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Abstract

Let {W(t), t > 0) be a standard Brownian motion. For a positive integer m, define a Gaussian process

Xm(t) = — f (t-s)mdW(s).
m\ Jo

Watanabe and Lachal gave some asymptotic properties of the process X„(•), m > 1. In this paper, we
study the bounds of its moduli of continuity and large increments by establishing large deviation results.
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1. Introduction

Let {W(t), t > 0} be a standard Brownian motion. For a positive integer m, define a
Gaussian process

--LA.-.
ml Jo

(1-1) Xm(t) = — / (t - s)m dW(s),
ml Jo

which was first mentioned by Shepp [4]. This class of processes arises in several
domains of applied mathematics. For instance, the process Xi(-), which has been
studied at length, is the solution of Langevin's equation under certain physical con-
ditions. Wahba [5,6] used Xn(-) to derive a correspondence between smoothing by
splines and Bayesian estimation in certain stochastic models.

Watanabe [7] established a law of the iterated logarithm for Xi (•) (in fact, his result
concerns a larger class of Gaussian processes). Lachal [2,3] studied the law of the
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120 Zhengyan Lin [2]

iterated logarithm and regular points for Xm (•), m > 1. Moreover, Lachal [2] obtained
some integral tests that precisely characterize the upper functions for Xm, which is an
important result in the asymptotic study of Xm.

In this paper we study path behaviour of the process Xm (•). By establishing results
on large deviations, we investigate the moduli of continuity and large increment
properties for Xm(-), m > 1, and give their upper and lower bounds. Note that
increments of Xm (•) are neither independent nor stationary, moreover Xm (•) is also not
a stationary process. Usually, stationarity of increments is required for investigating
the moduli of continuity and large increments of a process.

First of all, we give some moment results. We have

(1.2) EX2
m(t) = - i - ['(t- =: bmt2m+l,

where bm = (m\)~2(2m + I)"1, and for any h > 0

(1.3) E(Xm(t + h)-Xm(t))2

= — \ r rE ( f (t + h - s)mdW(s) - f (t- s)m d W(s)]
(ml)2 \Jo Jo )

+E

2m+l

h-s)mdW(s) )']

for some positive bmJ,j = 2,... ,2m + I, where bm2 = ((m — l)!)~2(2m - I)
Equality (1.3) implies

(1.4) E(Xn(t + h)- Xm(t))2 = (1 + l(h/t))bm2h
2t2m-\

where 0 < S(x) -+ 0 as x -*• 0. Hence

(1.5) E(Xm(t + h)Xm(t)) = X-E {X2
m(t + h) + X2

m(t) - (Xm« + h ) - Xm(t))2}

2m+l

Put yn(f) = Xm

(1.6)

2. By (1.2)

EY2(t) = bmt2.
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[3] Path properties of the primitives of a Brownian motion 121

Using (1.2), (1.3) and (1.5) we have

(1.7) E(Ym(t + h)- Ym(t))2

_ , - „ , . , h)-Xm(t) ( 1 1
= t,

i_ „ U *2m+l

2 m + 1

)

2m+l

where

= 6m2 - b m ( m - - J ( m + - j ,
gm(h,t)=O(h3t) as/ir-^O,

which implies that

(1.8) 2 2

2. Large deviations

First we quote a well-known lemma.

LEMMA 2.1 (Fernique). Let G(t) be a Gaussian process on [0, 1] with EG2(t) <
A2 and E(G(t) — G(s))2 < o2(\t — s\), where <r() is a continuous nondecreasing
function satisfying

J,
00

—Xcr(e x )dx < oo.

Then, for x > 2, we have

P I sup \G(t)\ >X(A+ f a(e-yi)dy j ! <ce'*2'2,

where c is an absolute constant.
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The following is a large deviation result for small time increments.

PROPOSITION 2.1. For any e > 0, there exist positive numbers h0, xQ, C\ and d
such that for any 0 < h < h0 and x > x0

PROOF. For any t > 0 and integer r > 0, let tr = [t2r/h]/(2r/h), and write, for
rh < 1 - h,

(2.1)
|Xm(r + s)-Xm(r) |

sup sup
(rv/i)m-i/2

= sup sup —— v sup sup J —
0<l<rh0<s<h (t V h)m ' rh<l<l-hO<s<h tm '

=: /. v l2.

Noting t v h > (t + h)/2, we have

/, < 2m~1/2 sup sup —— " < 2m + 1 / 2 sup \Ym(t)\.
O<t<rhO<s<h (t ~\- h)m ' 0<l<(l+r)h

LetZm(O = Ym((l + r)ht),0 < t < 1. We will use Lemma 2.1 withA = i n l -
and a(s) = (2J5m)1/2(l + r)hs. Put D = (1 + r){b)l2 + (2fim)1/2 fi° e^ dy). For
any given s > 0, take r = r(e) to be specified later on. By Lemma 2.1, we have

(2.2) P{h > bljghx) < P { sup |Zm(0l > (b%2-lm+imD-l)Dhx\ < Ce~c>x2

forx > ^o := b-\/22m+l/2D, where c, = ^m22-(2m+1)D-2/2.
Consider /2 now. We shall use a method similar to that in [1]. For rh < t < 1 — h,

0 < s < h, which implies that

i < / iy~ 1 / 2 i < / i\m-1/2

for any j > 0, we have

\Xm{t + s) - Xm(t)\
(2.3)

\Xm((t + s)r)-Xm(tr)\
tm-l/2 tm-l/2

https://doi.org/10.1017/S1446788700002317 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002317


[5] Path properties of the primitives of a Brownian motion 123

\Xm(tr) - Xm(t)\
+ fin-1/2

^ \Xm((t + s)r) - Xm(tr)\ y> \Xm«t + s)r+j+l) - Xm((t + s)r+j)\

\Xm(tr+j+l) - Xm(tr+j)\
fm-1/2

;=o
\Xm«t+s)r)-Xm(tr)\

tm-\/2

,
1 V
r)

m-l/2
;=0 V+y+l

For the first term of the right hand side of (2.3), by (1.4) we have

provided r = r(e) is large enough. Hence, noting that the number of points lying
within the grid [0, h] x [rh, 1] with step h/2r is less than 22r/h, we obtain

22r

< — sup sup P
fl rh<t<l-h0<s<h

22r _x2/2

by recalling the well-known inequality 1 — <t>(x) < (l/*j2nx)e~xl/2. (Without loss
of generality, assume thatx0 > l/*/2n.)

Consider the second term of the right hand side of (2.3). Note the following
inequality:

j=0 ;=0 J ie/ ly=0 y=0

<#(/)supP{3> >0:X,y
ie/
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where Xtj, i € I, j = 0, 1 , . . . , are random variables aadxJyj = 0 , 1 , . . . , are real
numbers. Moreover, by (1.4) again, we have

(
Xm(tr+j+i

x 2

+j+i) - Xm(tr+j) \ ,2 2(r+j
I — A°m2n I*•

•r+j+l /

for any 0 < / < 1, provided r is large enough. Furthermore, we may demand

oo / 1 \ -m+1/2 „

,=0 v ^

Then we have

(2.5)

„ f ^\Xm«t+s)r+j+l)-Xm((t+s)r+j)\
P { SUp SUp V , , .m-l/2 — > 3

h ( h

< _ V * e-2
r+i+'*2/2 < _e~*2/2

~ h *-" ~ h
j=o

for large r. Similarly, for the third term of the right hand side of (2.3) we have

(2.6) p \ sup sup f \ ^ r + J + l ) - X m ( t r + j ) \ ^ s 2 h \ *e_x2/2

[rh<,<l-hO<s<h^ tr+jl, 3 J h

Combining (2.3H2.6) we obtain

(2.7) P jI2 > (1 + e)b%hx ) < (22r + 2r+l) i e^11.

(2.2) and (2.7) together imply the conclusion of Proposition 2.1. •

An analogue of Proposition 2.1 in the large increment case is the following.

PROPOSITION 2.2. Let aT be a function of T with 0 < aT < T and aT/ T -*• 0 as
T —*• oo. Then for any e > 0, there exist positive numbers To,xi,c2 and C^ such that

for any T > To and x > xit

j sup su
[0<l<T-aT0<s<

sup lXm^S)^f)l > (1 +e)b%aTx j < C2(e^ +

The proof is similar to that of Proposition 2.1, and hence, is omitted.
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3. Moduli of continuity

We need another well-known lemma.

LEMMA 3.1 (Slepian). Let G(t) and G*{t) be Gaussian processes on [0, T] for
some 0 < T < oo, possessing continuous sample path functions with EG(t) =
EG*(t) = 0, EG2(t) = EG*2(t) = 1, and let p(s, t) and p*(s, t) be their respective
covariance functions. Suppose that we have p(s, t) > p*(s, t), s,t€ [0, T]. Then
for any real u,

P I sup G(t) < u \ > P I sup G*(t) < u \ .
[o<l<T I [OSI<T J

Putlog* =ln(evx).

THEOREM 3.1.

, , „ ,. \Xm(t + s)-Xm(t)\
(3.1) hmsup sup sup —f75 < 1 almost surely,

*-o O<I<I-*O<,<A b^lit V h)m-v2h(2\ogh-iyi2 ~

(3.2) liminf sup —77; > 1 almost surely.

REMARK 3.1. It is interesting to find the exact factors such that equality signs in
(3.1) and/or (3.2) hold. For Levy's moduli of continuity of a Brownian motion W(-),
the ' ( l og / r ' ) 1 / 2 ' makes the equality sign in (3.1) hold. For Xm(-), there are certain
difficulties because its increments are neither independent nor stationary.

PROOF. First we prove (3.1). For any given e > 0, by Propositon 2.1, there exist

d = cx (e) > 0 and d = d (e) > 0 such that

' U P P̂ ' ^ ; , ^ - w l >o+.)''
I 0<(<l-A0<i</i O ', (? V rt)"^

< Cx(h2ci +h2s).

Taking hn = n~A with A > (2(e A C1))"1, we obtain

I \
sup sup -J75 > (1 + e)2 > < 00,

o<»<i-*.o<,<*. bl£(t V AB)—I/2AB(21ogA-I)1/2 j
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which, in combination with the Borel-Cantelli lemma, implies

(3.3) limsup sup sup —riz < ( l + e ) 2 a.s.
n-t-oo 0<i<l-ha 0<s<hn 0 2 \t V nny

The procedure from (3.3) to (3.1) is routine, and hence, is omitted.
Next we show (3.2). Let hn = n~A- with An = n

(logloinr' f oo as n -* oo. Define

w . , Xm(« + Dhn) - Xm(ihn) A

Y(i) = , 0 < / < nA- — 1.
(ihn)

m-V2

By (1.4), £K(«)2 > bm2h
2
n. We have that, for i<j,

(3.4) £ ( r ( i ) *-(/))

(m!)20/in)m-1/2(/An)m-'/2 IJO

.(i+DA.

/

(i+I)A

ihn /• ihn

{ihn - s)m((j + \)hn - s)mds + / (ihn - s)m(jhn - ,
o

1

i (ihn-s)m(jhn-s)mds\

m m

L e t « i = [An l o g n],Z(i) = Y ( e j ) , i = 0 , 1 , . . . , n u

4(2w -
Cm —

7 i ! ) 2 ( 2 m - p - 9 + 1 ) '

and Dn = 3 log logn. (3.4) implies that for / > n,/3 and; — i > Dn,

(3.5) £(Z(/)Z0')) < ^c n e" 0 " ' ) / 2 ( l + O(l/i)) < <

provided n is large enough. Let {£,-, i > 0} and ^ be independent normal random
variables with means zero and E%] = EZ(i)2 - cm(logn)~lh2

n = (1 + o(l))bm2h
2
n

as n - • oo (recalling (1.4)), £ £ 2 = cm(logn)-'/r2. Define y, = & + $. Then
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[9] Path properties of the primitives of a Brownian motion 127

Ey} = EZiXf and EZ(i)Z(j) < Eytyj. Let / = {i : n,/3 < i < n, - 1, i
mod Dn), then #(/) > n\/{2Dn) for large n. Hence by Slepian's lemma and using
the well-known inequality

1

-Jin

we obtain that for large n

(3.6) P max Z(i) < (1 - log log O
i mod Dn

< P

< P

ma* Yi < 0 -e)*ii?*»(21oglogA;
i mod D,

max
i/3<i<ni-
i mod £)„

< (l - P (ft > (1 -

e2*m

* ( -
-(l-Dioglog/,;1}^

_2

2/i"2.

Inequality (3.6) implies

max
! ~*

. - 2

< oo,

and by the Borel-Cantelli lemma it follows that

(3.7) lim inf max > 1 — e a.s.
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And hence we conclude

(3.8) limmf sup —r-p. > 1 — s a.s.
n - ° ° hn<,<i-hn bl£tml'2h(2llh^)1/2

Considering hn+l < h < hn, we have

(3 . 9 ) s u p I».O+ * ) -
b v /i)"

\Xm{t + hn) - Xm(t) + Xm(t + h ) - Xm(t + hn)\
> SUP

\Xm{t + hn)-Xm{t)\
^ SUP 7T72-

\Xm(t + hn+l+s)-Xm(t + hn— 2 sup sup —
b

By the derivative calculus for the function / (x) = x A", we have

hn — hn+\ — hn+\—-— (1 -
n log log n

Therefore,
(r + / » n + . r ( / » n /r,+1)(log(A, / i n + 1 ) ) .

hm sup ^-i = 0.
°° tm-l/2h(iogiogh;ly2

Consequently we conclude (3.2) by (3.8), (3.9) and (3.1). This completes the proof of
Theorem 3.1. •

4. Large increments

THEOREM 4.1. Let aT be a continuous Junction of T with 0 < aT < T and suppose
that

(4.1) lim " " P - ' ^ * ' = 1
«-•<» infn_i<,<na,

and

(4.2) lim log( r /a r ) / log log T = oo.
r-»oo

Then
\Xm(t + s)-Xm(t)\

(4.3) lim sup sup sup -r-= < 1 a.s.
r-»oo o*r<r-aro<,£r b^t V aT)m-l/2aT(2log(r/ar))'/

2
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[11] Path properties of the primitives of a Brownian motion 129

If, instead of (4.2), for any e > 0 there exists To > 0 such that for T > To

, j v (log log log T)1"

(4.4) (log—) >log7\

(4.5) (\ogaT)W-^°sW°B°T > l o g Tt

then
<A « r • f |Xm(f + a r ) - X m ( Q |
(4.6) hminf sup —775 > 1 a.s.

T-*°O o<,<T-aT b)H(t v ) m ' / 2 ( 2 1 l ( r / ) ) 1 / 2

PROOF. First we prove (4.3). Let 6 > 1 and for integers /fc and 7 let

(4.7) Akj = [T : ek~l <T <9k, Gj~l < aT < &).

In the sequel, we always consider k andy such that Atj is non-empty. For any A > 0,
by condition (4.2), there exists k0 such that for k > k0

log0*-Vloglog0*>A,

that is,

(4.8) j <k-[(A/log9)logk + el]=:kl,

where 6>, = A(logloge)/log0. Then, noting that ^/
2

2(?var)
m-1/2ar(21og(r/ar))1/2

is an increasing function of both T and aT, we have

,AQ, ,. \Xm(t + s)-Xm(t)\
(4.9) hmsup sup sup —

,,.A* V aT)"

< lim sup sup sup sup

< lim sup sup sup sup 1/2

Using Proposition 2.2 and (4.8) we have

D | \xm(t + s)-xm(t)\ A
P { sup sup sup -775 > (1 4- e)

I ^ b)ll{t V Qi)—>/2# (2 l 6 * * ^ )'/2
V Qi)—>/2# (2 log6**

(exP {-2c2(l + e)2 log^^ } + e*"J+1 exp {-(1 + e)2

< Q V^

>=-oo
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forsomec > ObytakingA = (log0)/(c2(l+f)2A£). Hence, from the Borel-Cantelli
lemma we obtain

\Xm(t + s) - Xm(t)\ ,
limsup sup sup sup —rp. < ( l + e) as.

t-»oo -oo<j<k, 0<t<$i<+>-BJ 0<s<6J b^if V Q> ) m - ' / 2 ^ (2 l o g Qt-J)1/2

which, in combination with (4.9), implies (4.3) by arbitrariness of 8 > 1.
Next we show (4.6). Let A; = j^e^jr1

 a g a m ) ^ j let Bo = 0, Bj = jA>,
j = 1, 2 , . . . , Ckj = {T : Bk-i < T < Bk, Bj^ < aT < 5,}. By condition (4.4), for
any A > 0, there exists an integer jo such that for; > j 0

(4.10) \og(Bk/Bj) > (log B , ) 8 ^ > A

On the other hand, by the derivative calculus for the function g(x) = log Bx, we have

l o g f l * - l o g B , < 2 ( * - . / ) - A t l O g *
k log log k'

which, in combination with (4.10), implies that

Noting that bx£(t v aT)m~l/2aT(2\og\og(T/aT))i/2 is an increasing function of both
T and a r we can write

, . . , .. . . \Xm(t + aT)-Xm(t)\
(4.11) hminf supo«<r-ar ^ ( t V ar)

\Xm(t + aT)-Xm(t)\
> lim inf inf inf sup

> lim inf inf sup

0<l<T-aT b)ll(t v a r )
m

\Xm(t + Bj)-Xm(t)\

\Xm(t+s)-Xm(t)\
SUp SUp —

(t V (Bj - Bj-

(2log(Bk/(Bj - Bj-

By the derivative calculus for the function h(x) = Bx, we have

gy - B/-i ^ 2A.log;
B; ~ y log log; '
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[13] Path properties of the primitives of a Brownian motion 131

The last inequality and condition (4.5) imply that, as k —*• oo,

logB* < (1 + o(l))logfit_, < 2(logB,)2(1-£)logloglogfl; < 2(Aj

Hence

Uv( f l J -B y _ , ) r - / 2 (g ; -B ; , 1 ) ( l og ( i

" • • "*lj(\oglog(Bk/Bj

=
j e log log;

Then by (4.3) and (4.12) we obtain

(4.13) J2=0 a.s.

Consider Jx and for fixed k, define

>• 0 as / -*• oo.

' 0<l^Bk/BJ-l>J = 0 , 1 , . . . . f e .

Furthermore, let Z;( i ) = i}(e'). / = 0, 1 , . . . , Jfc3 - 1 with fc3 = [log(Bt/S,)] .
Similarly to (3.5), we have

jVi) < c'JloglogkyA-2Bf

for some dm > 0 and any i'i > k3/3, i2 — i\ > D'k := 3(A + 2) log log log it. Let
{£y.'• > 0} and £j be independent normal random variables with means zero and
El;2 = EZj(i)2 - dm(\og\ogkyA-2B], E$ = <, dog log k)-A-2BJ. Then, similarly
to (3.6), using (4.10) with A > 6/e we obtain for all large k

(4.14) P \ Jnf^ t /max _( Zj (i) < (1 - e)blJ^Bj (21oglog(Bt/B/))
1/2

i mod Di

2£>;(87Tloglog(flt
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f s 2 b m 2 ) \
+ exp j——-( log log k) log k | I.

It is easy to see that

£>; = o(log(Bk/Bj)), loglog(Bk/Bj) = o(\og(Bk/Bj)).

So for large k,

Combining it with (4.14) implies

Y, P jojirfbomax , Zj(i) < (1 - e)^/
2

2^(21oglog(Bt/Bj))
1/2 j < oo.

Hence

(4.15) A > 1 - e a.s.

Combining (4.15) with (4.13) we conclude that (4.4) holds. This completes the proof
of Theorem 4.1. •
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