
COMBINATORIAL PROBLEMS 

S. CHOWLA Ax\D H. J. RYSER 

1. Introduction. Let it be required to arrange v elements into v sets such 
that every set contains exactly k distinct elements and such that every pair 
of sets has exactly \ = k(k ~ l)/(v — 1) elements in common (0 < X < k <v). 
This combinatorial problem is studied in conjunction with several similar 
problems, and these problems are proved impossible for an infinitude of v and 
k. An incidence matrix is associated with each of the combinatorial problems, 
and the problems are then studied almost entirely in terms of their incidence 
matrices. The techniques used are similar to those developed by Bruck and 
Ryser for finite projective planes [3]. The results obtained are of significance 
in the study of Hadamard matrices [6; 8], finite projective planes [9], symmet­
rical balanced incomplete block designs [2; 5], and difference sets [7]. 

2. Combinatorial problems. Let denote v elements and let 
Si, s*, . . . , sv denote v sets formed from these elements. Let the elements 
Xi, x2, . . . , xv be listed in a row and let the sets S\, s2, • • • > Sv be listed in a 
column. Let 1 be inserted in row i and column j if the element Xj belongs to 
the set sit and 0 in the contrary case. The matrix A of order v formed from 
this square array of zeros and ones is called the incidence matrix of the arrange­
ment of v elements into v sets. Clearly the incidence matrix serves to charac­
terize this arrangement completely. We proceed now to consider a series of 
combinatorial problems, and to study these problems in terms of their inci­
dence matrices. 

PROBLEM I. Arrange v elements into v sets such that 
(Ii) every set contains exactly k distinct elements, 

(I2) every pair of sets has exactly X = k(k — l)/(v — 1) elements in common 
(0 < X < * < v). 

PROBLEM II. Arrange v elements into v sets such that 
(Hi) each element occurs in exactly k distinct sets, 
(II2) every pair of elements occurs in the v sets exactly X = k(k — l)/(v —• 1) 
times (0 < X < k < v). 

PROBLEM II ' . Arrange v elements into v sets fulfilling (Hi) (II2), and (Ii). 

PROBLEM III . Arrange v elements into v sets fulfilling (Ii), (I2), (Hi), and 

(no-
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PROBLEM IV. Arrange v elements into v sets fulfilling (Ii) and (I2) in such 
a way that the incidence matrix of the arrangement is cyclic, i.e. 

"ai a% . . . av 

a<i &3 . . . # i 

_av a\ . . . ûv_i_ 

Problem I has a solution if and only if there exists a matrix A of order v 
composed of zeros and ones such that 

(I) A A1 = B, 

where A1 denotes the transposed matrix of A and B is a symmetric matrix 
with k in the main diagonal and X in all other positions. Problem II requires 

(II) ATA = B, 

and Problem III requires 

(III) AAT = A1 A = B. 

The preceding problems arise naturally in certain combinatorial investiga­
tions. Problem I for v = 4n — 1, k = 2n — 1, and X = n — 1 was proposed by 
Todd, and was shown to be equivalent to finding a Hadamard matrix of order 
An [6; 8]. Problem II ' was studied by Bose, and the arrangements obtained 
were called symmetrical balanced incomplete block designs [2; 5]. Veblen and 
Bussey introduced the finite proj ective plane, and Problem 111 for v = N2+N-\-1, 
k = N + I, N^ 2, and X = 1 is equivalent to finding a projective plane 
with N + 1 points on a line [3; 9]. 

Singer defined a difference set of k numbers mod v as a set of integers d1} 

d2} . . . , dk such that the congruences di — dj = n mod v have the same num­
ber of solutions X = k(k — l)/(v — 1) for every n ^ 0 mod v [7]. Problem 
IV is equivalent to finding a difference set of k numbers mod v. For if such 
a difference set exists, form the array of k rows and v columns 

du di — 1, . . . , di - (v — 1) 

dk, dk— 1, . . . , dk — (v — 1) 
where the integers are reduced mod v so that they lie in the range 1 ^ x ^ v. 
Now form an incidence matrix A of order v by taking column i of the above 
array and placing in row i of the matrix A ones in columns dx— (i — 1), 
. . . , dk— ( i— 1) and zeros in all other positions. Clearly, A by the nature 
of its construction is cyclic. Moreover, A has exactly k ones in each row, and 
since for r 9e s, di— r = dj— s mod v has exactly X solutions, any two rows 
of A have exactly X ones in common. Thus the matrix A yields a solution of 
Problem IV. Conversely, suppose that Problem IV has a solution. Then the 
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first row of the incidence matrix A has ones in the k columns dlf . . . , dk> and 
these k numbers form a difference set mod v. For row n + 1 of A has ones 
in the columns di — n, . . . , dk — n, where the integers are taken mod v, and 
for n ^ 0 mod v, the sets dif . . . ,dk and di — n, . . . , dk — n have exactly X 
elements in common. Hence di— dj = n mod v has exactly X solutions. 

3. Identical combinatorial problems. Let P and Q be any two of the pre­
ceding combinatorial problems. The problems P and Q are said to be identical, 
written P = Q, provided that each solution of P is necessarily a solution of Q, 
and conversely each solution of Q is necessarily a solution of P . 

THEOREM 1. Problem I = Problem II = Problem I I ' = Problem III . 

Suppose that 4̂ is a matrix of order z; composed of zeros and ones such that 
AAT = B, where B has & in the main diagonal and X = k(k— l)/(v — 1) in 
all other positions. For this A we prove that A1 A = B. Define the matrix 0 
of order v + 1 by the equation 

0 
V-x 

Recalling that X = &(&— l)/(» — 1), an easy computation shows that 00T 

= (k — X) J, where J is the identity matrix of order v+ 1. But then 00T — 0T0, 
and then by the very structure of 0, it follows that AAT = ATA. 

Thus a solution of Problem I is necessarily a solution of Problem III, and 
consequently Problem I = Problem III. Moreover, the matric equation 
AT(AT)T = ATA — B now implies that AAT = B> and consequently Problem 
I = Problem II. This proves Theorem I. (For another proof see Bose [2].) 

THEOREM 2. There exist values for v and k for which Problem III has a 
solution and for which Problem IV has no solution. 

Evidently every solution of Problem IV is a solution of Problem III. To 
prove Theorem 2 we utilize the following theorem of Chowla, which establishes 
the nonexistence of a certain class of difference sets. The recent investigations 
of Marshall Hall have also been successful in proving the nonexistence of large 
classes of such sets [4]. 

Letv,k,and\= k(k — l)/(v — 1) be positive integers, 0 < X< k <v. Let p = 3 
mod 4 be a prime factor of v and let q be an odd prime factor which divides the 
squarefree part of k — X. If the Legendre symbol ( — p\q) = — 1, then there does 
not exist a difference set of k numbers mod v. 

To prove the theorem let di, d2, . . . , dk denote such a difference set, and 

define S = £ pd\ where p = e*. Then 5 5 = k + X(p + p2 + . . . + p*"1) 
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= k — X, where 5 denotes the complex conjugate of S. Let i = Sd2SdAS . . . 
6P~ZS, where 6 denotes a generating automorphism of the cyclic algebraic 
field jR(p). If N(S) denotes the algebraic norm of 5 in R(p), then N(S) =tdt. 
The algebraic integers / and 6t are conjugates in the unique quadratic subfield 

4 T ( - 1 ) ^ ) of R(p) [1; 10]. Consequently N(S) = (x2 + £;y2)/4, where x 
— Lzi. 

and y are integers. But the equation S S = (k — X) implies iV(5) = (fe — X) 2 . 
p - i 

Thus x 2 + £;y2 — 4(fc — X) 2 =0 , and this equation may be rewritten in the 
form x2 + py2 — qtz2 = 0, where t is squarefree and prime to q, and where x, 
y, and z do not have a prime factor in common. It now follows that q does not 
divide y, and hence (y -1 x)2 = — p mod q. 

Now let v = 55 and fe = 27. Then X = 13 and k - X - 14. Select p = 11 
and g = 7. Then ( —11|7) = — 1 , and consequently there does not exist a 
difference set of 27 numbers mod 55. Thus for these values of v and k, Prob­
lem IV does not have a solution. On the other hand it is well known that a 
Hadamard matrix of order 56 exists, and by the remarks of Todd, Problem I 
has a solution for these values of v and k [6; 8]. But Problem I = Problem III. 

4. The impossibility of certain combinatorial problems. In this section 
the impossibility of Problem I is proved for an infinitude of v and k. Clearly 
the impossibility of Problem I for a given v and k implies the impossibility for 
the same v and k of Problems II, II ' , III, and IV. Interpreted with regard to 
the results of the previous sections, the theorems which follow offer generaliza­
tions of numerous previous investigations. Actually Theorems 4 and 5 are 
rather straightforward generalizations of a theorem of Bruck and Ryser on 
the nonexistence of certain finite projective planes, and for projective planes 
these theorems give no new information [3]. However, their proofs are inde­
pendent of the difficult Minkowski-Hasse theory of the invariants of a rational 
quadratic form under rational transformations. (The writers are indebted to 
Daniel Zelinsky for helpful comments concerning the proof of Theorem 5.) 

THEOREM 3. If v is even and if k —Xis not a square, then Problem I has no 
solution. 

A solution of Problem I implies that ^4^4T = B, where B has k in the main 
diagonal and X in all other positions. Subtract column one of the matrix B 
from each of the other columns, and then add to row one each of the other 
rows. It readily follows that the determinant of B is given by 

det B = det2 A = (k - \)v~l (k + (v - 1)X) = (* - X)^ 1 k2. 

Thus if v is even and if k — X is not a square, then Problem I has no solution. 
THEOREM 4. If v = 1 mod 4 and if there exists an odd prime p such that p 

divides the squarefree part of k — X, and, moreover, if (\\p) = — 1, then Problem 
I has no solution. 

The matric equation AA1 —B implies 
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ai a2 az a4 
a2 —ai #4 — a% 

—az a± ai —a2 

# 4 az —a2 —ai 

* E ^i2 + A X XiXj = (k — X) X) #;2 + MIC**)2 = Z ^'2> 
1 = 1 Î r^i i — 1 » = 1 

where the matrix C = [dj] of the transformation rational and 
non singular. By the four-square theorem of Lagrange, k — X = £h2 + a2

2 + #32 

+a4
2 , where the a's are integers. If 

A = 

then AAT = {k — X)J, where I is the identity matrix of order 4. Thus if 
[k — X, & — X, . . . , k — X] is a diagonal matrix of order v = 1 mod 4, then 
there exists a rational and nonsingular D such that 

[fc - X, k - X, . . . , k - X] = Z>T[1, 1, . . . , 1, k - X] P , 

Î/ V — 1 

whence (fe — X) £ x^2 = XI y*2 + (k — \)yv
2- Thus 

* = l * = l 

9 Z 3>;2 + (* - x)v + x(ix^)2 = L m\ 
i = i * = i 

where the #\- are rational and the matrix E = [eij] of the transformation 
y% — YLeijuj is rational and nonsingular. 

Now set yi = YLeijuj — àzUi, where the coefficient is + 1 if en 9e 1 and — 1 
V 

if en = 1. Then ;y2 = Y,fjuji a n d set 3>2 = ± ^2, where the coefficient is 
i = 2 

+ 1 if /2 ^ 1 and — 1 if /2 = 1 . Continue the process inductively until 
Jv-i = ^v-i^v-i + gvWv, where ;y„_i = dbuv-i. Now let wv equal a nonzero 
rational. Then wi, . . . , wy__i are uniquely determined, and, moreover, yi = 
dztii, for i = 1, 2, . . . , v — 1. Thus the Diophantine equation 

X 2 = (& _ X ) 3 , 2 + X 2 2 

has a solution in integers other than the zero solution. The equation may be 
rewritten in the form 

X 2 = pty2 _|_ X S 2 ? 

where t is square free and prime to p, and where x, y, and z do not have a 
prime factor in common. Now p does not divide z, and hence (s-1x)2 = X 
mod p. 

THEOREM 5. If v = 3 mod 4 awd if //zere exis/s an odd prime p such that p 
divides the squarefree part of k — X, and, moreover, if (— \\p) — — 1, j / ^ 
Problem I has no solution. 
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Suppose that v = 3 mod 4 and that B = AAJ. Then 

B 

0 
0 

0 
00 . . .0 ft - X 

0 
0 0 . . . 0 1 

[1 ,1 , 1, ft- X] A1 

00 
0 

0 1 

and 
V V V + 1 V 

ft H Xi2 + (ft — X)xv+i2 + X Y, x&j = (ft — X) X *;2 + X(£ x t)
2 

t = 1 t ?^i i = 1 * = 1 

= Z) w^2 + (ft — x) wv+i2, 
i = 1 

where the matrix C = [c;;] of the transformation x^ = Ylcijuj is rational and 
nonsingular. If [ft — X, ft — X, . . . , ft — X] is a diagonal matrix of order 
0 + 1 = 0 mod 4, then there exists a rational and nonsingular D such that 

[ft - X, ft - X, . . . , ft - X] = DT [1, 1, . . . , 1]£>, 
V + 1 » + 1 

whence (ft — X) X #;2 = 22 ^i2- Thus 

» + 1 

£ 3^2 + M2X7;)2 

i = i 
= 21 ut2 + (ft — x) wv+i2, 
* = i 

where the di are rational and the matrix E = [en] of the transformation 
y% = !Leijuj ls rational and nonsingular. 

Now set y\ = Yleijuj ~ ± ^ i , where the coefficient is + 1 if en ^ 1 and — 1 
v + l 

if en = 1. Then y2 = Y<fjuj> a n d set ;y2 = ±w2. Continue inductively until 

yv = grwv + gv+iUv+i, where yv = ±w„. Now let w„+i equal a nonzero 
rational. Then wi, . . . , uv are uniquely determined and Ui = dby; for i = 1, 
2, . . . , v. Thus 

X 2 + X : y2 = (fc _ X ) 2
2 

has a solution in integers other than the zero solution. It follows that — X 
is a quadratic residue of p. This completes the proof of Theorem 5. 

Theorems 4 and 5 may also be derived by the methods employed in [3]. 
Only minor modifications in the proof given for projective planes are required. 
It can be shown that for v odd, the matric equation ^4^4T = B is possible for 
a rational and nonsingular A if and only if 

( p - i ) p 

(ft - X, - l ) p
 2 (ft - X,!0P = + 1 
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for every odd prime p. The notation (m, n)p designates the norm-residue 
symbol of Hilbert. It is easy to verify that this condition excludes precisely 
those values of v and k covered by Theorems 4 and 5. 
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