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Abstract

The note re-examines Brown's new inequalities involving polynomials and fractional powers.
Shorter proofs are provided, and greater attention is given to the conditions for the inequalities
to hold.

1991 Mathematics subject classification (Amer. Math. Soc): 26 D 05, 26 D20.

1. Introduction

Brown (1988) has investigated a class of inequalities involving polynomials
and fractional powers. These were suggested by his work on singular mea-
sures; his intention is to reformulate the inequalities as measure theoretic
results.

Brown's inequalities are tight, and are appealingly simple to state; such
inequalities have a useful role in many branches of mathematics. Because
they do not seem to fit into the usual categories of inequalities they are worthy
of further study, particularly regarding the regions over which they hold.

The most interesting of the inequalities appears in

BROWN'S PROPOSITION 1. Suppose that s, t > 1 and that s l + t l

In 3/In 2. Then
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132 A. W. Kemp [2]

(1) 1 + X + J C 2 > ( 1 + ; C V / * ( 1 + * ' ) 1 / ' ,

for all 0 < x < 1 , if and only if3(s + t)<&.

Brown commented that he had been able to find significant shortcuts for
his other propositions, but thought his proof of Proposition 1 "still rather
long".

The alternative proof in this note is much shorter.
A special case of 1+ x + x2 > (1 + xs)i/s(l + x)1'1 is

(2) 1 + J C + * 2 > ( 1 + X * ) 2 / \

Brown states that (2) holds for x > 0, s = Iog34. But 5- 1ln(l + Xs) is
monotonically decreasing in s; also equality is attained when x — 0. The
statement can therefore be widened to

(3) l+x + x2>(l+xsfs forx>0, 5>log34.

Clearly the conditions for

(4) l+x + x2>(l+xs)i/s(l+x'f, s,t,xreal, s> 1, t> 1,

- i
to hold are more general than those in Brown's Proposition 1.

As Brown may have realized, (4) is invariant when x is replaced by x
and so holds for x > 1 whenever it holds for 0 < x < 1.

In Section 2 we find that (4) is valid not only over the arc s~l + t~l -
In 3/ In 2 , s + t < 8/3, but more generally in the (overlapping) regions

(5) s~X + T1 <ln3/ ln2, s > sx, t > sl, 0<x,

and

(6) 5 ~ 1 + r 1 < 1 . 5 , s> 1, t> 1, 0 < J C ,

where sl = 1.0246... is the (unique) solution of s~l + t~l - In3/In2,
s + t = 8/3, s < t.

The inequality does not of course hold for s~l + t~l > In 3/ In 2, 0 < x <
1. The present writer has been unable to establish general conditions for its
validity within the two small remaining regions 1.5 < s~l + t~x < In3/In2,
1 < s < s{, and 1.5 < s~l + t~l < In3/In2, 1 < t < sx. Within the first of
these, it does not hold for 5 = 1.005, f = 1.72, x = 0.1; on the other hand,
numerical studies suggest that it hold for s = 1.02, t = 1.8, 0 < x.

Brown's other inequalities are re-examined briefly.
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2. Brown's Proposition 1

We begin by proving that inequality (4) holds when 0 < x < l , 3 ( . s + 0 < 8
and s~l + t~l = In 3/ In 2 . The necessity of the condition 3(s +1) < 8 when
s~x + t~x — In3/ln2 is easily checked (see Brown (1988)), so Proposition 1
follows readily. Inequality (4) and these conditions are symmetric in 5 and
t, and therefore we need only consider s < t. Let s = c-a, t = c + a, and

(7) / ( x ; c, a) = \n(l+x+x2)-{c-a)~1 ln(H-xc~a)- (c+a)" ' ln( l+x c + a ) .

Then we seek to prove that / ( x ; c, a) > 0 when 0 < x < l , 0 < a < c - l <
1/3, l / ( c - f l ) + l / ( c + fl) = ln3 / ln2 .

Now

(8) df(x;c, a)/dx = G(x;c, a)/[(I +x + x2)(l +xc~a)(l + xc+a)]

where

(9) G(x;c,a)=l+2x-2x2c-l-x2c-(xc-a-l+xc+a-l)(l-x2).

When s + t = 8 /3 , that is, c = 4 / 3 ,

(10) G(x; 4 / 3 , fl) - (1 -x2)(l - xl/3)2{p(x) + q(x)},

where

p(x) = (-x2/3 + 2x-2x5p+x2)/{(l-x2)(l-xU3)2}
2 / 3 , , , 2/3 4/3,

= -X ' /(I +X ' +X ' ) ,
which decreases monotonically from 0 to —1/3 for 0 < x < 1, and

/ \ / i l/3-a 1/3+a 2 / 3 w / , 1/3X2

q(x) = ( l - x ' - x ' + x ' ) / ( l x ' )
i / -a/2 a/2,2,, - 1 / 6 1/6N2

= 1 - (X - X ) / (X - X )

= 1 -sinh2{0.5aln(x)}/sinh2{(l/6)ln(x)},

which decreases monotonically from 1 to 1 — 9a . Moreover (1 — x )
x ( l - x 1 / 3 ) 2 > 0 for 0 < x < 1. So G{x; 4 / 3 , a), and hence df(x; 4 /3 , a)/
dx, either has no zero or exactly one zero in 0 < x < 1, depending on
whether p(l) + #(l) = 2 / 3 - 9a2 is greater or less than zero. Consequently,
since f(0;c,a) = 0 and [df(x; c, a)/dx]x=o — 1, / ( x ; 4 /3 , a) either
increases monotonically over 0 < x < 1, or at first increases and then de-
creases. For / ( x ; c, a) to be non-negative for 0 < x < 1, we therefore also
require / ( I ; 4 /3 , a) = In3 - (.T1 + t~l)In2 > 0.

Consider now g(u; k) = wln(l + x1 / u + • • • + xfc /"), 0 < x < 1. This is a
convex function of u; therefore g{u; A:)+g(i;; / ) , conditional on Au+Bv =
C, B/A > 0, is a convex function of u. Hence, if u2 < u < ui and
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C = Au + Bv = Aux + Bv{ = Au2 + Bv2 ,

g(u; k) + g(v; /) < max[g(w2; k) + g(v2; / ) , g(ul; k) + g{yx; /)] .

T h u s , s e t t i ng u = l/s, v = l/t,
(13)
g(l/s; k) + g(l/t; I) < max[g(l/Sl; k) + g(l/tl ; / ) , g(l/s2; k) + g(l/t2; I)]

where sl < s < s2 , C = A/s + B/t = A/sl + B/tx = A/s2 + B/t2.
This result, with A = B = In2, C = ln3 , k = I - I, and where s -s} =

1.0246... , t = tx = 1.6420... , and s = s2 = 1.6420... , t = t2 = 1.0246...
are the solutions of the equations s~ + t~ = In 3/ In 2 and s + t — 8/3,
implies that inequality (4) is holds over the arc

(14) s~X+t~l = l n 3 / l n 2 , s + * < 8 / 3 , f o r O < x .

Proposition 1 follows after checking the necessity of the condition 3(s+t) < 8
when s~l + t~l = In3/In2 (see Brown (1988)). (This argument avoids the
appeal to Brown and Shepp's (1988) result).

REMARK 1. As noted in the introduction, (4) is invariant when x is re-
placed by x~ ; so if it is valid for 0 < x < 1, the inequality is valid for all
non-negative x.

REMARK 2. Because g(u; 1) is an increasing function of u when 0 <
x < 1, g(l/s; 1) is a decreasing function of s. Consequently, if (4) holds
for s = s3, t = t3, it also holds for s — s3 + e, t = t3 + d , where e > 0,
S > 0. Inequality (4) therefore holds over the region

(15) s~l +t~l < l n 3 / l n 2 , s > sx, t > 5,, 0 < x,

where sx = 1.0246....
REMARK 3. It is trivial to show that G(x; 1.5, 0.5) = x( 1 -x). Inequality

(4) is valid therefore for s — 1, t = 2, and for 5 = 2, t = 1. Therefore, by
result (13) and the positivity of dg(u; l)/du, (4) holds when s~* + t~l -
1.5, 1 < J, 1 < f, and, more generally, over the region

(16) s ~ l + t ~ l < l . 5 , s > l , t > l , 0 < x .

REMARK 4. Combining (4) with (3) gives
(17)

2 * f ° < f ' y ™ f , 0<x, w = s-
1+rl,

subject to the conditions in Remarks 2 and 3 (the lower bound can also
be obtained via Holder's inequality). This can be reformulated in terms of
hyperbolic functions as

(18) 2~l"(l + 2cosh>>) > cosh1/J(5y/2)cosh1/'(^/2) > coshw{y/w),
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for all real y, w , s, t as above. The arguments leading to the conditions on
5 and t can also be restated using hyperbolic functions.

3. Brown's other propositions

The proofs of the other propositions can be made more unified; also the
conditions on s and t can be made less restrictive. These inequalities are
not invariant when x is replaced by l/x.

Let

f(x) = ln(l + x + • • • + xJ) - s~l ln( 1+ xs + • • • + xks) -E\\... X")

(19) - r ' l n ( l + * ' + •• •+.*"),

and

(20) df(x)/dx = G{x)/{(1 +x+- • -+xj)(l+xs+- • •+xks)(l+x'+- • -+x")}.

Then for Proposition 2, ./ = / = 2 , f c = l , 0 < * < l , s , f > l . To
prove that f(x) > 0 when s~l In2 + t~l In 3 = In 3 , it suffices to show, with
the aid of result (13), that f(x) —> 0 when s —> oo, t —• 1, and that

(21) G(x)/x'-1 = 2x2-' - 1 + x3-' -2x- 2x' - 4xt+i - 2xt+2 - x'+3

has at most one zero when t — In 3/ In 1.5 = 2.7095... (compare with Brown
(1988)). The former is self-evident, and the latter is true because -2(t- 2) <
- (3 - 0 and xl~l > x2~' for 0 < JC < 1, and therefore

(22) d{G(x)/t'~l}/dx = -2(t - 2)xl~' + (3 - t)x2~'

is always negat ive for 0 < x < 1 when t = 2 . 7 0 9 5 . . . .
Propos i t ions 3(i), (ii), (iii) also all a s sume 0<x<l,s,t<l. They can

be restated as follows:

3(i) j = 3, k=l, 1 = 3; f(x) > 0 whenever 5~1ln2 + r 1 l n 4 = In4;

3(ii) ;' = 3 , k = 2, 1 = 2; f(x) > 0 whenever 5 - 1 l n3 + /" ' In3 = In4;

3(iii) j = 3, k = 2, 1 = 3; f{x) > 0 whenever s~l In3 + T 1 In4 = In4.

The proofs follow immediately upon application of result (13) if we can show:
for 3(i) that f(x) -• 0 for 5 -> oo, t -> 1 (true), and that xl~'G(x) has
at most one change of sign for s = 1, t - 2; for 3(ii) that xl~'G(x) has at
most one change of sign for s = 1, t = In 3/ ln(4/3) = 3.8188... (a similar
result for s = ln3/ln(4/3) = 3.8188... , t = 1 follows by symmetry); and
for 3(iii) that f(x) -> 0 for s -> oo, t -> 1 (true), and that xl~'G(x) has at
most one change of sign for s = 1, t = ln4/ln(4/3) = 4.8188... (compare
with Brown (1988)).
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The expressions for xl~'G(x) in ascending powers of x for the stipulated

values of 5 and t in

3(i) xl~'G(x) =

3(ii) xx~lG{x) =

3(iii) xl~'G(x) =

the

1 H

= 3A

—

3x

three

-2x-

: 3 " ' -

/: '+2

6x3-t ,

cases are:

2x — 4x

1 + 2* 4 - ' -

- 3x'+3 -

lx4-' - 1 H

- 6 x 5

- 2 x +

2x
5-t

- X

. 6 ^ 7
- 4x -2x

5-t - 2
x — 3x -

-x'+5-

-2x- R(x),

- x

-2x

8 .

t . (+1- 4x

where the coefficients of the terms in R(x) are all negative. For3(i), xl~'G(x)
is a concave function of x, also [xl~'G(x)]x^Q — 1, [xl~'G(x)]x=l =
-16; therefore x ~'G(x) changes sign exactly once. For 3(ii), we have
-3(t - 3) < -2(4 - t), -2 < -(5 - t) when t = 3.8188... , and there-
fore d{xl~tG{x)}/dx is negative for 0 < JC < 1. Similarly, for 3(iii) we
have - 3 ( f - 3 ) < - ( 5 - f ) when t = 4.8188... , and so d{xl~'G(x)}/dx is
negative for 0 < x < 1. Hence in each of the three cases, G(x) has at most
one zero in 0 < x < 1, and the rest of the proof is straightforward.

REMARK 5. The functions g(l/s;k) and g{\/t;l) are decreasing func-
tions of 5 and t respectively. Therefore, just as the condition A/s+B/t — C
in Brown's Proposition 1 can be relaxed, so can the restrictions on s and t
for his other propositions. We have: for Proposition 2, s~* In 2/ In 3 + t~l <
1; for 3(i), s~l/2 + T1 < 1; for 3(ii), s~l + t~l < In4/ln3; and for 3(iii),
5"1ln3/ln4 + r 1 < 1.
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