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1. If (X,S,p) is an arbitrary complemented measure
1 o]
space and X is o -finite then (L )*=L  or, more precisely,

1 0
(L7 )* is isometric and isomorphic to L by the correspondence

Gif) = [fgdu, Ge (L%, ge L.

It is well known that there exist non o-finite spaces with
1 0
(L)*# L.

In the Bourbaki theory of measure and integration it is

always true that (L1)* =17 [2, p.55]. However, measurability
in the Bourbaki sense is a local property: a function is measur-
able if and only if its restriction to each compact set is measur-
able. For the non-topological general case a function is called
locally measurable in [3]'if its restriction to each measurable
set of finite positive measure is measurable and L? denotes

0

the analogue of L for locally measurable functions with norm

© -] 1 o
7]1 (f) =sup {77 (fxe); eeS, ple) <o}. Always (L )*D Lz
but, as was shown in [3], strict inequality may hold. In this note
we extend [3] by proving

1 :
THEOREM 1. Every L (X,S,p) is isometric and
-1 1,==- -1 —0,- = -

isomorphic to a space L =L (X,S,n) with (L )*= Ll (X,S, ).
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)
2. When X is o -finite, X = U Xi' with 0 < p(X)< o,
i
i=1
and X N X =90, (or p(Xiﬂ Xj) =0)i# j, and the general
1 J. )

representation theorem is obtained as an easy extension of the
finite theorem for each X.. In [3], in studying the non ¢ -finite
1

case, two decompositions of X were obtained using Zorn's
lemma: the first into disjoint sets ((D) decomposition) and the
second into null-disjoint sets (ND). For both

X = X1U Xz;Xin)(Z = 0; XZ =aL€JQea, O<p.(ea)<oo;

e€eS, eC X1 implies that p(e) =0 or o .

In addition for

(D) e Ne, =90, ata';
(ND) u(eaﬂea,) =0, é#a'

An additional property satisfied in the o -finite case is

(*¥). For each e € S with p(e) < w,

ple) = Z pleNe ) =supZuleNe),
a a
aeq

the supremum being taken over all finite sums of this form, as
in [3] . For every (ND) decomposition (%) holds, but there
exist measure spaces in which there is no (D) decomposition
with (*) satisfied. In [3] it was noted that the existence of a

1 [>5)
(D*) (i.e., (D) plus (*)) decomposition implies that (L )* = L K
In the Bourbaki theory a (D*) decornposition always exists

[2, §1, 4].

To prove Theorem 1, let X=X, U X_, )%: U e bean
1 2 a

aeq
arbitrary (ND) decomposition of X and let
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}—{ = U ({a} X ea) .
aeq
Let h denote the relation with domain X—X1 and range X

determined by the ordered pairs (x,y) where, for each
x€ X-Xi, y runs through the points (a,x) of X with xee ,
a

a€ (. I the (ND)-decomposition is actually a (D)-decomposition,
h will be a function, but in general this will not be the case.
For a set eC X- Xi’ h(e) will denote the image set in X.

We observe that h(U e )=Uh(e ), h{N e ) = N he )
a o o [24
for an arbitrary collection {ea} . For each a, xe¢ ea, set
ha(x) =(a,x). The mappings ha re {a} % e are bijective.

If eCe_, set ha(e)={a} Xe .

To illustrate the preceding definitions consider the
example: X={(x,y):0<x<1, 0<y<1}, S the smallest
o -algebra containing all the Lebesgue measurable subsets of
every Ix= {(x,y): 0<y <1} and every IY ={(x,y): 0<x<1}.

(Compare [3], p.222.) Then

X=( U DDut UJ 1)
0<x<1 0o<y<1 ¥

is an (ND)-decomposition of X, and X can be represented as
X ={(w,v): 0<u<2, 0<v<i1},

where Ix is identified with Iu if u=x<1 and I is
y
identified with Iu if y=u-1, 1<u<2. Theimage of

(x,y) in X under the relation h consists of two points:
(x,y) and (y +1,x) in X ; the image of I CX consists of

two intervals: Iu, u=x and {(u,v):1<u<2, v=x}.

To return to the general case, we shall determine an
outer measure on X by means of a covering class C
([5], p-91) consisting of X and, for each a€ (7, all of the
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sets h(e), ha(e) and h(e) - ha(e) for each measurable subset

1_ -
e of e - We set v (X) =® and
1 1 1
v (h(e)) = v (ha(e)) = ple), v (h(e) - ha(e)) =0
for each such e in C, and define for each A C X
. 1-
v¥(A) = inf Z v (ei) ,

where t_he infimum is taken in the extended reals for all collec-
tions {ei} of sets in C covering A.

We note that if A intersects more than a countable
collection of sets h(e ), a€ ¢, then every covering must
a

contain X so that vi(A) =0, We note also that the definition
makes every set of the form h(e)-ha(e) v ¥*-null. For the

example given above this implies that every subset of a
horizontal line in X is v *=null.

Let S denote the v *-measurable subsets of S-(,-}.-L the
restriction of v* to S. We shall show that Theorem 1 is true

—— - - — -4 -
for the measure space (X,S,p). The notation x, L. , n , e,

etc. will refer to iie measure space (XS, p).
LEMMA. If e€S, eC ea, a€ (, then h(e) and
h (e) €S with u(h(e)) = p(h_(e)) =ule). If ec¢S
and :C{a} Xea, then there exists e C e, with e =ha(e)
and sets e,, e

1 2 2

€ S with e1CeCe R
particular if the measure space (-}Z,g,:) is complete e € S.

p(ez-ei) =0. In
Proof. To show that h(e)e S we must show that for
every A C X with v*¥(A)< o,
vE(A) > v¥A N h(e)) + v*(A N C h(e)) .

Assume that e C e and that each covering set e, is of the
i

form h(ei). Then for each i,
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e. =(e.Ne)U(e. NCe), hle.) = hie.N e) Uh(e. N Ce),

1 1 1 1 1 1

1 1 1
v (h(e)) = v (h(eiﬂ e)) + v (h(eiﬂ Ce)) = p(eiﬂ e) + #(eiﬂ Ce),

1 .
since v is additive if e. Cea and p{e N ei) =0 if eiC e
i
b # a. Thus each covering of A can be replaced, without
1 .
changing Z v (e.), by a covering that splits into coverings of
i

AN h(c_e_) and A N Ch(e). A standard argument then shows that
hi(e)e¢ S. We have assumed above that the covering sets were
all of the form h(ei). In the general case, sets of the form

ha(ei) in the covering could be replaced by the sets h(ei)
without changing the sum and sets of the form h(ei) - ha(ei)

could be omitted by replacing A by A'CC A, v*A - A')=0.

To prove that ;(h(e)) = p(e) we first observe that, since
h(e) covers itself,

vH(hle)) < v (hle)) = ple) .

Assume that e Ce . Again there is no loss of generality in
a

assuming that coverings of h(e) are of the form {h(ei)}.
Since h(eN e)) = h(e)N h(e.), the sets e. can be replaced by
i i i

setsin e . Given € > 0 there is a covering {h(e )} with
a i

oo 4
v*(h(e))z 21 v (h(ei)) - €.
Then

1 1
_Z;o v (h(ei))_>_ E;o v (hie N ei)) = Z:o uie N ei)

0
>l Ui(e n ei)):.p(e) .
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Since each set ha(e) differs from h(e) by a null set each

b ()¢S with u(h_(e)) = pfe) .

The proof of the last part of the lemma is not difficult if
we observe that covering sets for e can be assumed to be of

the form h (e)) with e C e , e €8§5.
a 1 1 a 3

1 - =1
Proof of Theorem 4. We identify f¢ L and f€¢ L' and
write f~f if

(i) {xeX:£(x)#0} =\ e.,e €S, e Ce , a €,
N 1 1 1 3 1

i i

a.#a.’ e.ne.:w’ i#j;
1 J 1 J

(ii) f(x) = f(x), x=(a_,x), xee, i=1,2,..;
1

= 0 elsewhere in E}E

Then

(iii) {x: f(x) = 0} =LiJ hai(ei)’ hai(ei)n haj(ej) =0, i$j.

-~ 1 = .—;-1 A
We identify fe 1. and f¢ L.° and write f ~{ if these
equivalence classes contain representatives f and f with
f~ f. We shall show that this correspondence is bijective and
preserves the vector operations and norm. That the scalar

multiplication and norm are preserved is immediate from the
A

~ -ﬁ o J— —_—
definition. If £ ~f, f e¢f , f ¢f, i=1, 2 and
i AR TR S S
e N{x: fi(x) #0} U {x: fz(x) 4 0}), then clearly

f + £ o~ f E ? .
g+ E0x, ~E +H 0
a2 a

Omitting at most a2 p-null set e', {xe¢ X-e' : fi(x) + fz(x) # 0}

can be expressed in the form (i) and this implies that
—— T —

f +f ~f +f_ .
Gt
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To show that the correspondence is bijective we first
suppose that fe Li, £ ef. Then if e(f')={xe X: f(x)# 0} ,
e(t')=U% e, with e Ne =p, i), ple)<o, i=1,2,...,

i=1 i i j i
from integration theory. Since each set e can intersect at

most a countable collection of the sets ea, ae ,

e(f') =e0 U (U;o ei' ), with p(eo) =0 and where each ei’ is
contained in some e 2 € &. Forming unions of sets
contained in the same sets ea we can assume that the sets

ei' satisfy (i) above. Letting f denote the restriction of f'

to e(f )-eo, fef and determmes t by (ii) w1th f~f. Thus

P |
to each fe€ L. corresponds f€ L with f—vf. From the
preceding paragraph it then follows that the correspondence

is one-one, norm preserving but perhaps into L.
2L 4 - =2 S _— - —
Let fe L, fef. Thenif e(f)={xe X: f(x) =0},
ef)=U"%, with e Ne =P, i#j, 6.€5, ple)<w, i=1,2,....
11 i J i i
There is no loss of generality in assuming that each set e,
1

is contained in a set h(ea ), a, € and that a, # aj if 145
. i i
1
If e _-.z_ N({a.} xe ), Tx(e,-;,' ) =0 . Thus we can assume
i i i a, i i
that each e, is contained in {ai} Xe_ . By the last part of
i

the lemma, again omitting at most a null set, we can suppose
that each €, is ha (ei) with eie S. Replacing the sets e,

i . i

i
isjoin! ¥ = * = - %
by disjoint sets e, e e¥=e, .U. e ¥, ha,(ei) by
J<1 . 1

Q0 —

h (e.*), Z p(h (e))-h (e .*)) =0 so that the restriction of
a. i 1 a, i a, i
i i i

- 0 =z
f to U‘1 ha (ei*) isin f and we can suppose that (iii) holds

i
for f with the sets {e.} disjoint. There then exists f,

i )
defined on X and vanishing outside U ei with (i) and (ii)
i=1
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Eod

holding and with f ~f. Thusto each fe¢ Ei corresponds
1 A =
fe L' with f~¢
Finally the sets {a} x e 2 ¢ ¢, form a (D*)-decompositior

for X so that (L )% = L (X S, p)

3. The space Li(X,S, 1) with the natural ordering,
modulo null functions is a vector lattice that is an AlL-space as
defined by Kakutani {6]. In addition his Axiom IX is satisfied.
This suggests the following extension of Theorem 1, the details
of the proof being similar to Kakutani's proof of his Theorem 7.

THEOREM 2. Every Li(X, S,p) is isometric and

4 = = = _—
lattice-isomorphic to a space L (X,S,p) with X a locally
compact, totally disconnected topological space such that

(L' = L(X.5. 5.

We outline the part of his argument needed here. If
(X,S,p) is a measure space with p(X) < © and S is the space
of equivalence classes of measurable sets modulo p-null sets,

S is a Boolean algebra with fundamental operations U, N and
complementation (~) (modulo p-null sets). The Stone representa-
tion theorem [7, p. 22] then gives the existence of a compact
topological space X with the pomts of X correspondmg to the
ultrafilters (maximal ideals) on § and with § corresponding

to the Boolean algebra J of all sets of X that are both open
and closed.

For each e€ S let e denote the image of e in J and
define

vie) = ple) .

Then v is a countably additive measure on F that can be
extended to a countably additive measure v on S the smallest
o -algebra containing F ([4], p.54). Every A €S can be written

A Un with e€F and v(n)=0. Then ii(i,g,;) is iso-

metric and lattice isomorphic to Li(X, S, u).
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In the general case fixan (ND) decomposition with

X?_ = e and let (ea,Sa,pa) denote the measure space

aeg
induced on e by (X,S,u). The preceding two paragraphs

then give the existence of a topological measure space (.ga,g ,: )
a 'a
- 1—- . : .
with e compact and with L (ea) isometric and lattice
a

1
isomorphic to L (ea) for each a€ ¢ . Set

X = U ({a}xe)
a€e®

and give X the topological set sum of the topologies on the sets
ea [t]. For this topology each ea is compact and both open

and closed so that X is locally compact. A measure space
structure on X can then be introduced as in Theorem 1. It is
easy to verify that the lattice operations are preserved.
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