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CYCLIC MAPS FROM SUSPENSIONS TO SUSPENSIONS
C. S. HOO

1. Introduction. In [7] Varadarajan defined the notion of a cyclic map
f:4 — X. The collection of all homotopy classes of such cyclic maps forms
the Gottlieb subset G(4, X) of [4, X]. If A = 5", this reduces to the group
G (X, x¢) of Gottlieb [5]. We show that a cyclic map f maps @4 into the centre
of @X in the sense of Ganea [4]. If 4 and X are both suspensions, we then show
that if f: 4 — X maps Q4 into the centre of QX, then f is cyclic. Thus for
maps from suspensions to suspensions, Varadarajan's cyclic maps are just
those maps considered by Ganea. We also define G(Z4, ZX) in terms of the
generalized Whitehead product [1]. This gives the computations for G (S"+*, ")
in terms of Whitehead products in a4 (S™).

We work in the category of spaces with base points and having the homotopy
type of countable CW-complexes. All maps and homotopies are with respect to
base points. For simplicity, we shall frequently use the same symbol for a
map and its homotopy class.

Given spaces X and Y we denote the set of homotopy classes of maps from
X to Y by [X, Y]. For any space X, we denote by e¢: 2QX — X the map
whose adjoint is the identity map of X and by ¢’ : X — Q@ZX the map which
is the adjoint of the identity map of X, where € and = are the loop and
suspension functors respectively.

2. We first state some definitions and results we shall need to prove our results.
Let f: A —» X be a map. We say that f is ¢yclic [7] if we can find a map
F:X X A-—Xsuchthat Fj = V(1 Vf)wherej: X VA —X X 4 is the
inclusion of the wedge product into the cartesian product,and V: X V X —» X
is the folding map. The set of all homotopy classes of such cyclic maps is the
subset G(4, X) of [4, X].

If f: A — X is a map, then for every space Z, we have a homomorphism
Qf )4: [Z,94] = [Z,QX]. Let XbA be the flat product, that is, the fibre
of the inclusionj : X V A — X X A. Then in [4], Ganea proved the following
result.

THEOREM 1. The following are equivalent:
(i) (Qf )4 maps [Z, QA] into the centre of the group [Z, QX].
(i) VAL V f) o=

Any such map satisfying either of these conditions is referred to by Ganea
as mapping 24 into the centre of QX.
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TuEOREM 2. Let f : A — X be a cyclic map. Then f maps QA into the centre
of QX.

Proof. Let g : X V A — C be the cofibre of the inclusion ¢ : X064 — X V A.
Then we have a map 7: C— X X 4 such that r¢ = j: X VA —- X X 4.
Since f is cyclic, we have a map I : X X A — X giving the following diagram
with commutative triangles:

Xb0A

<

4 vV V)
XVvV4d——>X

o
c j F

\"X;EA

Clearly V(1 V f) 4 ~ *. Hence f maps Q4 into the centre of QX.

TaEOREM 3. Let f: ZA — ZX map QA into the centre of QX . Then f is
cyclic.

Proof. We have V(1 V f) i~ =. By Lemma 5.1 of [2], it follows that
le, fe] = 0, where e: 2Q ZX — ZX, fe: ZQ A — ZX. Now in [3], Ganea
showed that there is a map v : @2X A @2X — Q22X such that the composite
vq: QZX X QZX - QZX A Q22X — QZX is the commutator of the two
projections 22X X QZX — QZX in the group [2ZX X @ZX, @2X]. Then by
Lemma 2.1 of [2], it follows that [¢, fe] = 01if and only if y{Qe A Q(fe )} =~ =.
If we use the same notation ¢ : QX - Q2 QX, ¢ : Q24 - QX QA for the
obvious embeddings, then we have (Qe)e’ >~ 1x. Hence we have

’y(lgzx /\ Qf ) o~ %k,

Hence by the same Lemma 2.1 of [2], we have [lsx,f] = 0. Now let
71: ZX > 2ZX V Z4, 15: ZA — ZX V ZA be the usual inclusions. Then
V(sx V f )1, 22] = [1sx,f] = 0. Since the cofibre of [71,75] : Z(X A 4) —
ZXV 24 is (ZXV ZA)UCZ(X AN A)~ =X X 24, it follows that we
can find a map F:ZX X 24 — ZX such that Fj = V(A V f) where
j:ZX V 24 — ZX X ZA is the inclusion. Hence f is cyclic.

Remark 1. In the course of the proof, we have shown that if f: Z4 — ZX
maps ©ZA4 into the centre of QZX, then [lsx,f] = 0. Conversely, it is
obvious that if [lsx,f] = 0, then f is cyclic. Thus we have the following
corollary.

COROLLARY 3. Let f : ZA — ZX. Then the following are equivalent.
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(i) f s cyclic.
(ii) f maps QA inio the centre of QTX.
(iii) [1sx,f] = 0.

Remark 2. We can apply this result to spheres. Then we see that the compu-
tations of Varadarajan [7, Theorem 4.1] on G(S¥, S*) are just the well known
results on the Whitehead product [¢, ¢]. Further, the corollary could be applied
to compute G (S™+*, §"), for various k. The result depends on the computation
of the Whitehead product on spheres. These have been extensively computed
by Mahowald [6] and others.

We conclude by stating another result. We recall the following definition
from [7], P(Z4,X) = {a € [Z4, X] | [a, 8] = 0 for all B € [Z*4, X] and all
k = 1}. Varadarajan proves that for all £ = 1, G(S*, S*) = P(S*, S*). An
obvious corollary of our results above is the following generalization,

THEOREM 4. G(ZX, ZX) = P(2X, =ZX).
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