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Approximation On Arcs and Dendrites
Going to Infinity in Cn

In memoriam: Herbert James Alexander 1940–1999

P. M. Gauthier and E. S. Zeron

Abstract. On a locally rectifiable arc going to infinity, each continuous function can be approximated
by entire functions.

1 Introduction

A famous theorem of Torsten Carleman [4] asserts that for each continuous function
f on the real line R and for each positive continuous function ε on R, there exists an
entire function g on C such that

| f (x)− g(x)| < ε(x), for all x ∈ R.

Carleman’s theorem was extended to Cn by Herbert Alexander [2] who replaced the
line R by a piecewise smooth arc going to infinity in Cn and by Stephen Scheinberg
[9] who replaced the real line R by the real part Rn of Cn = Rn + iRn. In the present
work, we extend Alexander’s theorem to locally rectifiable closed connected subsets
Γ ⊂ Cn which contain no closed curves.

Let X be a subset of Cn. X is a continuum if it is a compact connected set. The
length and area of X are the Hausdorff 1-measure and 2-measure of X respectively.
The set X is said to be of finite length at a point x ∈ X if this point has a neighbour-
hood in X of finite length, and X is said to be of locally finite length if X is of finite
length at each of its points. Notice that if X is a set of locally finite length, then each
compact subset of X has finite length (though X itself need not be of finite length).
We denote the polynomial hull of a compact set X by X̂. The algebra of continuous
functions defined on X is denoted by C(X). Finally, the definition and some proper-
ties of the first Čech cohomology group with integer coefficients Ȟ1(X) are presented
in [7] and [12].

2 The Alexander-Stolzenberg Theorem

John Wermer laid the foundations of approximation on curves in Cn and prepared
the way for a fundamental result of Gabriel Stolzenberg [10] concerning hulls and
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smooth curves (for history see [11]). In [3], Alexander comments that Stolzen-
berg’s theorem can be improved to consider continua of finite length instead of smooth
curves. We shall refer to the following version as the Alexander-Stolzenberg Theorem.

Theorem 1 (Alexander-Stolzenberg) Let X and Y be two compact subsets of Cn,
with X polynomially convex and Y \ X of zero area. Then,

A: Every continuous function on X ∪Y which is uniformly approximable on X by poly-
nomials is uniformly approximable on X ∪ Y by rational functions.

Suppose, moreover, there exists a continuum Υ ⊂ Cn such that Υ \ X has locally finite
length and Y ⊂ (X ∪Υ). Then:

B: X̂ ∪ Y \ (X ∪ Y ) is (if non-empty) a pure one-dimensional analytic subset of Cn \
(X ∪Y ).

C: If the map Ȟ1(X ∪ Y ) → Ȟ1(X) induced by X ⊂ X ∪ Y is injective, then X ∪ Y is
polynomially convex.

The proof of this theorem is implicitly contained in the papers of Stolzenberg [11]
and Alexander [3]. A sketch of the proof is available from the authors and will be
published elsewhere. Note also, that in this Alexander-Stolzenberg Theorem, locally
finite length is required only for parts B and C.

3 Approximation On Unbounded Sets

We now pass from approximation on compacta to approximation on closed sets. A
closed set Y of Cn, without interior, is called a set of tangential approximation by entire
functions if, for each f ∈ C(Y ) and each positive ε ∈ C(Y ), there is an entire function
g such that | f − g| < ε on Y .

Carleman’s theorem, stated in the introduction, asserts that the real line R in C
is a set of tangential approximation by entire functions. This was originally proved
employing inductive processes. Alexander [2] extended Carleman’s theorem to piece-
wise smooth arcs Γ going to infinity in Cn. That is, Γ is the the image of the real axis
under a proper continuous embedding (a curve without self-intersections, going to
infinity in both directions).

As a consequence of the Alexander-Stolzenberg Theorem, we can also approxi-
mate by entire functions on unbounded sets which are more general than arcs, but
first, we need to introduce the polynomially convex hull of non-compact sets:

Definition Given an arbitrary subset Y of Cn, its polynomially convex hull is defined
by Ŷ =

⋃
{K̂ : K ⊂ Y is compact}.

Proposition 1 Let Γ be a closed set in Cn of zero area such that D̂ ∪ Γ \ Γ is bounded
for every compact set D ⊂ Cn. Let B1 be an open ball with center in the origin which
contains the closure of Γ̂\Γ. That is, the set B1∪Γ contains the hull K̂ of every compact
set K ⊂ Γ.
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Then, given two continuous functions f , ε ∈ C(Γ) such that ε is real positive and f
can be uniformly approximated by polynomials on Γ∩ B̄1, there exists an entire function
F such that |F(z)− f (z)| < ε(z) for z ∈ Γ.

Proof Let B0 be the empty set, B1 as in the hypotheses and Bk open balls with center

in the origin such that each Bk contains the closure of Γ̂ ∪ B̄k−1 \ Γ. That is, the set
Bk ∪ Γ contains the hull K̂ of every compact set K ⊂ (Γ ∪ B̄k−1). Define Xk to be the
polynomially convex hull of B̄k+1 ∩ (Γ ∪ B̄k−1), so Xk ⊂ (Bk ∪ Γ). The compact sets
Xk and Xk ∩ B̄k are both polynomially convex.

The given hypotheses automatically imply that there exists a polynomial F1 such
that |F1(z) − f (z)| < ( 2

3 − 2−1)ε(z) on Γ ∩ B̄1. Proceeding by induction, we shall
construct a sequence of polynomials Fk which converges uniformly on compact sets
to an entire function with the desired properties.

Given a polynomial Fk such that |Fk(z)− f (z)| < ( 2
3−2−k)ε(z) on Γ∩ B̄k, let hk be

a continuous function equal to Fk on B̄k and such that |hk(z)− f (z)| < ( 2
3 −2−k)ε(z)

for z ∈ Γ∩ B̄k+1 as well. Fix a real number 0 < λk < 1 strictly less than ε(z) for every
z ∈ Γ ∩ B̄k+1.

Notice that Xk = (Xk ∩ B̄k) ∪ (Γ ∩ B̄k+1). Hence, by Theorem 1.A, the function
hk can be approximated by rational functions on Xk because Xk ∩ B̄k is polynomially
convex and Γ has zero area. Moreover, the functions hk can be approximated by
polynomials by the Oka-Weil theorem. Thus, there exists a polynomial Fk+1 such that
|Fk+1(z) − hk(z)| < 2−1−kλk for z ∈ Xk, and so |Fk+1(z) − f (z)| < ( 2

3 − 2−1−k)ε(z)
on Γ ∩ B̄k+1.

Finally, the inequality |Fk+1(z) − Fk(z)| < 2−1−k holds for z ∈ B̄k−1, so the se-
quence Fk converges to an entire function with the desired properties.

On the other hand, if the equality Γ̂ = Γ holds as well in the last proposition, we
can choose the empty set instead of the open ball B1 (because the proof is an inductive
process); and so Γ becomes a set of tangential approximation by entire functions.
There are many closed sets Γ which satisfy the hypotheses of the last proposition. For
example, we have the following.

Theorem 2 Let Γ be closed connected set of locally finite length in Cn whose first coho-
mology group Ȟ1(Γ) vanishes (Γ contains no simple closed curves). Then, Γ is a set of
tangential approximation by entire functions.

In particular, this theorem allows tangential approximation on locally rectifiable
arcs tending to infinity. This was conjectured by Aupetit in [1] and announced by
Alexander in [2].

Proof The proof strongly uses the topology of Γ. We show that each point of Γ has
finite order, that is, has a basis of neighbourhoods in Γ having finite boundaries.
Given a point z ∈ Γ, let Br be the open ball in Cn of radius r and center z. Since
Γ is locally of finite length, the intersection of Γ with the closed ball B̄r has finite
length, so the intersection of Γ with the boundary of Bs must be a finite set for almost
all radii 0 < s < r. Whence, each sub-continuum of Γ is locally connected [8,
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p. 283]. On the other hand, there are no simple closed curves contained in Γ because
Ȟ1(Γ) = 0, so each sub-continuum of Γ is a dendrite, that is, a locally connected
continuum containing no simple closed curves. In particular, if Γ is compact, then it
is a dendrite.

Notice the following lemma.

Lemma 1 Each compact subset K ⊂ Γ is contained in a sub-continuum (dendrite) of
Γ.

Proof Since Γ is locally connected, the set K is contained in a finite union of sub-
continua of Γ. The lemma now follows since Γ is arcwise connected (see Theo-
rem 3.17 of [7]).

Let D be a compact set in Cn. Notice that D∪ Γmay contain simple closed curves
Υ with D∩Υ �= ∅ butΥ �⊂ D. We shall call such a simple closed curveΥ ⊂ (D∪Γ)
a loop. We show there exists a ball which contains all of these loops. Henceforth,
let Br be open balls of radii r and center in the origin, and choose a radius s > 0
such that D ⊂ Bs. Recall that Γ ∩ B̄s+1 has finite length, so there exists a ball Bt with
s < t < s + 1 such that Γmeets the boundary of Bt only in a finite number of points
Q = {q1, . . . , qm}. Let {Υ j} be the possible loops which meet the complement
of Bt . The set

⋃
{Υ j} \ Bt is contained in Γ and can be expressed as the union of

compact arcs (not necessarily disjoint) which lie outside of B̄t except for their two
end points which lie in Q. Since Γ cannot contain simple closed curves, two different
arcs cannot share the same end points, and there can only be finitely many such arcs.
Hence, there exists a ball Bδ which contains all the loopsΥ, and D ⊂ Bδ .

We shall show that D̂ ∪ Γ \ Γ is bounded. Without loss of generality, we may

suppose that D is a closed ball. Since Γ is connected, the hull D̂ ∪ Γ is equal to⋃
r≥δ K̂r , where Kr is the connected component of B̄r∩ (D∪Γ) which contains D. We

can prove that K̂r = K̂δ ∪ Kr , for every r ≥ δ, using Alexander’s original argument.
The following lemma is a literal translation of Lemma 1(a) of [2], to our context.

Lemma 2 For every r ≥ δ, K̂r = K̂δ ∪ τr where τr = Kr \ Kδ .

Since the notation is quite complicated and different from Alexander’s, and we
need to invoke Theorem 1.B, we shall include the proof of Lemma 2, but first we
conclude the proof of the theorem.

By Lemma 2, the set D̂ ∪ Γ \ Γ is bounded because K̂r = K̂δ ∪ τr = K̂δ ∪ Kr and

D̂ ∪ Γ = (K̂δ ∪Γ). Moreover, the equality Γ̂ = Γ holds as well because each compact
subset of Γ is contained in a dendrite of finite length and is polynomially convex (see
Lemma 1 and Alexander’s work [3]), so we can deduce from Proposition 1 that Γ is
a set of tangential approximation.

Proof of Lemma 2 Let Tr = K̂δ ∪ τr be the set on the right hand side of the asserted
equality. Clearly, we have Tr ⊂ K̂r ⊂ T̂r (the second inclusion is in fact equality).
Thus it suffices to show that Tr is polynomially convex. Arguing by contradiction, we
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suppose otherwise. By Theorem 1.B, T̂r \Tr is a 1-dimensional analytic subvariety of
Cn \ Tr .

Let V be a non-empty irreducible analytic component of T̂r \ Tr . We claim that
V̄ \Kr is an analytic subvariety of Cn \Kr . Since Tr = K̂δ ∪ τr, it suffices to verify this
locally at a point x ∈ V̄ ∩ Q where

Q = K̂δ \ Kδ.

By Theorem 1.B, both K̂r and Q are analytic near x, where near x refers to the inter-
section of sets with small enough neighbourhoods of x, here and below. Furthermore,
near x, V̄ ⊂ K̂r , V ⊂ K̂r \Q and Q ⊂ K̂r . Thus, near x, Q is a union of some analytic
components of K̂r . It follows that near x, V̄ is just a union of some of the other local
analytic components of K̂r at x; in fact, near x, V̄ = V ∪ {x}. Put

W = V̄ \ Kr.

Then W is an irreducible analytic subset of Cn \ Kr and moreover,

W̄ \W ⊂ Kδ ∪ τr = Kr.

Thus W̄ ⊂ K̂r by the maximum principle.
Fix a point p ∈ V ⊂W . Since p �∈ Tr , we have p �∈ K̂δ and therefore there exists a

polynomial h such that h(p) = 0 and 
h < 0 on K̂δ . By the open mapping theorem,
either h(W ) is an open neighbourhood of 0 or h ≡ 0 on W . In the latter case, h ≡ 0
on W̄ and so W̄ \W is disjoint from Kδ . This implies that W̄ \W ⊂ τ̂r so W ⊂ τ̂r.
We have a contradiction because τr is contained in a dendrite of finite length and
is polynomially convex (see Lemma 1 and Alexander’s work [3]), and moreover, a
dendrite cannot contain a 1-dimensional analytic set. Hence, the former case holds.
As h(τr) is nowhere dense in the plane (recall that it is of finite length), there is a
small complex number α ∈ h(W ) such that α �∈ h(τr). Now put g = h − α. If α is
sufficiently small, we conclude that (i) 
g < 0 on K̂δ , (ii) g(q) = 0 for some q ∈W
and (iii) 0 �∈ g(τr).

Now (i) implies that the polynomial g has a continuous logarithm on K̂δ and so,
by restriction, on Kδ . We can extend this logarithm of g on Kδ to a continuous loga-
rithm of g on Kr because of (iii), since the ball Bδ was chosen such that every simple
closed curve (loop) Υ ⊂ Kr is contained in Bδ and hence in Kδ . But Kr contains
W̄ \W . Applying the argument principle [10, p. 271] to g on the analytic set W gives
a contradiction to (ii).

We remark that the condition of having zero area is essential in Proposition 1, as
the following example (inspired by [5]) shows.

Example 1 Let I be the closed unit interval [0, 1] of the real line and K ⊂ I the
compact set K = {0, 1, 1

2 ,
1
3 ,

1
4 , . . . }. It is easy to see that the (2 + ε)-dimensional

Hausdorff measure of the closed connected set Y = (I × {0}) ∪ (K × C) in C2

is equal to zero for every ε > 0, moreover, the equality Ŷ = Y holds. However,
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the following continuous function f ∈ C(Y ) cannot be uniformly approximated by
holomorphic functions in O(Y ):

f (w, z) =

{
z if w = 1

0 otherwise.

Suppose there exists a real number ε > 0 and a holomorphic function g ∈ O(Y )
such that | f − g| < ε on Y . We automatically have that g(w, z) is bounded, holomor-
phic and constant on each complex line { 1

j }×C, j = 2, 3, . . . . Hence, the holomor-

phic function ∂g
∂z vanishes on each complex line { 1

j } × C, j = 2, 3, . . . as well. Since

the zero set of ∂g
∂z is an analytic set, this derivative must be zero in a neighbourhood

of {0} × C and hence on the connected set Y . The last statement is a contradiction
to the fact that |g(1, z)− z| < ε for every z ∈ C.

On the other hand, to see that Ŷ = Y , notice that Y =
⋃

r>0 Yr, where Yr =
(I × {0}) ∪ (K × ∆r) and ∆r ⊂ C are closed discs of radius r. The set K × ∆r is
polynomially convex because it is the Cartesian product of two polynomially convex
sets in C; and so Yr is polynomially convex because of Theorem 1.

Although connectivity, as we have emphasized, plays a crucial role in this paper,
similar results can be obtained for sets whose connected components form a locally
finite family. Finally, we remark that, on a Stein manifold, analogous results also hold
by simply embedding the Stein manifold into some Cn.
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