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NONEXPANSIVE MAPPINGS IN LOCALLY 
CONVEX SPACES 

BY 

TROY L. HICKS AND JOHN D. KUBICEK 

Recently Bruck initiated the study of the structure of the fixed-point set of a 
nonexpansive selfmap T of a Banach space, where T satisfies a conditional 
fixed point property. We generalize many of his results to a Hausdorff locally 
convex space X. Also, we generalize a result of Holmes and Narayanaswami 
and use it, along with a procedure of Kiang, to obtain a fixed point theorem for 
families of asymptotically nonexpansive mappings in X. 

Let RA be the product of A copies of the real line R. We give RA the product 
topology. Addition and multiplication in RA are defined pointwise. For /, 
geRA 

(1) / < g means f(q)^g(q) for all qek; 
(2) f<g means f<g and there exists q e A with f(q)<g(q)', 
(3) fK<g means f(q)<g(q) for all qeA. 

RA is called a Tychonoff semifield [1]. A base for the neighborhood system °Uol 
0 in RA is the collection 38 of sets of the form 

U(e; ql9..., qn) = {f: | / ( 4 ) | < e , e > 0 , qt G A}. 

Throughout this paper X will denote a Hausdorff locally convex space and C 
a nonempty closed convex subset of X. The topology t of X is generated by the 
family {Nq:qeA} of continuous seminorms. We define N:X—»RA by N(x)(q) 
= Nq(x). The mapping N satisfies the axioms of a norm and is called a norm 
over RA. A natural topology tN is induced on X by N; a basis of neighborhoods 
of zero is given by all sets of the form 

S(0, U) = {x:N(x)eU}y 

where U= U(e; qx,..., qn)e 38. Since tN = t, X is normed over RA by N. A 
metric p for X over RA is obtained by defining p(x, y) = N(x — y). It is shown in 
[1] that the mapping (x, y)—»p(x, y) is continuous. 

1. Nonexpansive retracts. A mapping T of X into itself is said to be 
nonexpansive if N(Tx-Ty)<N(x-y) for all x, y e X . The set {x:Tx = x} of 
fixed points of T is denoted by F(T). Also, for A^C we define M(A) = 
{T | T: C-> C is nonexpansive and A a F(T)}. 
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LEMMA 1. Suppose p is a continuous seminorm on X and a net {xd:deD} 
converges weakly to xeX. Then p(x)<lim p(xd). 

Proof. There exists a continuous linear functional / such that f(x) = p{x) and 
|/(y)|<p(y) for all yeX. Thus p(x) = /(x) = Um|/(xd)|<limp(xd). 

LEMMA 2. Suppose C is weakly compact and A is a non-empty subset of G 
Then M{A) is compact in the topology of weak pointwise convergence. 

Proof. Fix x0eA. For each x define Cx={y e C : N ( y - x 0 ) < N ( x - x 0 ) } . For 
each TeM(A) and each xeC we have TxeCx. Thus M(A)<^P = 
U{Cx:xeC}. 

Clearly Cx is convex; and since the mapping x-*N(x) is continuous, Cx is 
closed. Thus each Cx is a closed convex subset of the weakly compact set G 
Therefore Cx is weakly compact; and by Tychonoff's theorem, P is compact in 
the topology of weak pointwise convergence. 

To conclude the proof it suffices to show that M(A) is closed in P. Suppose 
{Td:d e D} is a net in M(A) converging to Te P. Clearly A <= F(T)\ and since 
TeP, T(C)c: G Using lemma 1 we have 

Nq(Tx-Ty)<\jmNq(Tdx-Tdy)<Nq(x-y) 
for all x, yeC and qeA. Thus T is nonexpansive and M(A) is closed in P. 

LEMMA 3. Suppose C is weakly compact and A is a nonempty subset of G 
Then there exists SeM(A) such that for each TeM(A) and x,yeQ 
N(TSx - TSy) = N(Sx - Sy). 

Proof. Define an order on M(A) by T< T if N{Tx - T'y) < N(Tx - Ty) for 
all x , y e G For each TeM(A) let I(T) = {TeM(A):T<T}. Using the same 
techniques as used in lemma 2 to show M(A) is closed in P, we obtain I(T) is 
closed in M(A). Thus I(T) is weakly compact. 

If ^ is a chain in M(A), then {I^ITE^} is a chain under set inclusion. 
Since each I(T) is compact there exists T0e f] {/(T): Te^}. T0 is a lower 
bound for c€. Zorn's lemma now implies that M(A) has a minimal element S. 

For each TeM(A), TSeM(A); and since T is nonexpansive, N(TSx-
TSy)^N(Sx-Sy) for all x,yeC. But S is a minimal element in M(A). Thus 
N(TSx-TSy) = N(Sx-Sy) for all x , y e C and TeM(A). 

A subset A of C is a nonexpansive retract of C if either A = 0 or there is a 
retraction of C onto A which is nonexpansive. 

A mapping T:C-^X satisfies the conditional fixed point property (CFPP) if 
either T has no fixed points, or T has a fixed point in every bounded closed 
convex subset which it leaves invariant. 

With lemmas 2 and 3, the proofs of theorem 1 and 2 are the same as for 
Banach spaces [2] and hence omitted. 

THEOREM 1. Suppose C is weakly compact and A is a nonempty subset of G 
Suppose for each zeC there exists TeM(A) such that TzeA. Then A is a 
nonexpansive retract of G 
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THEOREM 2. Suppose C is weakly compact and T:C^>C is nonexpansive and 
satisfies (CFPP). Then F(T) is a nonexpansive retract of C. 

The conditional fixed point property does hold for several classes of 
mappings. Suppose K is a nonempty weakly compact convex subset of X and 
K has normal structure. Then Tan [8] has shown that a nonexpansive mapping 
of K into itself has a fixed point. Thus (CFPP) holds for nonexpansive 
mappings of C into X where C is weakly compact and has normal structure. 

A subset B of X is said to have the fixed point property for nonexpansive 
mappings if every nonexpansive mapping of B into itself has a fixed point. A 
set B is said to have the hereditary fixed point property (HFPP) if every 
nonempty bounded closed convex subset of B has the fixed point property for 
nonexpansive mappings. If T: C—> C is nonexpansive and C satisfies (HFPP), 
then T satisfies (CFPP). Thus, if C is bounded and compact and T: C-» C is 
nonexpansive, then T satisfies (CFPP). 

A sequence {xn} is said to be Cauchy if for each neighborhood U of 0 in i?A, 
there exists an integer M such that N(xn — xm)eU for all n,m>M. We say X 
is sequentially complete if every Cauchy sequence converges. 

THEOREM 3. Suppose X is sequentially complete and T:C-*C is nonexpan­
sive. Then T satisfies (CFPP) if any one of the following hold: 

(a) (I— T)(K) is strongly closed whenever K is a bounded closed convex subset 
ofC; 

(b) T is compact; 
(c) C is weakly compact and T is affine. 

Proof. Suppose K is a bounded closed convex subset of C with T(K) c: K. 
(a) Let {tn} be a sequence from (0, 1) such that lim tn = 1. By a result of Tan 

[7, theorem 2.3], the function tnT has a fixed point xn e K. Since K is bounded, 
(I-T)(xn) = (1 - 1 /O0O-»0 . Since (I-T)(K) is closed, there exists xeK with 
Tx = x. 

(b) We show (I-T)(K) is closed and the result follows from (a). Suppose 
{xd-T(xd):deD} is a net in (I-T)(K) converging to yeX. Since T is 
compact and {xd} is bounded, {T(xd)} contains a subnet, which we also denote 
by T(xd), converging to yx. Since T(xd)-^yl and x d-T(x d)~»y, xd->y1 + y = 
zeK. The continuity of T implies T(z)=y 1 . Thus y = z-y1 = z-Tze 
d-T)(K). 

(c) We again show that (I-T)(K) is closed. Since T is affine, (I-T)(K) = 
zQ+V(K) where T is continuous and linear. Thus it suffices to show that 
T\K) is closed. Since K is convex and weakly compact, T'(K) is also convex 
and weakly compact. But X is a Hausdorff space, thus T'(K) is weakly closed 
and hence closed. 

For families of nonexpansive mappings on X the following results of Bruck 
[2] carry over, with the same proof, to Hausdorff locally convex spaces. 
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THEOREM 4. Suppose C is weakly compact and satisfies (HFPP). Suppose F is 
a finite family of commuting nonexpansive mappings from C into C. Then 
f]{F(T): TeF} is a nonexpansive retract of C. 

THEOREM 5. Suppose C is compact and 9 is an arbitrary family of commuting 
nonexpansive mappings of C into C. Then f}{F(T):Te9?} is a nonempty 
nonexpansive retract of C. 

2. Asymptotically Nonexpansive Mappings. A family 9 of mappings from X 
into X is asymptotically nonexpansive [asymptotically isometric] if for each 
x,yeX there exists a S e f such that for all T in 9 

(4) N(TS(x)-TS(y))<N(x-y) 

[N(TSx-TSy) = N(x-y)] 

We recall that the family 2ft of all sets of the form 

me;ql9...,qn) = {f:\f{qi)\<e9e>0,qiea} 

is a base for °U, the neighborhood system of 0 in JRA. For 2F a commutative 
semigroup of continuous asymptotically nonexpansive mappings on X and 
Y c X w e define, 

(5) Y2F = {zeY: there exists xeY such that for each Te 9 and 

each Ue% there exists Se 9 with N(TS(x)-z)e U}. 

The following theorem generalizes propositions 1 and 2 of [3]. 

THEOREM 6. Suppose 9 is a commutative semigroup of continuous asymptoti­
cally nonexpansive mappings on X 

(i) If zeX®, then for every Te 9 and Ue% there exists Se 9 with 
N(TS(z)-z)eU. 

(ii) If z G X f , then 9 \ 3F{z) is a family of asymptotic isometries. 
(iii) If A cz X and 9\A is a family of asymptotic isometries, then 9 \ A is a 

family of isometries. 

Proof of (i). Suppose z e X^, Te 9 and Ue °ti, There are a finite number of 
subbase elements U(s, qt) such that Hi U(e, £&)<= U. Let V = D,\U(e/29 qt), 
then from (5) there exists TxeSF with N{T1T{x)-z)e V. Since 9 is commuta­
tive and asymptotically nonexpansive, there exists T2e9 such that 
N(ST2T1T(x)-ST2(z))^N(T1T(x)-z) for all Se 9. Also, from (5), there 
exists T3e& with N(TT2T3TT3(x)-z)eV. Let S0=T2T3. Then, for each i, 
we have 

Nq i lTS0(z)-z)<Nq i(TS0(z)-TT2T1TT3(x))~f-Nq i(7T2T17T3(x)-z) 

< N l i ( z - T 1 T U ) ) + e /2<e. 

Therefore, N(TS0{z)-z)eU. 
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Proof of (Ii). Suppose it is not true. Then there exist u = Tx(z) and v^T2(z) 
such that for each Te 9 there exists S e*¥ and qek with 
Nq(TSu- TSv))^Nq(u-v). Since 9 is asymptotically nonexpansive, there ex­
ists T3e9 such that N(ST3(u)-ST3(v))<N(u-v) for all S e 9 . Thus there 
exists S0e9 and qeA such Nq(S0T3(u)~S0T3(v))< Nq(u-v). Let s = 
-Nq(S0T3(u)+S0T3(v)) + Nq(u-v) and V=U(e/2,q). By (4), there exists 
T4 e 9 such that 

(6) N(ST4S0T3(u)-ST4S0T3(v))^N(S0T3(u)-SoT3(v)) 

for all S G ^ . 

Since T\ and T2 are continuous at z, there exists a 17 G % such that 
N ( y - z ) G U implies N(Tt(y)- Tx(z)) and N(T 2 (y)- T2(z)) are in V. Applying 
(i) to T4S0T3 = S1 and U, there exists T5e9 such that N ( T 5 S 1 ( Z ) - Z ) G U. 
Since u = I \(z) , v = T2(z) and N ^ S ^ z ) - ^ ^ U, we have N ^ S ^ u ) - u)e V 
and N(T5S1(t;)-t;)G V. Finally using (6) we obtain 

+ Nq(T5S1(v)-v) 

<el2 + Nq{S0T3(u)-S0T3{v) + el2 = Nq(u-v). 

This contradiction implies 9 \ 9{z) is a family of asymptotic isometries. 

Proof of (iii). Suppose x,yeA and Te 9. Then there exist T1? T2e9 such 
that N(ST1(x)-ST1(y)) = JV(x-y) and N(ST2T(x)~ST2T(y)) = N(TX-Ty) 
for all S G y . Since T^ and T2T are in ^ , we have 

N{x -y) = N^TT^x) - T2TTx{y)) 

= N(TXT2Tx - T, T2Ty) = N(Tx - Ty). 

REMARK. The proof of theorem 6 does not use the norm property that 
N(ax) - aN(x). Thus if X is a Hausdorfl uniform space, hence metrizable over 
RA, the theorem is valid with the same proof. 

We say a subset K of X if strictly convex if for x,yeK, AT(x + y) = 
N(x) + N(y) implies {x, y} is linearly dependent. 

Suppose 9 is a commutative semigroup of continuous asymptotically nonex­
pansive mappings on X and zeX®. Then by theorem 6(i), for each Te 9 and 
each Ue% there exists q>TtUe& such that N(T(pTjU(z)-z)eU. Let B = 
{xeX:N(x-<&T,vT(z))eV for all Te 9 and for all Ve ®} where & is the base 
for °U define in the introduction. B is not empty since Z G B . The following 
theorem generalizes theorem 5 of Kiang [5]. 

THEOREM 7. Suppose C is a weakly compact subset of a strictly convex space X 
and F :C->C is a cummutative semigroup of continuous asymptotically nonex-
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pansive mappings on C. Suppose z e X f # 0 . Then & has a common fixed point 
in the closed convex hull of {z} [j 3F(z). 

The proof of theorem 7 is based on the following lemmas concerning the set 
2ft defined in the preceeding paragraph. 

LEMMA 4. T{B)aB for all Te 9. 

Proof. Let Te 9. If xeB, then xeX^. Thus by theorem 6, &\9(x) is a 
family of isometries. Therefore, for Te9, N ( T ( J C ) - 4 > S > V S T ( X ) ) = 

N(x-<f>s,vS(x))e Vfor all V e « and all Se 9. Thus TxeB. 

LEMMA 5. 9\B is a family of isometries. 

The proof of lemma 5 is the same as Kiang's proof of lemma 2 [5, p. 68] and 
hence is omitted. 

LEMMA 6. Suppose X is strictly convex, then for every Te 9, x,yeB and À £ 

[0, 1]; T(Ax1+(i-"A)x2)-AT(jc1) + ( l -A)T(x 2 ) . 

Proof. Partially order » by Vx > V2 if V2 c V2. Then, for x e B and T e f , 
the net {4>T vT(x) : Ve J3} converges to x. Using this, the Banach space proof of 
Kiang [5] carries over to locally convex spaces and hence the details are 
omitted. 

LEMMA 7. Suppose X is strictly convex. Then B is convex. 

Proof. We show that B is convex. Let xu x2eB, A G [0,1] and x = 
Axj + (1 - A)x2. Then by definition of B, for i = 1, 2, N{xt - ^T,vTxt) e V for all 
Te 9 and all Ve ®. Let T e f and V e « . Since V=> 07=1 U(e, %), using 
lemma ô, we have 

N ^ x - ^ v T x ) - ^ ^ 

< ANq/(x:l - Q^Txy) + (1 ~ A)Nqj(x2 - 4>T,vTx2) 

< e for each /. 

Thus 7V(x-*T v Tx)e V. Therefore, B and hence JB are convex. 

LEMMA 8. Suppose B is a closed convex subset of a T2 locally convex space X 
and T:B-~>B is continuous and affine. Then T is weakly continuous. 

Proof. Suppose T is not weakly continuous. Then there exists a net {xd} in B 
that converges weakly to x in B and a continuous linear functional / such that 
f(Txd)-Af(Tx). Hence there exists an s > 0 and a subnet {xa} of {xd} such that 
for each a, |/(Txa) —/(Tx)|>s. Without loss of generality we may assume that 
f{Tx(X)- f(Tx)> e for ail a. Since {xa} converges weakly to x, there exists a net 
{yp} that converges strongly to x where each y^ is a convex combination of the 
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xa\. Now since X"=1 «; = 1, / is linear and T is affine, we have 

f(Typ)-f(Tx) = f (t<*iXaij\-f(Tx) 

= /(£a,TxQ , J - / (Tx) 

= 1 <x-ATxai)-f(Tx) 
i = 1 

= L <*iU(TxJ-f(Tx)] 
i = l 

n 

— Z ate = £ 

i = l 

However y3->x and / and T are continuous gives the contradiction that 
/(TyP)-/(Tx)->0. 

Proof of Theorem 7. Lemmas 4-8 imply that 9 \ B is a commutative 
semigroup of weakly continuous affine isometries and the remainder of the 
proof is the same as for Banach spaces [5] and hence is omitted. 

Examples of a semigroup of continuous asymptotically non-expansive map­
pings which are not nonexpansive and a non-normable locally convex space 
which is strictly convex can be constructed. For these and other examples see 
[10]. 
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