primary ideal of R. Suppose that
Ty = 1@y + -+ + Pngn € P? where the p;’s and the ¢;’s are in P, and suppose that y & P.
Since P is a divided ideal of R, we conclude that Ty = yeiq +- - - +ycng, € P? where the

c¢;’s arein P. Hence y(z—c1g1—: - *—¢ngn) = 0 € Nil(R). Since y ¢ Nil(R) (because y ¢ P)
and Nil(R) is a prime ideal of R, we conclude that z — ¢;¢; — - - - — g, = w € Nil(R).
Since Nil(R) C P2, we conclude that £ = ¢;q; + ---caqn + w € P2, and thus P? is a
P-primary ideal of R. 0

If R is an integral domain, then Nil(R) = {0} is a divided prime ideal of R. Hence
we have the following corollary.

COoROLLARY 3.8. Suppose that P is a a nonzero divided prime ideal of an in-
tegral domain R. Then P? is a 2-absorbing ideal of R.

The following is an example of a prime ideal P of an integral domain R such that
P? is not a 2-absorbing ideal of R.

EXAMPLE 3.9. Suppose that R = Z + 6z2[z] and P = 6zZ[z] (where Z is the ring of
integers and z is an indeterminate). Then P is a prime ideal of R. Since 622 € P\ P2
and Bg,: = {y € R | 62%y € P?} = 6Z +6z2[z] is not a prime ideal of R, P? is not a
2-absorbing ideal of R by Theorem 2.8.
PROPOSITION 3.10. Suppose that R is a valuation domain and I is a nonzero

proper ideal of R. Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;

(2) I is a a P-primary ideal of R such that P? C I;

(3) I= P orI = P? where P =Rad(I) is a prime ideal of R.
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Proor: (1) = (2). Suppose that I is a 2-absorbing ideal of R. Then Rad(/) = P
is a prime ideal of R. Since R is a divided domain, I is a P-primary ideal of R such that
P? C I by Theorem 3.6.

(2) = (3). Suppose that I is a P-primary ideal of R such that P2 C I. Since Ris a
valuation domain, we conclude that either I = P or I = P? by {5, Theorem 5.11, p. 106).

(3) = (1). Suppose that either I = P or I = P? where P = Rad([) is a prime ideal
of R. If I = P, then [ is a 2-absorbing ideal of R. If I = P2, then I is a 2-absorbing
ideal of R by Corollary 3.8. 0

The following is an example of a prime ideal P of an integral domain R such that
P? is a 2-absorbing ideal of R, but P? is not a P-primary ideal of R.

ExaMPLE 3.11. Suppose that R = Z + 3z2[z] (where Z is the ring of integers and z
is an indeterminate) and let P = 3zZ[z] be a prime ideal of R. Since 3(3z2) € P? we
conclude that P? is not a P-primary ideal of R. It is easy to verify that if d € P\ P?,
then either By = {y € R | yd € I} = P or By = 3Z + 3zZ[z] is a prime ideal of R.
Hence P? is a 2-absorbing ideal by Theorem 2.8.

Next we show that for each n > 2, there is a valuation domain R with maximal
ideal M and Krull dimension n that admits an M-primal ideal I such that Rad(I) = P
is a prime ideal of R , P2 C I, and the Krull dimension of R/I is n — 1, but I is not a
2-absorbing ideal of R.

EXAMPLE 3.12. Suppose that n > 2 and D be a valuation domain with quotient field
K and Krull dimension n — 1. Let X be an indeterminate and set R = D + XK [[X]].
Then R is a valuation domain with Krull dimension n. Let P = XK[[X]] be a prime
ideal of R and let @ be a nonzero prime ideal of R such that @ # P. Then it is clear that
P C Q. Set I = XRq. Then I is an ideal of R such that Rad(I) = P and Z(R/I) = Q/I
by [1, Proposition 2.1]. Hence I is not a primary ideal of R. Since R is a valuation
domain and X € P\ P?, we have P> C I and I is not a 2-absorbing ideal of R by
Proposition 3.10. By construction it is clear that the Krull dimension of R/ is n — 1.

Before we state our next theorem, the following lemma is needed.

LeMMA 3.13. Suppose that I is a 2-absorbing ideal of a ring R and let S be a
multiplicatively closed subset of R. If IRg # {0}, then IRs is a 2-absorbing ideal of Rs.

PROOF: Suppose that zyz € IRs for some z,y,z € Rs. Then there are elements
s € S, and z1,Z2,z3 € R such that zyz = (2,/s)(z2/3)(z3/3) = T1T273/5® € IRs. Thus,
21Z9x3 € 1. Since I is a 2-absorbing ideal of R, we have z,2, € [ or 2123 € ] or 2273 € 1,
and thus zy € IRgs or zz € IRg or yz € IRg. 0

THEOREM 3.14. Suppose that R is a Priifer domain and I is a nonzero ideal of
R. Then the following statements are equivalent:

(1) I is a 2-absorbing ideal of R;
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(2) I isa prime ideal of R or I = P2 is a P-primary ideal of RorI = PN P,
where P, and P, are nonzero prime ideals of R.

PROOF: Suppose that I is a nonzero 2-absorbing ideal of R. Then either Rad(I) = P
is a prime ideal of R or Rad(I) = P, N P; where Py, P; are the only minimal prime ideals
of R over I by Theorem 2.4. Suppose that Rad(I) = P is a prime ideal of R and
I # P. Then I is a Q-primal ideal of R by Corollary 2.7, and P C Q because P2 C |
by Theorem 2.4. Since IRq is a 2-absorbing ideal of Ry by Lemma 3.13 and Rg is a
valuation domain, we conclude that IRq is a PRg-primary ideal of Ry by Proposition
3.10. Hence IRy N R is a P-primary ideal of R by [5, Corollary 3.10, p. 68]. It is easy
to verify that JRg N R = I (for a proof see [2, Lemma 1.3]). Hence ] = IRgNRisa
P-primary ideal of R. Since P? C I by Theorem 2.4 and I # P, we conclude that I = P?
by (5, Proposition 6.9(4), p. 132].

Next suppose that Rad(I) = P, N P, where P;, P, are the only minimal prime ideals
of R over I. Assume that I # Rad(J). Then I is a Q-primal ideal of R by Corollary
2.7. Since P, C Q and P, C Q and Rg is a valuation domain, either PRy C P,Rq or
PR C P Rg, which is impossible. Thus I = Rad(I) = P, N P,.

For the converse, just observe that if I = P? is a P-primary ideal of R, then I is a
2-absorbing ideal of R by Theorem 3.1. 0

Recall that an integral domain R is said to be a Dedekind domain if every nonzero
ideal of R is invertible.

THEOREM 3.15. Let R be a Noetherian domain that is not a field. The following
statements are equivalent:

(1) R is a Dedekind domain;

(2) IfI is a 2-absorbing ideal of R, then I is a maximal ideal of R or I = M?
for some maximal ideal M of R or I = MM, where M,, M, are some
maximal ideals of R;

(3) IfI is a 2-absorbing ideal of R, then I is a prime ideal of R or I = P? for

some prime ideal P of R or I = P,N P, where P,, P, are some prime ideals
of R.

PRrOOF: (1) = (2). Since R is a one-dimensional ring, every nonzero prime ideal of
R is maximal. Suppose that I is a 2-absorbing ideal of R. Then either Rad(f) = M is
a a maximal ideal of R or Rad(I) = M; N M, = M M; for some distinct maximal ideals
M., M, of R by Theorem 2.4.

(2) = (3). This is obvious.

(3) = (1). Let M be a maximal ideal of R. Since every ideal between M? and M is
an M-Primary ideal and hence a 2-absorbing ideal of R by Theorem 3.1, the hypothesis in
(3) implies that there are no ideals properly between M? and M. Hence R is a Dedekind
domain by {3, Theorem 39.2, p. 470]. 1]
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Recall that an integral domain R is said to be an almost Dedekind domain if Rys
is a Dedekind domain for each maximal ideal M of R (that is, Ry is a Noetherian
valuation domain for each maximal ideal M of R and hence R is a one-dimensional ring.)
The following result is a characterisation of an almost Dedekind domain in terms of 2-
absorbing ideals. The proof of the following result is similar to the proof of Theorem
3.15, and hence it is left to the reader.

PROPOSITION 3.16. Let R be an integral domain that is not a field and sup-
pose that Ry, is Noetherian for each maximal ideal M of R. The following statements
are equivalent:

(1) R is an almost Dedekind domain;

(2) IfI is a 2-absorbing ideal of R, then I is a maximal ideal of R or I = M?
for some maximal ideal M of R or I = MM, where M,, M, are some
maximal ideals of R;

(3) IfI is a 2-absorbing ideal of R, then I is a prime ideal of R or I = P? for
some prime ideal P of R or I = P, N P, where P,, P, are some prime ideals
of R.
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