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BCOV invariant and blow-up

Yeping Zhang

ABSTRACT

Bershadsky, Cecotti, Ooguri and Vafa constructed a real-valued invariant for
Calabi—Yau manifolds, which is now called the BCOV invariant. In this paper, we
extend the BCOV invariant to such pairs (X, D), where X is a compact Kéhler mani-
fold and D is a pluricanonical divisor on X with simple normal crossing support. We
also study the behavior of the extended BCOV invariant under blow-ups. The results
in this paper lead to a joint work with Fu proving that birational Calabi—Yau manifolds
have the same BCOV invariant.
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Introduction

In this paper, we consider a real-valued invariant for Calabi—Yau manifolds equipped with Ricci
flat metrics, which is now called the BCOV torsion. The BCOV torsion was introduced by
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Bershadsky, Cecotti, Ooguri and Vafa [BCOV93, BCOV94] as the stringy genus-one partition
function of N = 2 superconformal field theory. Their work extended the mirror symmetry con-
jecture of Candelas, de la Ossa, Green and Parkes [COGP91]. Fang and Lu [FL05] used BCOV
torsion to study the moduli space of Calabi—Yau manifolds.

The BCOV torsion is an invariant on the B-side. Its mirror on the A-side is conjecturally the
genus-one Gromov—Witten invariant. Though genus > 2 Gromov—Witten invariants have been
intensively studied recently, there is no rigorously defined genus > 2 invariant on the B-side.

The BCOV invariant is a real-valued invariant for Calabi—Yau manifolds, which could be
viewed as a normalization of the BCOV torsion. Fang, Lu and Yoshikawa [FLY08] constructed
the BCOV invariant for Calabi—Yau threefolds and established the asymptotics of the BCOV
invariant (of Calabi—Yau threefolds) for one-parameter normal crossings degenerations. They also
confirmed the (B-side) genus-one mirror symmetry conjecture of Bershadsky, Cecotti, Ooguri and
Vafa [BCOV93, BCOV94] for quintic threefolds.

Eriksson, Freixas i Montplet and Mourougane [EFM21] constructed the BCOV invariant
for Calabi—Yau manifolds of arbitrary dimension and established the asymptotics of the BCOV
invariant for one-parameter normal crossings degenerations. In another paper [EFM22], they
confirmed the (B-side) genus-one mirror symmetry conjecture of Bershadsky, Cecotti, Ooguri
and Vafa [BCOV93, BCOV94] for Calabi-Yau hypersurfaces of arbitrary dimension, which is
compatible with the results of Zinger [Zin08, Zin09] on the A-side.

For a Calabi—Yau manifold X, we denote by 7(X) the logarithm of the BCOV invariant of
X defined in [EFM21].

Yoshikawa [Yos06, Conjecture 2.1] conjectured that for a pair of birational projective
Calabi-Yau threefolds (X, X’), we have 7(X') = 7(X). Eriksson, Freixas i Montplet and
Mourougane [EFM21, Conjecture B| conjectured the following higher-dimensional analogue.

CONJECTURE 0.1. For a pair of birational projective Calabi—Yau manifolds (X, X’), we have
7(X') = 7(X). (0.1)

Let X and X’ be projective Calabi—Yau threefolds defined over a field L. Let T be a finite
set of embeddings L — C. For o € T, we denote by X, (respectively, X/) the base change of
X (respectively, X’) to C via the embedding 0. We denote by D°(X,) (respectively, D*(X"))
the bounded derived category of coherent sheaves on X, (respectively, X/ ). Maillot and Rossler
[MR12, Theorem 1.1] showed that if one of the following conditions holds:

(a) there exists o € T such that X, and X/ are birational;
(b) there exists o € T such that D?(X,) and D®(X") are equivalent;

then there exist a positive integer n and a non-zero element o« € L such that
1
7(X!) —7(X,) = —loglo(a)| foralloeT. (0.2)
n

Although a result of Bridgeland [Bri02, Theorem 1.1] showed that condition (a) implies condition
(b), Maillot and Réssler gave separate proofs for conditions (a) and (b).

Let X be a Calabi-Yau threefold. Let Z — X be a (—1, —1)-curve. Let X’ be the Atiyah
flop of X along Z, which is also a Calabi—Yau threefold. We assume that both X and X’ are
compact and Kéahler. The current author [Zha22, Corollary 0.5] showed that

7(X') = 7(X). (0.3)
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In other words, Conjecture 0.1 holds for three-dimensional Atiyah flops. The proof of (0.3)
consists of two key ingredients:

(i) we extend the BCOV invariant from Calabi—Yau manifolds to certain ‘Calabi—Yau pairs’,
more precisely, we consider manifolds equipped with smooth reduced canonical divisors;
(ii) we study the behavior of the extended BCOV invariant under blow-ups.

To fully confirm Conjecture 0.1 following this strategy, it is necessary to further extend the
BCOV invariant as well as the blow-up formula. This is exactly the purpose of this paper. We
consider pairs consisting of a compact Kéhler manifold and a canonical divisor with rational
coefficients on the manifold with simple normal crossing support and without component of
multiplicity < —1. We construct the BCOV invariant of such pairs and establish a blow-up
formula for our BCOV invariant.

In the joint work with Fu [FZ20], we use the results in this paper together with a factorization
theorem of Abramovich, Karu, Matsuki and Wlodarczyk [AKMWO02, Theorem 0.3.1] to confirm
Conjecture 0.1 in full generality.

Let us now give more detail about the matter of this paper.

BCOV torsion. We use the notation in (0.23) and (0.24). Let X be an n-dimensional compact

Kéhler manifold. Let H$ (X) be the de Rham cohomology of X. Let HA, (X) = D, =i HP(X)
be the Hodge decomposition. Set
Mp(X) =det HP*(X) = ® (det Hp’q(X))(_l)q forp=20,...,n,
q=0
on . (0.4)
—1)kE o (—1)P
Mor (X) = @) (det Hfin (X)) TV = @) (Ap(X) @ 3,(X))
k=1 p=1

Let Héing(X7 C) be the singular cohomology of X with coefficients in C. We identify HgR(X)
with Hg,.(X,C) (see (1.121)). For k =0,...,2n, let

Okt Ok € I (HE, (X, Z) — HEpp(X,R)) C Hig(X) (0.5)

be a basis of the lattice. Set
2n

ox = ®(O’k,1 JARERW)N Uk’bk)(_l)kk € Mot (X), (0.6)
k=1

which is well-defined up to +1.
Let w be a Kihler form on X. Let [|-|[),(x). be the Quillen metric (see §1.4) on A,(X)
associated with w. Let [|-[|y,.,(x)w De the metric on At (X) induced by [|-][y,(x).. via (0.4). Set

mBCOV (X, w) = loglo x|y (X)0> (0.7)
which we call the unnormalized BCOV invariant of (X, w).

BCOYV invariant. For a compact complex manifold X and a divisor D on X, we denote

l
D=> m;D;, (0.8)
j=1
where m; € Z\{0}, D1,...,D; C X are mutually distinct and irreducible. We call D a divisor
with simple normal crossing support if Dy,..., D; are smooth and transversally intersect. Let d
782
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be a non-zero integer. We assume that D is of simple normal crossing support and m; # —d for
j=1,...,1. For J C{1,...,l}, we denote

J —my
Wq H m; +d’ J ﬂ J
jeJ j€J (0.9)
wh=1, Dy=X.

See [FZ20, § 4] for an interpretation of this construction.
Now let X be a compact Kéhler manifold. Let Kx be the canonical line bundle over X. Let
Kgl( be the dth tensor power of Kx. Let v € .4 (X, K;l() be an invertible element.

DEFINITION 0.2. We call (X,~) a d-Calabi-Yau pair if:

(i) div(y) = Zé’:1 m;Dj is of simple normal crossing support;
(ii) mj # —dfor j=1,...,L

Here are some examples of d-Calabi—Yau pairs.

(a) If X is a compact Kihler Calabi-Yau manifold and 0 # v € HY(X, K%), then (X,7) is a
d-Calabi—Yau pair.

(b) If (X,~) is a d-Calabi—Yau pair with d > 0 and Y C X transversally intersects with div(y) in
the sense of Definition 1.1, then (Bly X, f*v) is a d-Calabi—Yau pair, where f : Bly X — X
is the blow-up along Y.

Now we assume that (X, ) is a d-Calabi-Yau pair. Let w? and D be as in (0.9). Let w be
a Kéahler form on X. Recall that 7gcov(+,-) was constructed in (0.7). The BCOV invariant of
(X,~) is defined as

Ta(X,7y) = Z wimscov (D, w|p,) + correction terms, (0.10)
JC{L,..1}

where the correction terms are Bott—Chern-type integrations (see Definition 3.2 and (3.10)). We
construct 74(X,~y) and show that it is independent of w.

We can further extend our construction to canonical divisors with rational coefficients. We
consider a pair (X, D), where X is an n-dimensional compact Kéhler manifold, D is a canonical
divisor with rational coefficients on X such that:

(i) D is of simple normal crossing support;
(ii) each component of D is of multiplicity > —1.

DEFINITION 0.3. Let d be a positive integer such that dD is a divisor with integer coefficients.
Let v be a meromorphic section of K¢ such that div(y) = dD. We define

_ xa(X,dD) L
(0 0) = )+ M g (o [ ), 0.11)

where xq4(-, ) is defined in Definition 1.3, |D| is defined in g0.25), |v7|'/? is the unique positive
volume form on X\|D| whose dth tensor power equals " d~%. By Propositions 3.3, 3.4, the
BCOV invariant 7(X, D) is well-defined, i.e. independent of d and ~.

Our BCOV invariant differs from the one defined in [EFM21] by a topological invariant.
More precisely, if X is a Calabi-Yau manifold, the logarithm of the BCOV invariant of X

783

https://doi.org/10.1112/S0010437X23007042 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007042

Y. ZHANG

defined in [EFM21] is equal to

(X,0) + log(2m) i(—l)kk( — k)bp(X) (0.12)
T y B n k N .
k=0

where by (X) is the kth Betti number of X. The sum of Betti numbers in (0.12) comes from
our choice of the L?-metric (see (1.70)) and the identification between singular cohomology and
de Rham cohomology (see (1.121)).

Curvature formula. Let w: 2" — S be a holomorphic submersion. We assume that 7 is locally
Kahler in the sense of [BGS88b, Definition 1.25], i.e. for any s € S, there exists an open subset
s € U C S such that 71 (U) is Kihler. For s € S, we denote X5 = 7~ 1(s). Let

(vs € M (X, K%))) (0.13)

ses
be a holomorphic family. We assume that (Xg,vs) is a d-Calabi-Yau pair for any s € S. We
assume that there exist [ € N, my,...,my € Z\{0, —d} and (Djs C Xs)jeq1,..1},se5 such that
!
div(ys) = ijDjﬁ for s € S. (0.14)
j=1
For J C {1,...,l}and s € S, let D;s C X, be as in (0.9) with X replaced by X and D; replaced
by D; . We assume that (Djs)scs is a smooth holomorphic family for each J.
Let 74(X,v) be the function s — 74(X;s,7s) on S. Let w7 be as in (0.9). Let H*(D;) be the

variation of Hodge structure associated with (D s)ses- Let wye(p,) € QL1(9) be its Hodge form
(see [Zha22, §1.2]).

THEOREM 0.4. The following identity holds:

90
Tde(X, ’}/) = Z ijH.(DJ). (015)
JC{1,...,l}

Blow-up formula. Let (X, ) be a d-Calabi—Yau pair in the sense of Definition 0.2 with d > 0.

Let Y C X be a connected complex submanifold such that Y, D1,..., D; transversally inter-
sect (in the sense of Definition 1.1). We assume that m; > 0 for j satisfying Y C D;. Let r be the
codimension of Y C X. Let ¢ be the number of D; containing Y. Then we have ¢ < r. Without
loss of generality, we assume that

YCD; forj=1,...,¢; YZD; forj=q+1,...,0L (0.16)

Let f : X’ — X be the blow-up along Y. Let D, C X' be the strict transformation of D; C X.
Set E = f~Y(Y). Let f*y € .# (X', Kx:) be the pull-back of 7. We denote D’ = div(f*y). We

denote

mo =mi+---+mg+rd—d. (0.17)

We have (cf. [MMO7, Proposition 2.1.11])
!
D' =moE+Y m;Dj. (0.18)

j=1

Hence, (X', f*v) is a d-Calabi—Yau pair.
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Set
! l

Dy = > mi(D;nY), Dg=>» m;(DjnE). (0.19)
J=q+1 Jj=1
Then Dy (respectively, Dg) is a divisor on Y (respectively, F) with simple normal crossing
support.
We identify CP" with C" U CP" L. Let (21,...,2.) € C" be the coordinates. Let Yrmi,..mg €
A (CP", K&p,) be such that

q
fyT,m17~--,mq|(CT = (dzl A2 A dzr)d H Z;nﬂ (020)
=1

Let Hj, C CP" be the closure of {z; =0} C C". Let Hy, = CP"~! C CP". We have

q
AV (Yrmy,omg) = —(ma + -+ mg +rd+ d)Hoo + > _ m;Hj. (0.21)
j=1

Thus, (CP",vrm,,...,m,) is a d-Calabi-Yau pair.
THEOREM 0.5. The following identities hold:
Xa(X', f*7) = xa(X,7) =0,
(X', [*7) = 7a(X,7) = Xa(E, Dp)7a(CP, 71,m,) (0.22)
= Xa(Y; Dy )7a(CP", Yrmy ... )
where x4(-,-) is given by Definition 1.3.
The proof of Theorem 0.5 is based on:

(i) the deformation to the normal cone introduced by Baum, Fulton and MacPherson [BFMT75,
§1.5];

) the immersion formula for Quillen metrics due to Bismut and Lebeau [BLI1];

) the submersion formula for Quillen metrics due to Berthomieu and Bismut [BB94];
v) the blow-up formula for Quillen metrics due to Bismut [Bis97];

) the relation between the holomorphic torsion and the de Rham torsion established by
Bismut [Bis04].
We remark that the Quillen metric can be extended to orbifolds, and the immersion formula and
the submersion formula still hold (see [Ma05, Ma21]).

Notation. For a complex vector space V', we denote
det V = A4V, (0.23)

which is a complex line. For a complex line A, we denote by A~! the dual of A. For a graded
complex vector space V* = @], V¥, we denote

m
det V* = X)(det VF) (D", (0.24)
k=0
For a complex manifold X and a divisor D = miDy + -+ - +myD; on X, where mq,...,my €
Z\{0}, D1,..., D; are mutually distinct and irreducible, we denote
\D|:D1U--~UD1§X, (025)
which we call the support of D.
785
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For a complex manifold X, we denote by QP¢(X) the vector space of (p,q)-forms on X.
We denote by Ox the analytic coherent sheaf of holomorphic functions on X. We denote by
Q’;( the analytic coherent sheaf of holomorphic p-forms on X. For a complex vector bundle FE
over X, we denote by QP9(X, E) the vector space of (p,q)-forms on X with values in E. We
denote by .Z (X, E) the vector space of meromorphic sections of E. We denote by Ox(F) the
analytic coherent sheaf of holomorphic sections of E. For an analytic coherent sheaf .% on X,
we denote by H?(X,.#) the gth cohomology of .%. We denote HY(X,E) = H1(X, Ox(FE)). We
denote HP4(X) = HY(X, 0% ). We denote by HE, (X) the kth de Rham cohomology of X with
coefficients in C. If X is a compact Kéhler manifold, we identify HP4(X) with a vector subspace
of HYF?(X) via the Hodge decomposition.

1. Preliminaries

1.1 Divisor with simple normal crossing support
For I C {1,...,n}, we denote

Ct={(z1,...,2n) €C":z;=0forie I} CC". (1.1)
Let X be an n-dimensional complex manifold.

DEFINITION 1.1. For closed complex submanifolds Yi,...,Y; C X, we say that Yi,...)Y]
transversally intersect if for any x € X, there exists a holomorphic local chart C* O U 45X
such that:

(i) 0 € U and ¢(0) = x;
(ii) for each k, either ¢~ 1(Y;) =0 or ¢ 1(Yz) =UN Cj, for certain I, C {1,...,n}.

Let D be a divisor on X. We denote
l
D = ijDj, (12)
j=1

where m; € Z\{0}, D1,...,D; C X are mutually distinct and irreducible.

DEFINITION 1.2. We call D a divisor with simple normal crossing support if D1,...,D; are
smooth and transversally intersect.

For J C{1,...,l}, let wj and Dj be as in (0.9), let x(Djs) be the topological Euler
characteristic of D .

DEFINITION 1.3. If D is a divisor with simple normal crossing support, we define
xa(X,D) =Y wix(Dy). (1.3)
JC{1,...,1}

Moreover, if there is a meromorphic section v of a holomorphic line bundle over X such that
div(y) = D, we define

Xd(X”Y) :Xd(Xa D) (14)

Now we assume that D is a divisor with simple normal crossing support. Let L be a
holomorphic line bundle over X together with v € .Z (X, L) such that

div(y) = D. (1.5)
Let v~1 € .#(X,L™!) be the inverse of 7.

786

https://doi.org/10.1112/S0010437X23007042 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007042

BCOV INVARIANT AND BLOW-UP
We denote by (T*X @ T*X)®* the kth tensor power of T*X @ T*X. We denote
Ef = (T"X o T"X)®" @ L. (1.6)

In particular, we have Egt = L*!. Let VEl:«t be a connection on Eff
Let L; be the normal line bundle of D; — X.

DEFINITION 1.4. We define Resp, () € 4 (D;, L ® Lj_mj) as follows:

1

E;;-fl EF :

W(V itV 0’)’) D, lfmj>0,

Resp;(v) = (1.7)
1 B - -1
Imjl=1 .. . yEy 41 i ,
’mj“((v g V*&o ~y ) j) if m; < 0.
Here Resp, () is independent of (VEff)keN,
For j € {1,...,1}, we have

div(Resp, (7)) = Z my(D; N Dy,). (1.8)

ke{l,... 11\ {7}

For distinct j, k € {1,...,1}, we have

Resp,np, (ResDj (fy)) = Resp,np, (ResDk (’y))
€.#(D;N Dy, L® L™ @ L;™). (1.9)

1.2 Some characteristic classes
For an (m x m)-matrix A, we define

ch(A) = Trle?t], Td(A) = det (Id—i—A)’ c(A) = det(Id +A). (1.10)
We have
c(tA) =1+ Zm:tkck(A), (1.11)
k=1

where ci(A) is the kth elementary symmetric polynomial of the eigenvalues of A.
Let V be an m-dimensional complex vector space. Let R € End(V). Let V* be the dual
of V. Let R* € End(V*) be the dual of R. For r =1,...,m, we construct R, € End(A"V*) by

induction,

Ry = —R*, R, =Ry Aldy1y+Idy- ARy (1.12)

We use the convention A°V* = C and Ry = 0.
Let Aq,..., A be the eigenvalues of R. For p € N and F' a polynomial of A1,..., A\p, we
denote by {F}P! the component of F' of degree p.
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ProprosITION 1.5. The following identities hold:

m

Td(R)(Tzz;J(l)’"ch(Rr)) — cnl(B),
{Td(R) < g(—wmh(m)) }Km} = —cm_1(R) + %cm(R), (1.13)

= ml m(3m — 5)
{Td(R)<;(—l) r(r— 1)ch(Rr)> } = g(clcmfl)(R) + Tcm(R).
Proof. Note that the eigenvalues of R, are given by ((—1)"Aj; -+ Aj, )1<ji<---<jr<m, We have

m

A\ . e _
Td(R) =[] ﬁ D (~1)t"ch(R H (1 —te™ ). (1.14)
7j=1 r=0 7=1

Taking t = 1 in (1.14), we obtain the first identity in (1.13).
Taking the derivative of the second identity in (1.14) at ¢ = 1, we obtain

> (1)"rch(R,) = —<Z — e_/\ ) H (1—e). (1.15)
r=0 j=1 7=1
From the first identity in (1.14), (1.15) and the identity
e N 1 1
:)\flif — X\ 1.16
1—e N J st bt (1.16)

we obtain the second identity in (1.13).
Taking the second derivative of the second identity in (1.14) at t = 1, we obtain

i(—nwr —1)ch(R,) = ((i lf_:_A)Q - i (:{;)3 ﬁu e ). (117)

r=0 j=1 j=1 J=1
From the first identity in (1.14), (1.16) and (1.17), we obtain the third identity in (1.13). This
completes the proof. O
For an (m x m)-matrix A, we define
Td'(4) = L rd(A + t1d) (1.18)
ot =0
PROPOSITION 1.6. We have
m [m]
{reom(Svranm) | = Fentm,
(1.19)
- [m} 1 m?
{Td/ (Z )'rch(R ) } = ﬁ(clcm_l)(R) + Tcm(R).
Proof. Let ¢}, be as in (1.18) with Td replaced by ¢j. We have
A(R)=m, (R)=(m—1)ci1(R). (1.20)
On the other hand, we have
{TARMST =14 Le)(R) + 4 (A(R) + ea(R)). (1.21)
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By (1.20) and (1.21), we have

TdERN\SY m 1
== - — . 1.22
{ Td(R) } > ") (1.22)
From (1.13) and (1.22), we obtain (1.19). This completes the proof. O

1.3 Chern form and Bott—Chern form
Let S be a compact Kahler manifold. We denote

dim S
Q% = P ¥(9),
p=0

dim S (1.23)

Q%0 = B (oar~17(S) + 0rr=1(S)) C Q.
p=1
Let E be a holomorphic vector bundle over S. Let g be a Hermitian metric on E. Let RF €

QL1(S, End(E)) be the curvature of the Chern connection on (E, g¥). Recall that ¢(-) was defined
in (1.10). The total Chern form of (E, g¥) is defined by

c(E,g%)=c _ R cQ’ (1.24)
’ 2mi ’ ’
The total Chern class of E' is defined by
c¢(E) = [c(E,gE)] e HIL"(S), (1.25)

which is independent of g¥.
Let E' C E be a holomorphic subbundle. Let E” = E/E’. We have a short exact sequence
of holomorphic vector bundles over S,

0B %EL B o0, (1.26)
where a (respectively, ) is the canonical embedding (respectively, projection). We have
c(E) = c¢(E")c(E"). (1.27)

Let ¢¥ be a Hermitian metric on E’. Let ¢®” be a Hermitian metric on E”. The Bott—Chern
form [BGS88a, §1f)]
&g” 9% 9"") € Q°/Q%° (1.28)
is such that
38 ~ / 17 / "
500" 9% ") = e(B,g"%) — (E' @ E", g% & g"")

1

= o(B,g") — c(E', g7 )e(E", g""). (1.29)

Let a*g” be the Hermitian metric on E’ induced by g% via the embedding o : E' — E. Let 3.g”
be the quotient Hermitian metric on E” induced by ¢ via the surjection 3 : E — E”. We denote

EEE,g") =éa*g?, g%, B.g"). (1.30)

Let g* gEN be the Hermitian pseudometric on E induced by gEN via the surjection 3 : E — E".
For € > 0, set

1 * "
92 =g"+ 9" (1.31)
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We equip Q° C Q*°*(S) with the compact-open topology. We equip @Q°/Q%° with the
quotient topology.

PROPOSITION 1.7. Ase — 0,
(B, g") — c(E', a*g®)e(E", g""), &E, E,gF)— 0. (1.32)

Proof. We follow the proof of [BGS88a, Theorem 1.29].
Let pr: S x C — S be the canonical projection. Let

a:pr*E — pr'E (1.33)

be the pull-back of a : E' — E. Let (s,2) € S x C be coordinates. Let o € H(S x C,C) be the
holomorphic function o(s, z) = z. Let

G:pr*E — pr'E’ (1.34)
be the multiplication by o. Set
& =pr*E', &= Coker(a®as:pr*E — pr*E @ pr'E’). (1.35)
We get a short exact sequence of holomorphic vector bundles over S x C,
0—-&—-€—-E&"—0, (1.36)

where £ — £ is induced by the embedding 0 @ Idp« g : pr*E’ — pr*E @ pr*E’, and € — £" :=
Coker(&" — &) is the canonical projection. For z € C, let

0—-& =& —&'—0 (1.37)
be the restriction of (1.36) to S x {z}. For z # 0, let

¢, E— &, =Coker(a® 21dp : B' - E® E') (1.38)
be the isomorphism induced by the embedding Idg &0 : E — E & E’. We obtain a commutative
diagram

0 £ E E” 0
R am
0 &l o &l 0

where the vertical maps are induced by ¢,. Let
¢o: E'®E" — & = Coker(a®0: ' - E®E)=E'"oF (1.40)

be the obvious isomorphism. We obtain a commutative diagram

0 > E/ > E/ @ El/ E/l O
] )
0 &} & gl 0

where the vertical maps are induced by ¢g.
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We can construct a Hermitian metric ¢g¢ on & such that

¢t = |2P2gF + 879" for 2 #£0, ¢igf =a*gF @ g”". (1.42)

To show that ¢f is a smooth metric, we consider the metric gP* E®P"E" on pr*E @ pr*E’
defined by

gEEPTE gy = (L4 2 (67 @ a*g”). (1.43)

We can directly verify that ¢ is the quotient metric induced by gP* "ESPrE’ yig the canonical
projection pr*E & pr*E’ — £.

By (1.39) and (1.42), for € = |2]? > 0, we have

c(&:,9%) = c(E,gF), @EELE.,9%)=¢eF E,g5). (1.44)

By [BGS88a, Theorem 1.29 iii)], (1.41) and (1.42), we have
(0, 9%) = c(E', a*g")c(E", g7"),  &(&}, &0, 95) = 0. (1.45)

On the other hand, by [BGS88a, Theorem 1.29 ii)], we have
lim ¢(E:,9%) = ¢, 9%),  lim &(€1, €2, 9%) = &€y, L0, ). (1.46)
From (1.44)—(1.46), we obtain (1.32). This completes the proof. O

Remark 1.8. We can also prove Proposition 1.7 by applying the arguments in [BB94,
(4.67)—(4.70) and (4.75)—(4.81)], which show that the connection of E converges to a triangular
2 x 2 matrix with diagonal elements given by the connections of E' and E” as ¢ — 0. Though
[BB94, (4.67)—(4.70) and (4.75)—(4.81)] work with tangent bundles, the argument equally holds
in our case (because the connections under consideration are Chern connections).

Let F' C E be a holomorphic subbundle. Set F’ = o~ }(F) C E', F" = 3(F) C E".
PROPOSITION 1.9. If " = E', as ¢ — 0,
AF,E,gP) — (B, a*g®)e(F" E", g7"). (1.47)
IfF" =E", ase — 0,
AF,E,gf) — «(E", g"")&(F' E' a*gP). (1.48)
Proof. We use the notation from the proof of Proposition 1.7. Set
F = Coker(& @ G|pe+pr : pr*F’ — pr*F & pr*F’) C £. (1.49)

For z € C, let F, be the restriction of F to S x {z}.
For z # 0, we have ¢,(F) = F, C £,. By (1.42), for € = |z|? > 0, we have

&(F.,E., g7 = &(F, B, gF). (1.50)
We have ¢o(F) =F' @ F" C E'® E" = &. By (1.42), we have
&(Fo,£0,9%) = &(F @ F" E' ® E",a*g" @ ¢""). (1.51)

By [BGS88a, Theorem 1.29], we have
5(F/ ® F”,El @ E",a*gE 69gE”) _ C(E/,Oé*gE)E(FH,E”,gE”) if F/ _ E,,

HF @ F" B @B o*¢” @ ¢"") = (B, ¢"")e(F',E',a*g¥) it F" = E". 152

On the other hand, by [BGS88a, Theorem 1.29 ii)], we have
lim ¢(F, £:,9%) = &(Fo, £0,9%). (1.53)
From (1.50)—(1.53), we obtain (1.47) and (1.48). This completes the proof. O

791

https://doi.org/10.1112/S0010437X23007042 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007042

Y. ZHANG

Recall that Td(-) was defined in (1.10). The Bott—Chern form [BGS88a, § 1f)]
Td(g”, 9", 9"") € Q°/Q%° (1.54)
is such that

90 Ta(g¥ ¥ ¢"") = Td(E, ¢") - TA(E', g" YTd(E",g""). (1.55)

2mi
PROPOSITION 1.10. Propositions 1.7 and 1.9 hold with c(-) replaced by Td(-).

Recall that ch(-) was defined in (1.10). The Bott—Chern form [BGS88a, § 1f)]

ch(¢”, 9%, ¢"") € Q%/Q%° (1.56)
is such that
28—8&1( 9P ") = ch(E', ¢"") — ch(E, gF) + ch(E", g""). (1.57)
i
For another Hermitian metric ¥ on E, let
ch(g”,%) € Q%/Q* (1.58)
be the Bott—Chern form [BGS88a, § 1f)] such that
%cb(AE g¥) = ch(E, §¥) — ch(E, ¢%). (1.59)

The following proposition is a direct consequence of the construction of the Bott—Chern form
[BGS88a, §1f)].

PROPOSITION 1.11. For another Hermitian metric G (respectively, 3, §¥" ) on E (respectively,
E', E"), we have

ch(g™, ", 5"") = ch(g”, g%, g"") + ch(3™, g"") — ch(§”, g") + ch(g™", g"").  (1.60)
For a,b > 0, we have
ch(ag?,bg"®) = ch(E, g¥)(logh — log a). (1.61)

For (gF)tcr a smooth family of Hermitian metrics on E, the map t + &1(gtE, g¥) is continuous.
In particular, we have

&(gf,gé@) —0 ast—0. (1.62)
Let E* be the dual of E. Following [BB94, §1a)|, for p=0,...,dimE and s =0,...,p—1,

set
I? = {u € APE* 1 u(vy,...,v,) = 0 for any vy,...,ve41 € ' Usq2,...,0, € E}. (1.63)

For convenience, we denote If,’ = APE* and I” 1 = 0. We obtain a filtration
For r =0,...,dimE” and s = 0,...,dim E’, we denote E, s = A*E’" ® A"E"*. We have a short

exact sequence of holomorphic vector bundles over S,
0— I I — B, — 0. (1.65)
Recall that g¥ was defined in (1.31) Let g2"F" be the Hermltlan metric on APE* induced
by gF. Let ggsr% be the restriction of 95 "E” to ITTS. Let ge Ers be the quotient metric on K, 4

induced by g/* ™ Via the surjection I — E,. .
Similarly to Proposition 1.7, we have the following proposition.
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PROPOSITION 1.12. Ase — 0,
~ Ir+s r+s
ch(QES’I,g§S+ ,gf“) — 0. (1.66)

Proof. Let 0 — & — & — £" — 0 be as in (1.36). Let Z! C APE* be as in (1.63) with E replaced
by £ and E’ replaced by &’. We denote &, s = A*E"™ @ A"E"*. We have a short exact sequence of
holomorphic vector bundles over S x C,

0T Tt = &5 — 0. (1.67)

Proceeding in the same way as in the proof of Proposition 1.7 with (1.36) replaced by (1.67), we
obtain (1.66). This completes the proof. O

1.4 Quillen metric
Let X be an n-dimensional compact Kahler manifold. Let E be a holomorphic vector bundle
over X. Let 0F be the Dolbeault operator on

Q"% (X,E) =¢>(X,\*(T"X) ® E). (1.68)
For ¢ =0,...,n, we have HY(X,E) = H1(Q%*(X, E),9%). Set

ME) = det H*(X, E) := ) (det HI(X, E)) " (1.69)
q=0
Let ¢7X be a Kéhler metric on TX. Let g¥ be a Hermitian metric on E. Let (-, '>A-(W)®E

be the Hermitian product on A®*(T*X) ® E induced by g’ ¥ and ¢”. Let dvx be the Riemannian
volume form on X induced by g7*. For s1,s9 € Q%*(X, E), set

(s1,89) = (27r)”/ (51,59 ne 10 VX (1.70)
X

which we call the L?-product. B
Let 9% be the formal adjoint of ¥ with respect to the Hermitian product (1.70). The
Kodaira Laplacian on Q%*(X, E) is defined by

OF = 9FoF* + 9P*oF. (1.71)
Let Df be the restriction of OF to Q4(X, E).
By the Hodge theorem, we have
Ker(OF) = {s € Q"(X,F) : 9”5 = 0,0"*s = 0}. (1.72)
Still by the Hodge theorem, the following map is bijective:

E — {4
Ker(O)) — HY(X, E) (1.73)

s — [s].

Let | - [y be the L2-metric on A\(E) induced by the metric (1.70) via (1.69) and (1.73).

Let Sp(D;E) be the spectrum of DqE, which is a multiset.! For 2z € C with Re(z) > n,
set
n

0(z)=> (-1)%q Y A (1.74)

q=1 AESP(TE) A0

L' A multiset allows for multiple instances for each of its elements.
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By [See67], the function 0(z) extends to a meromorphic function of z € C, which is holomorphic
at z = 0.

The following definition is due to Quillen [Qui85] and Bismut, Gillet and Soulé [BGS88b,
§1d)].

DEFINITION 1.13. The Quillen metric on A(E) is defined by
I-lIxcmy = exp (36'(0)) | - [x()- (1.75)

Remark 1.14. Denote x(X, F) = EZZO(—l)q dim H(X, E). For a > 0, if we replace g” by ag”,
then [|-[|\(g) is replaced by aX(X’E)/2H-||)\(E).

1.5 Analytic torsion form

Let m: X — Y be a holomorphic submersion between Kéahler manifolds with compact fiber Z.
Let E be a holomorphic vector bundle over X. Let R*m.FE be the derived direct image of F,

which is a graded analytic coherent sheaf on Y. We assume that R*w,F is a graded holomorphic

vector bundle. Let H*(Z, E) be the fiberwise cohomology. More precisely, its fiber at y € Y

is given by H®(Z,, E|z,). We have a canonical identification R*m.E = H*(Z, E). We have the

Grothendieck—Riemann—Roch formula,

ch(H*(Z,E)) =Y (-1)/ch(H’(Z,E)) = / Td(TZ)ch(E) € H™(Y). (1.76)
. z

J

Let w € QY1(X) be a Kihler form. Let g7% be the Hermitian metric on T'Z associated with
w. Let g¥ be a Hermitian metric on E. Let ¢*(%E) be the L2 -metric on H*(Z, E) associated
with ¢7% and g” via (1.73).

We use the notation in (1.23). Let ch(H*(Z, E), g"* (%)) € Q¥ be the Chern character form
of (H*(Z, E), g""(%:E)). We introduce Td(TZ, g7%) € QX and ch(E, g¥) € Q¥ in the same way.

Bismut and Kohler [BK92, Definition 3.8] defined the analytic torsion forms. The analytic
torsion form associated with (7 : X — Y,w, E, g%) is a differential form on Y, which we denote
by T(w, g%). Moreover, we have

T(w,g%) € QY. (1.77)
We sometimes view T'(w, g¥) as an element in Q¥ /QY"*. By [BK92, Theorem 3.9], we have
00 .
i T, g") = ch(H*(Z, B), g™ #")) - / Td(TZ,g"%)ch(E, g7). (1.78)
n z

The identity (1.78) is a refinement of the Grothendieck—Riemann-Roch formula (1.76).

For y € Y, let 6,(2) be as in (1.74) with (X, g**, E, g¥) replaced by (Z,,9"%", E|z,,9"|2,)-
Let 6(0) be the function y + ¢;(0) on Y. By the construction of the analytic torsion forms, we
have

{T(w, ")} = 0'(0) e €2(V), (1.79)

where {-}(%0) means the component of degree (0,0).

Let F' be a holomorphic vector bundle over Y. Let 7#*F be its pull-back via m, which is a
holomorphic vector bundle over X. Let ¢!’ be a Hermitian metric on F. Let ¢¥®™ ¥ be the
Hermitian metric on E ® 7*F induced by ¢¥ and g% Let

T(w,g"*™ ") € Q¥ (1.80)

be the analytic torsion form associated with (7 : X — Y,w, E @ n*F, gF®™ ),
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The following proposition is a direct consequence of the construction of the analytic torsion
forms.

PROPOSITION 1.15. The following identity holds in QY /QY*°:
T(w, g% I = ch(F, ¢!\ T (w, g¥). (1.81)
For p=0,...,dim Z, let ¢""(T"%) be the metric on AP(T*Z) induced by g7%. Let
T(w, """y e QY (1.82)

be the analytic torsion form associated with (7 : X — Y, w, AP(T*Z), g2 (1" 2)),

THEOREM 1.16 (Bismut [Bis04, Theorem 4.15]). The following identity holds in QY /Q¥*°,

dim Z

> (—)PT(w, gV T D) = 0. (1.83)
p=0

1.6 Properties of the Quillen metric
In this subsection, we state several results describing the behavior of the Quillen metric under
submersion, resolution, immersion and blow-up.

Submersion. Let m: X — Y, Z, F and H*(Z, E) be as in §1.5. We assume that X and Y are
compact. We further assume that the Leray spectral sequence for £ and 7 degenerates at Fs,

i.e.
HYX,E)~ @ H/(Y,H"(Z,E)) forq=0,...,dimX. (1.84)
Jt+k=q
We denote
dim Z X
det H*(Y, H*(Z,E)) = X) (det H*(Y, H"(Z,E)))"™"
k=0
dimY dim Z A ik
= R & (det HI (Y, H*(2,E)))"". (1.85)
7=0 k=0
Let
o € det H*(X, E) ® (det H* (Y, H*(Z, E))) ™ (1.86)

be the canonical section induced by (1.84).
Let wx € QM(X) and wy € QY1(Y) be Kihler forms. For ¢ > 0, set

1 *
We =wx + —T wy. (1.87)
5

Let ¢F be a Hermitian metric on E.
Let g% be the metric on TX associated with w.. Let

||'||detH‘(X,E),a (188)

be the Quillen metric on det H*(X, E) associated with g7 and g¥. Let ¢’ be the metric on
TY associated with wy. Let gTZ be the metric on T'Z associated with wx|z. Let gH°(Z’E) be the
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L2-metric on H*(Z, E) associated with ¢g?Z and ¢*. For k =0,...,dim Z, let
I llaet e (v, 1% (2,9 (1.89)
be the Quillen metric on det H*(Y, H*(Z, E)) associated with g7 and g (Z.E) et

et e (v, m2 (2,B)) (1.90)

be the metric on det H*(Y, H*(Z, E)) induced by the Quillen metrics (1.89) via (1.85). Let ||o||c
be the norm of o with respect to the metrics (1.88) and (1.90).
We use the notation in (1.23). Let Td(TY, ¢*Y) € QY be the Todd form of (TY, g’Y). Let

T(w,g") € Q" (1.91)

be the analytic torsion form (see §1.5) associated with (7 : X — Y,wx, E, g").
Recall that Td'(-) was defined by (1.18).

THEOREM 1.17 (Berthomieu and Bismut [BB94, Theorem 3.2]). Ase — 0,

log||o||? + / Td(TY) / Td(TZ)ch(E)loge — / TA(TY, ¢"¥)T(w, g¥). (1.92)
Y z Y
Resolution. Let X be a compact Kéhler manifold. Let

0—-E"-FE' - E>-0 (1.93)

be a short exact sequence of holomorphic vector bundles over X. Let

2
o€ &) (det B (X, E}) (1.94)
k=0

be the canonical section induced by the long exact sequence induced by (1.93).
Let ¢g7X be a Kihler metric on TX. For k =0,1,2, let gEk be a Hermitian metric on E*.
Let

[l aet me (x,2%) (1.95)
be the Quillen metric on det H*(X, E¥) associated with 7% and gF" . Let llo|| be the norm of &

with respect to the metrics (1.95).
We use the notation in (1.23). Let Td(T'X, g”*) € QX be the Todd form of (T'X, 7). Let

ch(Ek,gEk) € QX be the Chern character form of (Ek,gEk). Let
ch(g™") € Q*/Q** (1.96)

be the Bott—Chern form [BGS88a, § 1f)] such that
2

58 ot . k
5 ch(e™) =Y (-1 eh(E", g7). (1.97)
k=0
THEOREM 1.18 (Bismut, Gillet and Soulé [BGS88b, Theorem 1.23]). The following identity
holds:
logllr|? = | Ta(rX.4"™)ch(g™). (1.98)
X

Immersion. Let X be a compact Kéhler manifold. Let Y C X be a complex submanifold of
codimension one. Let ¢ : Y — X be the canonical embedding. Let F' be a holomorphic vector
bundle over Y. Let v : E1 — Ey be a map between holomorphic vector bundles over X which,
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together with a restriction map r : Eyly — F, provides a resolution of i, Oy (F'). More precisely,

we have an exact sequence of analytic coherent sheaves on X,
0— Ox(E1) % O0x(Fy) = i,0y(F) — 0.
Let
o € (det H*(X, E1)) " @ det H*(X, Ey) ® (det H*(Y, F)) ™"

be the canonical section induced by the long exact sequence induced by (1.99).

(1.99)

(1.100)

Let w € QY1(X) be a Kihler form. For k = 0,1, let g be a Hermitian metric on Ej. Let
g" be a Hermitian metric on F. Assume that there is an open neighborhood ¥ C U C X such

that v|x\¢ is isometric, i.e.
9" = v g™ -
Let ¢ be the metric on TX associated with w. For k = 0, 1, let

[ llaet mre (x,E)

(1.101)

(1.102)

be the Quillen metric on det H*(X, E},) associated with g?X and g®. Let ¢’ be the metric on

TY associated with w|y. Let

- lldet 77 (v, )

(1.103)

be the Quillen metric on det H*(Y, F) associated with ¢ and g% Let |lo|| be the norm of &

with respect to the metrics (1.102) and (1.103).

The following theorem is a direct consequence of the immersion formula due to Bismut and
Lebeau [BLI1, Theorem 0.1] and the anomaly formula due to Bismut, Gillet and Soulé [BGS88b,

Theorem 1.23].
THEOREM 1.19. We have

log|o||? = (U, wlyr, vlur, g v, g7,

where a(U,w|y,v|u, v, g, gF') is a real number determined by

U, wly, vlv:Eily— Eolu, ¢ |lu, 7:FEoly —F, ¢
More precisely, given

YCUCKX, @ ©:B—FE, 7:Ely—F g% 4°
satisfying the same properties that

YCUCX, w, v:Ei—Ey, r:Ely—F g%, 4"

(1.104)

(1.105)

(1.106)

(1.107)

satisfy, if there is a biholomorphic map U — U inducing an isomorphism between the restrictions

of the data above to U and U, then
logllo||* = log||& 1%,
where
G e (det H* (X, E1)) ™" @ det H*(X, Eo) @ (det H* (Y, F)) ™"

is the canonical section, and ||&|| is its norm with respect to the Quillen metrics.

(1.108)

(1.109)

Remark 1.20. The real number o(U, w|y,v|v,r|v, 9%, gF') depends continuously on the input

data.
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Blow-up. Let X be a compact Kahler manifold. Let Y C X be a complex submanifold of codi-
mension r > 2. Let f: X’ — X be the blow-up along Y. Let E be a holomorphic vector bundle
over X. Let f*E be the pull-back of E via f, which is a holomorphic vector bundle over X'.
Applying spectral sequence, we obtain a canonical identification

H*(X',f*E) = H*(X, E). (1.110)
Let
€ (det H*(X, E)) ' @ det H*(X', f*E) (1.111)

be the canonical section induced by (1.110).
Let w € QV1(X) and ' € QY1 (X’) be Kihler forms. Assume that there are open neighbor-
hoods Y CU C X and f~1(Y) C U’ C X’ such that

Flo) =0, fwlxw) =wlxw. (1.112)

For the existence of such w and ', see the proof of [Voi02, Proposition 3.24]. Let ¢g” be a
Hermitian metric on F.
Let ¢7X be the metric on TX associated with w. Let

[ lldet 7 (x, 2) (1.113)

be the Quillen metric on det H*(X, E) associated with g7* and ¢g¥. Let "X be the metric on
T X' associated with w'. Let

”'HdetH‘(X’,f*E) (1.114)

be the Quillen metric on det H*(X', f*E) associated with ¢g”X" and f*¢”. Let ||o|| be the norm
of o with respect to the metrics (1.113) and (1.114).

The following theorem is a direct consequence of the blow-up formula due to Bismut [Bis97,
Theorem 8.10].

THEOREM 1.21. We have
logllo||* = (U, w|v, U, |vr, Elv, g% |v), (1.115)
where o(U,w|y,U’,W'|yr, E|lu, g% |v) is a real number determined by
U, wly, U, o, Elu, ¢%v. (1.116)

Remark 1.22. The real number o(U,w|y, U, W'|g7, E|y, ¥ |v) depends continuously on the input
data.

1.7 Topological torsion and BCOV torsion

Let X be an n-dimensional compact Kéahler manifold. For p = 0,...,n, set
n
Ap(X) = det HP*(X) := (X) (det H?(X))D". (1.117)
q=0
Set
2n %
n(X) = det Hig (X ® (det HY (X (_1)
k=0
=@ (p(x) (1.118)
p=0
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Set

A= & (deth»Q(X))“””*"p:(}%)(A,,(X))(‘”p”,

ij’qgn =t (1.119)
n
_1)k _—
Aot (X) = ) (det HYR (X)) = A(X) @ A(X).
k=1

The identities in (1.119) appeared in [Kat14]. They were applied to the theory of BCOV invariant
by Eriksson, Freixas i Montplet and Mourougane [EFM21].
For A =7Z,R,C, we denote by Hgmg(X ,A) the singular cohomology of X with coefficients
in A. For k =0,...,2n, let
Ok Okby € Im(HéCing(X’ Z) - Hécing(X7 R)) (1120)
be a basis of the lattice. We fix a square root of 7. In what follows, the choice of square root is
irrelevant. We identify H%; (X) with Hé“ing(X ,C) as follows:

H§R<X) - Héfing(Xv C)

[a] — [aH (27i)~k/2 / oz],

where « is a closed k-form on X and a is a k-chain in X. Then oy 1,...,0%p, form a basis of
H% (X). Set

(1.121)

Ok =01 N+ NOgyp, € detHgR(X),

2n (—1)’“ 2n (_1),% (1122)
€x :®0k en(X), ox :®0k € Aot (X),
k=0 k=1

which are well-defined up to +1.

Let w be a Kéhler form on X. Let |||\, (x) be the Quillen metric on \,(X) associated with w.
Let [|-[|;,(x) be the metric on n(X) induced by |||y, (x)» via (1.118). The same calculation as
in [Zha22, Theorem 2.1] together with the first identity in Proposition 1.5 shows that [|-[|;(x) is
independent of w.

DEFINITION 1.23. We define
Trop(X) = log|lex [l x)- (1.123)

Indeed ||-[[,)(x) is the classical Ray—Singer metric up to a normalization. Later, we use this
fact to show that 7¢op(X) = 0.

Let [|[[x(x),w be the metric on A(X) induced by |||y, (x). via the first identity in (1.119).
Let [[][ xo(x)w e the metric on Ayt (X) induced by ||-||x(x) Via the second identity in (1.119).

DEFINITION 1.24. We define

OOV (X, w) = log||ox || xs0, (X),0- (1.124)

For p=0,...,n, let gi}p(T*X) be the metric on AP(T*X) induced by w. Let ggp’q(x) be

the L?-metric on Q2P4(X). More precisely, gf}p’q(X) is defined by (1.70) with (E, g*) replaced

by (AP(T*X),gﬁp(T*X)). Let gfp’q(x) be the L?-metric on H?(X). More precisely, gfpyq(x) is
induced by gSM(X) via the Hodge theorem. Let |- [,(x). be the metric on n(X) induced by

(gF"" X)) ocpg<n via (1.117) and (1.118).
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PRrROPOSITION 1.25. The following identity holds,

Top(X) = log x|y (x)w = 0. (1.125)

Proof. Let O, be as in (1.71) with (Q%*(X, E), 9%, g¥) replaced by (Q”"(X),é,gi}p(T*X)). Let

[Op,q be the restriction of [, to QP4(X). Let 6,(2) be as in (1.74) with OF replaced by O, 4. By
Definition 1.13, 1.23, the first equality in (1.125) is equivalent to

n

D (=1)Ph,(0) = 0, (1.126)

p=0

which was indicated in [BiSO4, p. 1304].

Denote by covol(HE (X,7Z),w) the covolume of Im(HE

Slng(X7 Z) - Héging(X, R)) with

Smg

respect to the metric induced by B, ,—, 9w HPU0 Vi (1.121). We have
2n
—1)k
lexlyoow = [ (covol(H,(X,Z),w)) . (1.127)
k=0
On the other hand, by [EFM21, Remark 5.5(ii)], we have
covol (HE (X, Z), w)covol (HE F (X, Z),w) = 1. (1.128)

Here we remark that, due to the normalization in (1.70) and (1.121), the covolume in the sense
of [EFM21, Remark 5.5(ii)] equals (271')("_k)bk/2covol(H§ing(X, Z),w), where by is the kth Betti
number of X. From (1.127) and (1.128), we obtain |ex|,(x). = 1, which is equivalent to the
second equality in (1.125). This completes the proof. O

2. Several properties of the BCOV torsion

2.1 Kahler metric on projective bundle
For a complex vector space V', we denote by P(V') the set of complex lines in V. Then P(V) is
complex manifold.

Let Y be an m-dimensional compact Kéhler manifold. Let IV be a holomorphic vector bundle
over Y of rank n. Let ¥ be the trivial line bundle over Y. Set

X =P(N @ F). (2.1)

Let 7 : X — Y be the canonical projection. For y € Y, we denote Z, = 7~ !(y), which is isomor-
phic to CP™. Let wepr be the Kéhler form on CP™ associated with the Fubini—Study metric. More
precisely, —iwcpn is equal to the curvature of the tautological line bundle over CP™ equipped
with the standard metric.

LEMMA 2.1. There exists a Kahler form w on X such that for any y € Y, there exists an
isomorphism ¢, : CP" — Z, such that ¢ (w|z,) = wcpn.

Here (¢y)yecy is merely a set of maps parameterized by y € Y. It is not even required to
depend continuously on .

Proof. We refer the reader to the proof of [Voi02, Proposition 3.18]. U
Let s € {1,...,n}. We assume that there are holomorphic line bundles Li,..., Ly over Y
together with a surjection between holomorphic vector bundles,
N—-L & - @ L, (2.2)
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Fork=1,...,s,let N — Lj be the composition of (2.2) and the canonical projection L1 & - -- &
Ls — Lk Set

Ny =Ker(N = L) CN, X,=P(N,®K)CX, X,=PN)CX. (2.3)

Let [§:---:&,) be homogenous coordinates on CP™. For k=0,...,n, we denote

Hy, = {& = 0} C CP™.

LEMMA 2.2. There exists a Kahler form w on X such that for any y € Y, there exists an
isomorphism ¢, : CP" — Z, such that ¢, (w|z,) = wcpr and d>y_1(Xk NZy) =Hyfork=0,...,s.

Proof. Let N* be the dual of N. We have Ll_1 ®---® L7 — N*. Let ¢ be a Hermitian metric
on N* such that Lfl, ..., L71 € N* are mutually orthogonal. Let g”V be the dual metric on N.
Now, proceeding in the same way as in the proof of [Voi02, Proposition 3.18], we obtain w
satisfying the desired properties. This completes the proof. O

2.2 Behavior under adiabatic limit
We use the notation in §2.1. By Lemma 2.1, there exists a Kahler form wx on X such that for
any y € Y, there exists an isomorphism ¢, : CP" — Z, such that

¢y (wx|z,) = wepn. (2.4)

Let wz, = wx|z,. Note that (Z,,wz,)yecy are mutually isometric, we omit the index y as long as
there is no confusion. Let wy be a Kéhler form on Y. For € > 0, set

1 *
We = wyx + gﬂ' wy . (2.5)
We denote
(crem1)(V) = / 1 (TY e (TY). (2.6)
Y

Let x(-) be the topological Euler characteristic. Recall that 7pcov(-,:) was defined in
Definition 1.24.

THEOREM 2.3. Ase — 0,
mBeov (X, we) — 15X(2) (mx(Y) + (c1em-1)(Y)) loge
— x(Z)mBcov(Y,wy) + x(Y)mBCOV(Z, wz). (2.7)

Proof. The proof consists of several steps.
Recall that n(-) was constructed in (1.118) and At (-) was constructed in (1.119).

Step 1. We construct two canonical sections of
—x(Z —nx(Z
Aot (X) @ (Aot (V) X @ (n(v)) ™). (2.8)
Forp=0,....,m+nand s=0,...,p—1, set
I? = {u e AP(T"X) :u(vy,...,vp) =0 for any vy,...,vs11 € TZ,v542,...,0p € TX}. (2.9)

For convenience, we denote If,’ = AP(T*X) and s 1 = 0. We obtain a filtration

AN(T*X) =18 I} | <= =17 =0. (2.10)
For r=0,...,m and s =0,...,n, we denote
E, =N (T"2Z)@n*A"(T*Y). (2.11)
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We have a short exact sequence of holomorphic vector bundles over X,

0= 11" - I — E.; — 0. (2.12)
Let
rs € (det H*(X, I9)) "' @ det H*(X, I7*) @ (det H*(X, E,.5)) " (2.13)
be the canonical section induced by the long exact sequence induced by (2.12).
Let H**(Z) be the fiberwise cohomology. As Z ~ CP", we have
HPP(Z)=C forp=0,...,n, HPIYZ)=0 forp+#gq. (2.14)
Applying spectral sequence while using (2.11) and (2.14), we obtain
HY(X,E,s) ~ H"°(Y,H**(Z)) :== HI*(Y,A"(T"Y) ® H**(Z)). (2.15)
Let
By € det H*(X, Ey.y) ® (det H™* (Y, H**(2))) """ (2.16)

be the canonical section induced by (2.15).
We have a generator of lattice,

5 € HSlng((CPn Z) Smg(CPn R) Slng(CPn C) (217)

We identify HZ  (CP",C) with HZ(CP™) = H**(CP") (see (1.121)). Since H®*(Z) =

H**(CP") = Hg?:;gé(CP”, C) is a trivial line bundle over Y, we have an isomorphism (cf. [GH94,
p. 607])
H™(Y) — H™* (Y, H**(Z)) = H™*(Y) ® H>*(CP") 18
U— u® .
Let
s € (det H™ (v, H**(2))) " @ (det H™*(v)) "V (2.19)

be the canonical section induced by (2.18). By (2.13), (2.16) and (2.19), we have
Qps @ Brs @ s € (det H (X, I745)) " @ det H*(X, I7H*) @ (det H™*(Y)) "V (2.20)
Recall that A\(-) was defined in (1.119). By (1.119) and (2.10), we have

A(X) = 7(%; (det H* (X, AP(T*X))) V"™

m+n

— ® (det H*(X, 12)) "V

n

= @ ((det H*(X, I7+5)) ™ @ det H* (X, I7+5)) D7) (2.21)

On the other hand, by (1. ) (1.119) and the identities

n

B B n(n+1) n
n+1=x(2), ;)5_2 = 2X(Z), (2.22)
we have
® (det H*(Y)) TV = )P @ (n(v)) 2, (2.23)
r=0 s=
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y (2.20), (2.21) and (2.23), we have

H H (s @ Brs @ rs) V0 e N(X) @ (AY)) XD @ (n(v)) XA (2.04)
r=0s=0

By (1.119) and (2.24), we have

H H(ar,s ® fr,s @ 'YT,S)(_I)T+S(T+S) ® H H(O‘r,s ® Br,s @ %?s)(fl)ws@%s)

r=0s=0 r=0s=0
€ Aot (X) ® (Mot (V) P @ (n(v)) ™7, (2.25)

where ~ is the conjugation.
Let ox € Aot(X), 0y € Aot(Y) and ey € n(Y) be as in (1.122). Obviously, we have

ox ® 07X @ ;™) € A (X) @ (Mot (V) X @ (n(v)) ™), (2.26)
Step 2. We show that
HH O[rs®/8r5®’}/rs) T+S T+S ® HH ars®ﬂrs®'7rs) )T+S(r+8)
r=0s=0 r=0s=0
=toy ® oy~ x(2) & e_nX(Z). (2.27)

Let Z(—1) be the inverse of the Tate twist, which is a Hodge structure of pure weight two.
For j € N, we denote by Z(—7) its jth tensor power. We have canonical identifications of Hodge

structures,
HE (CP",Z) = Z(—j) for j=0,....n
n
k—2j
Hécing (X’ Z) = HSlngJ (Y Z) ® HSmg(CPna Z)
7=0 (2.28)
n
k .
= P H,p (V.2) © Z(—j).
§=0
Complexifying (2.28) and applying Hodge decomposition, we obtain
H3(CP")=C forj=0,...,n,
(2.29)

HP9(X) = @prj,qu( ® H77(CP™) @H” Ja=a(

We use the identifications in (2.28) and (2.29) until the end of Step 2.

CLAIM. For complex vector spaces A and B, the canonical identification det A ® det B ®
(det(A @ B))~! = C is such that the canonical section of det A ® det B ® (det(A @ B))~!
identified with 1 € C.

Recall that I7"* was defined in (2.9) and E, s was defined in (2.11). We have
UX,ITH) = @H’"*S 3a=i(Y), HYX,E,s) = H"(Y). (2.30)

By (2.30), we have
H*(X,I[™) = H*(X,I.*))® H*(X, B, ). (2.31)
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Applying the claim in the last paragraph to (2.31), we obtain
(det H*(X, I7+9)) ™' @ det H*(X, I**) @ (det H*(X, E,5)) " = C, ays=1. (2.32)

’ts—1

A similar argument shows that

det H*(X, E, ;) ® (det H™* (Y, H**(2))) """ =C, B, =1, 033
(det ™ (v, H**(2))) T @ (det H™* ()" =€, qpo=1. '

Using (1.119), (1.121) and (2.28), we can show that
Aot (X) ® (Atot(Y>)7X(Z) ® (W(Y))inx
Z) X

U)(®O';/X( ®6;n %) — 41,

(

2)
pu— C’
; (2.34)

From (2.32)—(2.34), we obtain (2.27).
Step 3. We introduce several Quillen metrics.

e Let g7X be the metric on TX induced by w..

Let g?p(T*X) be the metric on AP(T*X) induced by gZ*.

Let ggf be the metric on IY induced by gé\p(T*X) via (2.10).

Let g™ be the metric on TY induced by wy-.

Let ¢ (T"Y) be the metric on A"(T*Y) induced by g7 .

Let ¢g7% be the metric on T'Z induced by wy = w:|z.

Let ¢**(T"%) be the metric on A%(T*Z) induced by g7~.

Let g¥r* be the metric on E, s induced by gV T"Y) and gA°(T7%) yia (2.11).

Let

[ atet zre (x,17) ¢ (2.35)
be the Quillen metric on det H*(X, I%) associated with gZ* and ggg . Let

et 7o (X, Er.0). (2.36)

be the Quillen metric on det H*(X, E, ;) associated with gI* and gFrs. Recall that Qs Was
defined by (2.13). Let ||a;. || be the norm of «, s with respect to the metrics (2.35) and (2.36).

e Let ¢ be the L2-metric on Q%%(Z) induced by 7% (see (1.70)).
o Let g""*(?) be the metric on H**(Z) induced by ¢**"*() via the Hodge theorem.

Let
[l det 7 (v, E5:5(2)) (2.37)

be the Quillen metric on det H™*(Y, H*>*(Z)) = det H*(Y,A"(T*Y) ® H**(Z)) associated with
g™ and gh(T™Y) @ gH**(2) Recall that B, s was defined by (2.16). Let ||, be the norm of
Br,s with respect to the metrics (2.36) and (2.37). Let

[l aet £70 (v) (2.38)

be the Quillen metric on det H™*(Y') = det H*(Y, A”(T*Y)) associated with g7 and g»"(T"Y),
Recall that 7, s was defined by (2.19). Let ||, || be the norm of +, s with respect to the metrics
(2.37) and (2.38).
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By (1.119) and (2.10), we have

m+n m—+n
ox € Mot(X) = Q) (det H*(X, 12)) TV © ) (det Ho (X, 13)) V7. (2.39)
p=1 p=1

Let |lox||s be the norm of ox with respect to the metrics (2.35) with s = p. By (1.118) and
(1.119), we have

ey €n(Y ® (det H™*(Y ( I)T,
r=0
m — (2.40)
oy € Aot (Y ® (det H™*(Y =D ® (det Hm(y))(—l)”"'
=1 r=1

Let ||ey || be the norm of ey with respect to the metrics (2.38). Let ||oy|| be the norm of oy with
respect to the metrics (2.38). By (2.27), we have

m n

(=1)"(r + 5) (log|laws | + log|| Br.sIZ + logllyr.s]1*)

r=0 s=0
= log|lox|le = x(Z)log|loy || — nx(Z)log||ey||. (2.41)
On the other hand, by Definition 1.23 and Proposition 1.25, we have

log|ley || = 0. (2.42)
By Definition 1.24, (2.41) and (2.42), we have
mBov (X, we) = X(Z)TBcov(Y, wy)

F30 S+

r=0 s=0

2+ loglys)1%)- (2.43)

Step 4. We estimate log||ay. s||2.

Recall that I7"* was defined in (2.9), E, s was defined in (2.11), ggsﬂrs and gFrs were defined
at the beginning of Step 3. Let ggE "* be quotient metric on F, ¢ induced by g§ ™ via the surjection
I't% — FE, ; in (2.12). Note that ggys is induced by w.. By (2.5), as € — 0,

eTTgen — gPre, (2.44)
We use the notation from (1.23). Let
7+.5 r+s Er s
Tse —ch<ge Lok g ) € Q¥ /Q*’ (2.45)
be the Bott-Chern form (1.56) with 0 — E/ — E — E” — 0 replaced by (2.12) and (¢%', g7, g®")
T+s
replaced by (gis Logk ;o ,gf”) Let
T+ 45
Troe = (g gl g ) € Q¥ /Y0 (2.46)

be the Bott-Chern form (1.56) with 0 — E/ — E — E” — 0 replaced by (2.12) and (¢%', g7, g&")
r+s rts
replaced by (gis’l,gg;r ,gFr#). By Proposition 1.11 and (2.44), as € — 0,

Tyse — Trse — ch(Ers, g% )rloge = ch(g”, g£*) — ch(Er.q, g )rloge — 0. (2.47)
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On the other hand, by Proposition 1.12, as ¢ — 0,

Trs5. — 0. (2.48)

By (2.47) and (2.48), as € — 0,
Ty s — ch(E, s, g")rloge — 0. (2.49)

Applying Theorem 1.18 to the short exact sequence (2.12), we obtain

gl 12 = /X AT, VT, (2.50)

By Proposition 1.10, as € — 0,
Td(TX, g!*) — 7 Td(TY, ") TA(T Z, g7 7). (2.51)
On the other hand, by the Grothendieck—Riemann—-Roch formula (1.76), (2.11) and (2.14), we

have

/ 7 Td(TY, gTY)Td(TZ gTZ)Ch( rss g ET’S)
X
_ / TA(TY )ch(H*(Z, Ey.,))
Y
:/ TA(TY )ch(A"(T*Y))ch(H>*(Z))
Y

= (—1)5/ Td(TY)ch(A"(T*Y)). (2.52)
%
By (2.49)—(2.52), as ¢ — 0,
log|las|2 — (—1)87"/ Td(TY )ch(A"(T*Y)) loge — 0. (2.53)
Y

By Proposition 1.5, (2.22) and (2.53), as € — 0,

ZZ 1) ( T"‘S)lOgHO‘TSHE

r=0 s=0
3m+3n+1 1
- <m( m > ntD o)+ 6(01%1)(1/));((2) loge — 0. (2.54)
Step 5. We estimate log|| 3, s||%.
Let
T.s € QY (2.55)

be the Bismut-Kohler analytic torsion form (see §1.5) associated with (7:X —
Y,wx, By, g¥=). Applying Theorem 1.17 with E = E, s ase—0,

log||Brs1? + /Y Td'(TY) /Z Td(TZ)ch(E,s)loge — /Y TA(TY, g ") T, s. (2.56)
Similarly to (2.52), we have
/Y Td(TY) /Z Td(TZ)ch(E,s) = (—1)° /Y Td'(TY )ch(A"(T*Y)). (2.57)
Applying Proposition 1.15 with E = Ey s and F' = A"(T*Y"), we obtain
Tps = ch(A"(T*Y), g*" T Tp s modulo Q¥ (2.58)
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By (2.56)—(2.58), as ¢ — 0,

log|| 35|12 + (—1)° /Y Td'(TY )ch(A™(T*Y)) loge

— / TA(TY, g™ )ch(A™(T*Y), " TN Ty 4. (2.59)
Y

On the other hand, by Theorem 1.16, we have
n
> (=1)*Tp = 0 modulo Q°. (2.60)
s=0

By Propositions 1.5, 1.6, (2.22), (2.59) and (2.60), as ¢ — 0,

S S G+ 5) loglBral? + (m(m*”)xm n 1<clcm1><y>)x<z> log e

4 12
r=0 s=0
- / en(TY,g™Y) S (1)"sTp,
Y s=0
— [ en(@¥ig™) S (1510}, (2.61)
Y s=0

where {-}(%0) means the component of degree (0,0).

Step 6. We calculate log||v.s||>.

Recall that H**(Z) is a trivial line bundle over Y. Recall that ¢”*°(%) was constructed in
the paragraph above (2.37). By our assumption (2.4), g''""(%) is a constant metric. Recall that
s € H**(Z) was constructed in (2.17). Let |ds| be the norm of &, with respect to g™ *(%) which
is a constant function on Y. In the following, we do not distinguish between a constant function
and its value. We denote x,(Y) = 37" ((—1)?dim H"(Y'). By Remark 1.14, we have

logl|yrsl” = (=1)*x» (Y) log |6, . (2.62)
Let ez € n(Z) be as in (1.122). We have

ez =+ (X)ds. (2.63)
s=0

Let |ez| be the norm of ez with respect to the metrics g"**(Z) By Proposition 1.25 and (2.63),
we have

n
D “log|ds|* =loglez|* = 0. (2.64)
s=0
Let 07 € A\ot(Z) be as in (1.122). We have
n
oz =+ (2.65)
s=1

Let |0z| be the norm of o with respect to the metrics g”**(9). By (2.65), we have

n

> " slog|ds|* = logloz|. (2.66)
s=0
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By (2.62), (2.64), (2.66) and the identity Y " (—1)"x»(Y) = x(Y), we have

ZZ D)™ (r + s) log|ysl|? = x(Y) log|oz]. (2.67)

r=0 s=0

Step 7. We conclude.
By (2.43), (2.54), (2.61) and (2.67), as ¢ — 0,

ooV (X,we) — o x(2) (mx(Y) + (er6m1)(V)) loge

12
— X(Z)mBcov(Y,wy) + x(Y)log|oz|

n

+ /Y em(TY, g™) > (=1)°s{Tp,:} . (2.68)

s=0

Let 04(z) be as in (1.74) with (X,w) replaced by (Z,wz) and (E,g”) replaced by
(A(T*Z), g™ (T"2)). By Definition 1.13, 1.24, we have

mBcov(Z,wz) = logloz| + Z )$50.(0 (2.69)

By (2.4), all the terms in (2.69) are constant functions on Y. By (1.79), we have
(T, 10 = 6.(0). (2.70)
From (2.68)—(2.70), we obtain (2.7). This completes the proof. O

Remark 2.4. The key ingredient in the proof of Theorem 2.3 is [BB94, Theorem 3.2], which is a
consequence of [BB94, Theorem 3.1]. Of course, we can replace [BB94, Theorem 3.2] by [BB94,
Theorem 3.1] in our proof to obtain a formula for Tscov(X,wx). However, because [BB94,
Theorem 3.1] involves a Bott—Chern form, the formula obtained will be far from clean.

2.3 Behavior under blow-ups
The following lemma is direct consequence of Bott formula [Bot57] (see also [OSS11, p. 5]).

LEMMA 2.5. Let L be the holomorphic line bundle of degree one over CP". For k =1,...,n and
s=1,...,k, we have

H*(CP™, A*¥(T*CP") ® L*) = 0. (2.71)

Let X be an n-dimensional compact Kahler manifold. Let Y C X be a closed complex sub-
manifold. Let f: X’ — X be the blow-up along Y. Let Y C U C X be an open neighborhood of
Y. Set U’ = f~1(U). Let w be a Kéhler form on X. Let w’ be a Kihler form on X’ such that

W xnor = fH(wlxw) (2.72)
For the existence of such w’, see the proof of [Voi02, Proposition 3.24].
THEOREM 2.6. We have
mecov(X',w') — TRoov (X, w) = a(U, U, wly, w'|ur), (2.73)
where a(U, U’ ,w|y,w'|yr) is a real number determined by U, U', w|y and o'|y.

Proof. The proof consists of several steps.
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Step 0. We introduce several pieces of notation.
We denote D = f~1(Y). Let i : D — X’ be the canonical embedding. Let .# C Oy be the
ideal sheaf associated with D. More precisely, for open subset U C X', we have

f(U) = {9 S ﬁX/(U) : 9|UQD = 0}. (2.74)
For p =0,...,n, there exist holomorphic vector bundles over X’ linked by holomorphic maps
[AP(T*X) = PP — Fé’fl — o= BV = AP(T*X") (2.75)

such that for s =0,...,p—1,

e the induced map Ox/(F?, ) — Ox:(F¥) is injective;
e we have S ® Ox/(FY) — Ox/(F?, ) — Ox:/(F¥).

Set
GP = Ox/(FP)|Ox/(FY, ). (2.76)
Then we have a commutative diagram of analytic coherent sheaves on X',
0 —= Ox/(F{y) — Ox/(FY) 74 0

~ ]

where the first row is exact. Now we briefly explain the existence of these FY. We have
I @ O (AP(T*X’)) — Ox (f*Ap(T*X)) — Ox (AP(T*X')). (2.78)

For s = 0,...,p, let ZL be the sub-sheaf of Ox:(AP(T*X")) generated by %% @ Ox/(AP(T*X"))
and Ox/(f*AP(T*X)). Then the desired properties hold with &y (FY) replaced by .ZL. It remains
to show that each .#! is given by a holomorphic vector bundle. Let r be the codimension of
Y < X. Let Ny be the normal bundle of Y < X. Let 7 : D =P(Ny) — Y be the canonical
projection. Let (yo,y1,.-.,Yn—r,21,.-.,2r—1) € C" be local coordinates on a neighborhood of
x € D such that:

e (Y1,...,Yn—r) are the coordinates on Y/
e (z1,...,2r—1) are the coordinates on the fiber of 7 : D — Y;
e D C X' is given by the equation yg = 0.

Then the image of Ox:(f*T*X) — Ox/(T*X') is generated by
dyo,dyi, ..., dYn—r, Yo dz1, ..., Yo dzr_1. (2.79)
As a consequence, the image of Z — Ox/(AP(T*X'")) is generated by
v " R dys @ R) dz; (2.80)
i€l jeJ

with 7 € {0,1,...,n—7r} and J C {1,...,r — 1} satisfying |I| + |J| = p. Each term in (2.80)
yields a holomorphic line bundle. Hence, .%Y is given by a holomorphic vector bundle, which we
denote by FY.
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Let TD — 7*TY be the derivative of 7. Set

TVD =Ker(TD — 7*TY) CTD C TX'|p. (2.81)
Set
I ={a e AP (T*X")|p : a(v1,...,vp) =0 for any v1,...,vs41 € TV D,veya,...,v, € TX'|p}.
(2.82)
We obtain a filtration of holomorphic vector bundles over D,
AN(T*X)p=IE 210 2--- D 1If. (2.83)
Let Np be the normal line bundle of D «— X’. From the calculation in local coordinates, we see
that
9P =i,0p(Np° @ (I2/I7)) fors=0,...,p—1. (2.84)
For convenience, we denote
Gt = Np® @ (I)/1%). (2.85)
Then we obtain a short exact sequence
0— ﬁX/(Ff+1)—>6’X/(F£)—>i*ﬁD(G€) — 0. (2.86)
Step 1. We show that
HY(D,Gh) = @1 HF(CP) @ HPFak(y),
k=1 (2.87)
HYD,G%)=0 fors=1,...,p—1.
Set
JP = {a € AP(T"D) : a(vy,...,vp) =0 for any vq,...,vs41 € TVD,'US+2, So,Up € TD}.
(2.88)
Let ¢ : AP(T*X")|p — AP(T*D) be the canonical projection. By (2.82) and (2.88), we have
J? = §(I?) C AP(T* D). (2.89)
By (2.83) and (2.89), we have a filtration of holomorphic vector bundles over D,
AP(T*D) = JP 2 Jg_l D---DJb. (2.90)
We also have
JP)IP =t (APTRTY)) @ AM(TV*D), (2.91)
and a short exact sequence of holomorphic vector bundles over D,
0—>N51®J,€_1 — Il — J) — 0. (2.92)

Combining (2.91) and (2.92), we obtain a short exact sequence,
0— N3' @ m (AP F1(T*Y)) @ ANTV* D) — IP/IP_,
— 7 (AP F(T*Y)) @ AF(TV*D) — 0. (2.93)
By (2.85) and (2.93), G¥ admits a filtration with factors

(Np* ¢ @7 (APF=(T*Y)) @ AF(TV* D)) (2.94)

e=0,1,k=s+1,....,p°

We remark that 7 : D — Y is a CP"!-bundle and the restriction of N 51 to the fiber of
m: D — Y is a holomorphic line bundle of degree one. Applying spectral sequence while using
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Lemma 2.5, we see that the cohomology of the holomorphic vector bundles in (2.94) vanishes
unless € = s = 0. Hence, we obtain the second identity in (2.87). This argument also shows that

HY(D,Gh) = HI(D, I}/I}) = HY(D, J2/J¢). (2.95)
Using spectral sequence and (2.91), we obtain
HYD,J?)JE ) = HER(CP™™) @ HP Rk (y). (2.96)
On the other hand, it is classical that

r—1
HY(D,J?) = HI(D,AP(T"D)) = @ H**(CP"") @ HPH17(Y). (2.97)
k=0
From (2.95)—(2.97), we obtain the first identity in (2.87).
Set
MG = ) (det H*(D,G5) TV Aor(GE) = M(G) © A(GY). (2.98)
p=1
Recall that Aot (X) was defined in (1.119).
Step 2. We construct two canonical sections of
Mot (X)) 71 @ Aor(X7) © (Ao (GE)) (2.99)
and show that they coincide up to +1.
Let
fips € (det H* (X', F?, )) ™" @ det H*(X', F?) @ (det H*(D, G?)) ™" (2.100)
be the canonical section induced by the long exact sequence induced by (2.86). Indeed, by (2.87),
we have
fips € (det H* (X', FP, )" @ det H*(X', FP) for s # 0. (2.101)
Set
p—1
1y = ) bips € (det HY (X', F)) ™ @ det H* (X', F}) ® (det H*(D, G)) ™"
s=0

1

— (det H*(X', f*AP(T*X))) " @ det HP*(X') ® (det H*(D,GF)) ™" (2.102)

We remark that f.0x: = Ox and R”Yf,0x = 0. Using spectral sequence, we obtain a
canonical identification

HP*(X)=H*(X', f*AP(T*X)). (2.103)
Let
vy € (det H?*(X)) ™" @ det H* (X', f*AP(T* X)) (2.104)

be the canonical section induced by (2.103).
By (2.102) and (2.104), we have

1y @ vp € (det HP*(X)) ™' @ det HP*(X') ® (det H*(D, G5)) ™. (2.105)
By (1.119), (2.98) and (2.105), we have

émp @) 7" € (MX)) T @ AMX) @ (AGF) (2.106)
p=1
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and
@iy © 1) " © @iy © 1) 7 € (or(X)) ™ © Nor(X) © (Meen(GE)) - (2.107)
p=1 p=1
We have the Hodge decomposition
Hi,(Y)= @ HPY(Y). (2.108)
pta=j
Let by, be the kth Betti number of Y. By (2.87), (2.98) and (2.108), we have
r—1 2k4+2n—2r , ' (—1)7j
Aot (GY) = ® 0% ((det HZE(CP™1))"%* @ det ng;?’“(y)) . (2.109)
k=1 j=2k
Let
§; € H,  (CP™™,Z) C HY  (CP™™!,C) = HJ,(CP"™™) (2.110)
be a generator of Héing((CP’"*l, Z). Let
Tids- s Tin, € Im(HE (Y,Z) — HY (Y, R)) € HIR(Y) (2.111)
be a basis of the lattice. We denote 75 =71 A -+ A7;p. € det H({R(Y). Set
r—1 2k+2n—2r
oGs = @ R G @ 1jm2) VT € Aer(GS). (2.112)
= j=2k
Let ox € Aot(X) and ox7 € Aot (X') be as in (1.122). Obviously, we have
ox Box ®og € (Miot(X)) ™ @ Aot (X)) © (Mo (GY)) ™ (2.113)
We have a canonical identification (cf. [Voi02, Théoreme 7.31])
r—1
Hgmg(X’,Z) Hgmg(x Z) @ @Hsmg (CP1.72)® Hgmz’“(y 7), (2.114)
k=1

which induces an isomorphism of Hodge structures. Similarly to Step 2 in the proof of
Theorem 2.3, using (2.114), we can show that

n

n
®(up ® Vp)(_l)pp ® ®(up ® 1) (VPP = :EU_)_{I Kox ® Uéal. (2.115)
p=1 p=1

Step 3. We introduce Quillen metrics.
Let g7 be the metric on TX induced by w. Let ¢"(T"X) be the metric on A?(T*X) induced
by ¢7X. Let

Il det ze-0 (x) (2.116)

be the Quillen metric on det HP*(X) = det H*(X, AP(T* X)) associated with g7X and g"(T" ),

Let ¢7X" be the metric on TX’ induced by «’. Let ¢g»"(T"X") be the metric on AP(T*X)
induced by gTX/. Let

([t rv.e (x7) (2.117)
be the Quillen metric on det H?*(X') = det H*(X',AP(T*X")) associated with ¢7%" and
g (TX),
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Let
“llqet 2o (x7, = p (7 x) (2.118)

be the Quillen metric on det H*(X’, f*AP(T*X)) associated with ¢7%" and f*¢A" (T %),

Let ¢7P and ¢™P be the metrics on 7D and Np induced by ¢7X'. Let glg be the metric on
I¥ induced by g™ T X)) via (2.83). Let g&* be the metric on G¥ induced by ¢V? and ¢'* via
(2.85). Let

Ml et £ (D, (2.119)

be the Quillen metric on det H*(D,G%) associated with ¢’” and gGg. By the second identity
in (2.87), we have a canonical identification det H*(D,G%) = C for s # 0. However, the metric
(2.119) with s # 0 is not necessarily the standard metric on C.

We remark that

AP(T*X") | xnor = FP xnu
= f*Ap(T*X)|X/\U/ for s = 0, ey P (2120)

We equip F? with Hermitian metric g% 5 such that

P * V! P * *
gl = g\ Y e AP(TUX),
o . (2.121)
gs+l‘X’\U’:gS‘X'\U’ fOI‘SZO,...,p—l.
Our assumption (2.72) implies g (T"X")| XN = (g™ T X)] x\v), which guarantees the exis-
tence of g+ satisfying (2.121). Let
et e (x7,F2) (2.122)

be the Quillen metric on det H*(X' FF) associated with ¢”X  and g%¥. We remark that
H*(X',F?) = HP*(X') and

[ Naet e (xr 70y = I llaet mroe (x7)- (2.123)
Recall that p, s was defined in (2.100). Let gy s|| be the norm of p, s with respect to the
metrics (2.119) and (2.122).
Recall that v, was defined in (2.104). Let ||vp|| be the norm of v, with respect to the Quillen
metrics (2.116) and (2.118).
Recall that oge was defined in (2.112). By (2.98) and the second identity in (2.87), we can
and do view o¢s as the section of

n p—1 n p—1
Aot (G3) = R (det H*(D,62)) V" 0 R Q) (det H*(D, G2)) V™. (2.124)
p=1 s=0 p=1 s=0

Let [[oGs[[a.:(qg) be the norm of ogs € Aot (G) With respect to the metrics (2.119).
Let [lox|x..(x) be the norm of ox with respect to the metrics (2.116). Let [[ox[|y,,(x7) be
the norm of ox/ with respect to the metrics (2.117). By (2.102) and (2.115), we have

logllox || nee(x7) — 10gllox [ a0 (x) — 108lloG8 [ aer (G3)

n p—1
_ Z(—mp(loguupu? 3 loglps ) (2.125)
p=1

s=0
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By Definition 1.24 and (2.125), we have

meoov (X', W) — TBcov (X, w)

n p—1
— logl|ocs lner(c2) + Z(—mp(loguupﬁ + 3 logllp.s ) (2.126)
p=1 s=0

Step 4. We conclude.
For ease of notation, we denote

ap,s = 1og| s (2.127)

Applying Theorem 1.19 to the short exact sequence (2.86) while using the second line in (2.121),
we see that oy, is determined by (U”,o'|gr, g™ |1, gFm |y7). We denote

p—1
ap =Y ops. (2.128)
s=0

We remark that for s =1,...,p — 1, the contributions of the metric ||-|[qeq gre (x7,rp) (s€€ (2.122))
to ap s—1 and oy, s cancel with each other. Thus, oy, is independent of (ngp)s:Lm,p,l. Hence, ay,
is determined by (U’,w'|y7, g% |1, g*% |7). Now, applying the first line in (2.121), we see that
ay is determined by (U, U’ w|y,w'|¢7).

For ease of notation, we denote

Bp = log|lw|%, (2.129)

Applying Theorem 1.21 with E = AP(T*X) while using (2.72), we see that (3, is determined by
(U, U, w|y, o |ur).
By (2.126)-(2.129), we have

n

mBoov (X', W) — mBeov(X,w) = logllogs || x..(cs) + Z(—l)pp(ap + Bp)- (2.130)
p=1

Here:

the section ogs € Aot (G2) is determined by D C U’ and its normal bundle;
the Quillen metric ||||5,,(cs) is determined by «’|g;

the real number «, is determined by (U, U’, w|y,w'|17);

the real number (3, is determined by (U,U’, w|v,w'|p).

In conclusion, the right-hand side of (2.130) is determined by (U, U’,w|y,w’|y). This completes
the proof. O

Let m: % — C be a holomorphic submersion between complex manifolds. Let % C % be a
closed complex submanifold. We assume that 7|y : % — C is a holomorphic submersion with
compact fiber. For z € C, we denote U, = 77 1(2) and Y, = U, N % . Assume that for any z €
C, U, can be extended to a compact Kahler manifold. More precisely, there exist a compact
Kahler manifold X, and a holomorphic embedding i, : U, — X, whose image is open. Here
{X,: 2z € C} is just a set of complex manifolds parameterized by C. The topology of X, may
vary as z varies. We identify U, with i,(U,) C X,. Let f, : X, — X, be the blow-up along Y.
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Set UL = f71(U,) C X_. Let
(w: € QX)) (v € QV1(XD))

be Kéhler forms. We assume that (w.|y,).ec and (wl|y:).ec are smooth families. We further
assume that

(2.131)

zeC’ zeC

w;|X;\U£ = f;(wZ|Xz\Uz) for z € C. (2132)
THEOREM 2.7. The function z — tpcov(X.,w.) — TBcov(X:,w,) is continuous.

Proof. We proceed in the same way as in the proof of Theorem 2.6. Each object constructed
becomes a function of z € C. In particular, the identity (2.130) becomes

n
mBoov (X2, w}) — TBeoV(Xz, w:) = logllogs .. (cs). + Z(—l)pp(%,z + Bp,2)- (2.133)
p=1

From Remarks 1.20 and 1.22 and the last paragraph in the proof of Theorem 2.6, we see that
each term on the right-hand side of (2.133) is a continuous function of z. This completes the
proof. O

3. BCOYV invariant

3.1 Several meromorphic sections

Let X be a compact complex manifold. Let Kx be the canonical line bundle of X. Let d be a
non-zero integer. Let Kgl( be the dth tensor power of Kx. We assume that there is an invertible
element v € .Z (X, K%). We denote

!
div(y) =D =Y _m;D;, (3.1)
j=1

where m; € Z\{0}, D1,...,D; C X are mutually distinct and irreducible. We assume that D is
of simple normal crossing support (see Definition 1.2).

For J C {1,...,l}, let Dy C X be as in (0.9). For j € J C {1,...,1}, let L;; be the normal
line bundle of Dy < D j ;3. Set

—m; —m.i—d
Ky=Klp,® QL) =Kb o@L,7" (3.2)
jeJ jeJ

which is a holomorphic line bundle over D ;. In particular, we have Ky = K;é

Recall that Res.(-) was defined in Definition 1.4. By (1.9), there exist

(vs € A#(D1. K1) s (3.3)
such that
Y =7, 7 =Resp,(yngy) forjed C{l,....1} (3.4)
By (1.8), we have
div(ys) =Y m;D gy (3.5)

JgJ
3.2 Construction of BCOV invariant

We use the notation from § 3.1. We further assume that X is Kahler and m; # —dforj =1,...,L.
Then (X,~) is a d-Calabi-Yau pair (see Definition 0.2).
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Let w be a Kéhler form on X. Let | - [k,, . be the metric on Kp, induced by w. Let | - [, .
be the metric on L;; induced by w. Let | - [k, . be the metric on K; induced by | - ‘KDJ,w and
||, via (3.2).

We use the notation from (1.23). For J C {1,...,1}, let |J| be the number of elements in J,
let gZP7 be the metric on TD; induced by w, let cx(T' Dy, gLP7) € QP7 be kth Chern form of
(TDy,glP7). Let n = dim X. Set

w

1 2/d
a;(7,w) / Cnmi ) (TDy, g5P7) log 72 . (3.6)

=1 b,
We consider the short exact sequence of holomorphic vector bundles over D,
0—TD; —TDpyylp, — Lyj — 0. (3.7)
Let

- TDj g
C<TDJ7TDJ\{j}|DJagw T\ |DJ) € QDJ/QDJ’O (38)

be the Bott-Chern form (1.30) with 0 — E' — E — E” replaced by (3.7) and g” replaced by
TD g
Goo J\{J}‘DJ' Set
1

B TD
byj(w) = 12/13 C<TDJ7TDJ\{j}‘DJ79w J\{]}!DJ)- (3.9)
J

Let wJ be as in (0.9). Recall that Tgcov(:,-) was defined in Definition 1.24. For ease of
notation, we denote Tgcov(D.s,w) = Tcov (D, w|p,). We define

m; +d
(X, vw0)= Y, wi <7'BCOV(DJ7W) —aj(y,w) =) - bJ,j(w)>- (3.10)
JC{L, 0} jed

THEOREM 3.1. The real number 74(X,~y,w) is independent of w.

Proof. Let (ws)secpt be a smooth family of Kihler forms on X parameterized by CP!. Tt is
sufficient to show that 74(X, 7, ws) is independent of s.
We view the terms involved in (3.10) as smooth functions on CP!, i.e.

Ta( X, v, w) : s — 19(X, v, ws),
(X,7,w) (X, v,ws) (3.11)
Bcov(Dy,w) : s — mRcov(Dy,ws), ete.

We view T'D; and L;; as holomorphic vector bundles over D; X CP!'. Let ggDJ and gﬁj’j be
metrics on T'Dy and L j; induced by (ws)secpt- More precisely, the restrictions grPi|p s x{s} and

g{j"’j |D,x{s} are induced by ws. By [Zha22, Theorem 1.6], we have

00 1
~—T7Bcov(Dj,w) = / ¢n1g|(TDy, g5 P ) e (TDy, g5 P7). (3.12)
27 12 Jp,
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Similarly to [Zha22, (2.9)], by the Poincaré-Lelong formula, (3.2), (3.5) and (3.6), we have

00 1 -
2mi ) = 12d /DJ g (TDy, 9,77 ) (= 1 (K |- [k ) + Oaiviy)
1
=55 | Cal(TDy,957)er(TD, g, 77)
Dy
m; +d -
! Z 12d /D ents|(TD1: 9o el |- L)
eJ J
* Z 12d/ w11 (T D1, g5P7). (3.13)
JjgJ Dyuisy

Similarly to [Zha22, (2.10)], by (1.29), (1.30) and (3.9), we have
90 1 Dy
900 (W) = 12/ )41 (TDJ\{J} go Y )
1

~ 5 [ e (TDsgl")en (L, g5™). (3.14)
D,

By (3.12)—(3.14), we have

00 (TBCOV(DJ, w) —as(v,w) =Y mder de,j(W)>

27i
keJ

m; +d TD\y; } m;
=2 124 /D '”"“(TDJ\{J} Go Z 11 (TDg, 9577).

jeJ J DIU{J}

(3.15)

From (0.9), (3.10) and (3.15), we obtain 0074(X,~,w) = 0. Hence, s + 74(X,,w;) is constant
on CP'. This completes the proof. O

DEFINITION 3.2. The BCOV invariant of (X, ) is defined by
Td(Xv ’Y) = Td(X,’}/,CU). (316)
By Theorem 3.1, 74(X,~) is well-defined.

PROPOSITION 3.3. For a non-zero integer r, let v € .# (X, K'&) be the rth tensor power of .
Then (X,~") is a rd-Calabi-Yau pair and

7a(X,7") = 7a(X, 7). (3.17)

Proof. Once we replace v by 7", each ~; is replaced by +";. We can directly verify that
Tra(X, 7" w) = (X, v, w). (3.18)
From Definition 3.2 and (3.18), we obtain (3.17). This completes the proof. O

Recall that y,(-,-) was defined in Definition 1.3.

PROPOSITION 3.4. For z € C*, we have

X.D
X, 27) = 7, 7) — X0y o (3.19)
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Proof. Once we replace v by z7, each v is replaced by z7v;. By (3.6), we have

aj(zy,w) —as(y,w) = X(SJ) log |z|*/4. (3.20)

By Definition 1.3, (3.10) and (3.20), we have
Ta(X, 27y, w) — 19(X, v, w) = —Xd(fQ’D)log |22/, (3.21)
From Definition 3.2 and (3.21), we obtain (3.19). This completes the proof. O

Proof of Theorem 0.4. Asw: Z — S islocally Kéhler, for any sg € S, there exist an open subset
sp € U C S and a Kihler form w on 7~ 1(U). For s € U, we denote ws = w|y,. Similarly to the
proof of Theorem 3.1, we view the terms involved in (3.10) as smooth functions on U.

Though the fibration 7=!(U) — U is not necessarily trivial, the identities (3.13) and (3.14)
still hold. On the other hand, by [Zha22, Theorem 1.6], we have

90 1
~—7Bcov(Dj,w) = wgep,) + / o) (TDy, 5P )er (T Dy, gL P7). (3.22)
27 12 Jp,
By (0.9), (3.10), (3.13), (3.14) and (3.22), we have
00
TTd(Xa%W) = Z ijH-(DJ)- (3.23)
i U
JC{1,...1}
From Definition 3.2 and (3.23), we obtain (0.15). This completes the proof. O

3.3 BCOYV invariant of projective bundle
Let Y be a compact Kéhler manifold. Let N be a holomorphic vector bundle of rank r > 2
over Y. Let ¥ be the trivial line bundle over Y. Set

X =P(N &) (3.24)

Let m: X — Y be the canonical projection.
Let ¢ € {0,...,7}. Let (Ly)g=1,... 4 be holomorphic line bundles over Y. We assume that there
is a surjection between holomorphic vector bundles

N—-L & ®L, (3.25)
Let N* be the dual of N. Taking the dual of (3.25), we obtain
Lfl@...@[];lc_h]\f*, (3.26)
Let d,mq,...,mq be positive integers. Let
vy € M (Y, (Ky @det N)'@LT™ @+ @ Ly ™) (3.27)

be an invertible element. We assume that

e div(yy) is of simple normal crossing support;
e div(yy) does not possess component of multiplicity —d.

Denote m = mq + - - - + mq. Let S™N* be the mth symmetric tensor power of N*. By (3.26)
and (3.27), we have

W €A (Y, (Ky @ det N*) @ S™N*). (3.28)
Let N be the total space of N. We have
X =NUP(N), Kx|y=7r"(Ky ®detN"). (3.29)
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We may view a section of S™N* as a function on A. By (3.28) and (3.29), 7y may be viewed
as an element of .Z (N, K%). Let
vx € M(X,K%) (3.30)

be such that yx|y = vy
For j=1,...,q, let N — L; be the composition of the map (3.25) and the canonical
projection Ly & ---® Ly — Lj. Set

Nj=Ker(N - L;), X;=P(N;&¥)CX, X,=PN)CX. (3.31)
We denote
l
div(yy) = Z m;Yj, (3.32)
J=q+1

where Y; C Y are mutually distinct and irreducible. For j = ¢+ 1,...,1, set
X;=7"4Y;) C X. (3.33)
Denote
Moo = —Mq — -+ — Mg —rd — d. (3.34)
Note that:

e X is locally the product of an open subset of Y and CP";
e 7x is locally the product of a d-canonical section on an open subset of Y and vy, ,. . m,
defined in (0.20);

we have

q !
div(yx) = 7" div(yy) + MocXoo + 3 m; X = Moo Xoo + 3 m;X;, (3.35)
j=1 j=1

which is of simple normal crossing support. Hence, (X, vx) is a d-Calabi—Yau pair.
For y € Y, we denote Z, = m~1(y). Let Ky, be the fiber of Ky at y € Y. We have

KX|Zy = sz &® TI'*KY,y. (3.36)

For y € Y\ U;:qul Yj, there exist vz, € .#(Z,, K%y) and n, € Kid/,y such that

x|z, = vz, @ TNy, (3.37)

Then (Z,,7z,) is a d-Calabi-Yau pair, which is independent of y up to isomorphism. We may
omit the index y as long as there is no confusion. We remark that (Z,7z) is isomorphic to
(CP", %rmy,...,m,) constructed in the paragraph containing (0.20).

Recall that x4(-,-) was defined in Definition 1.3.

LEmMMA 3.5. The following identity holds:

xa(Z,vz) = 0. (3.38)
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Proof. Set
M
t)=t""1 t——— . 3.39
so=r T (- 50) (3.39)
36{17"'7q7oo}
For J C {1,...,q,00}, let w7 be as in (0.9). By (1.3), (1.4) and the fact that x(CP*) =k + 1,
we have
XiZaz)= Y wilr+1-|J)=f(1). (3.40)
JCA{1,...,q,00}

On the other hand, we have

- £ (ma)

j€{17""q7m}
:m1+"'zmq+m°‘°+r+1. (3.41)
From (3.34), (3.40) and (3.41), we obtain (3.38). This completes the proof. O

THEOREM 3.6. The following identity holds:
Ta(X,vx) = xa(Y, ) 7a(Z, 7z). (3.42)

Proof. The proof consists of several steps.

Step 0. We introduce several pieces of notation.
We denote A ={q+1,...,l} and B={1,...,q,00}. For I C A and J C B, set
Vi=Yn(Yy, X=Xn ()] X,
jel jeluJg (3.43)
Xr=Xrp, X=Xy
For y € Y and J C B, set
ZJ’y = Zy NnXjy. (3.44)

Note that Z;, is independent of y up to isomorphism, we may omit the index y as long as there
is no confusion. We remark that w]XI,J : X1,7 — Y7 is a fibration with fiber Z;.

Let wx be a Kahler form on X such that Lemma 2.2 holds. Let wy be a Kéahler form on Y.
For € > 0, set

1
We = wx + gw*wy. (3.45)
For I C A, JCBandje (AUB)\(IUJ),let ar j(vx,w:) and by s j(we) be as in (3.6) and

(3.9) with (X,v,w) replaced by (X,~x,w:) and J replaced by I U J. Let w} be as in (0.9) with
J replaced by I. By Definition 3.2, (0.9) and (3.10), we have

Ta(X,7x) =Y > whwitscov(X1,,we)
ICAJCB

=3 whwiar g (vx,we)

ICAJCB

DI wéwgijMbI,J,j(ws)- (3.46)

ICAJCB jeluJ
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Step 1. We estimate mcov (X7,7, we)-

For y€Y, we denote wz, = wX|Zy. As wx satisfies Lemma 2.2, for any J C B,
(Z1y,wz,\2,,)yey are mutually isometric. We may omit the index y as long as there is no
confusion. For ease of notation, we denote

mecov (Y1, wy) = mBcov (Y1, wyly;),  TBcov(Zs,wz) = TBoov(Zs,wz|z,)- (3.47)
For I C A and J C B, by Theorem 2.3, as ¢ — 0,
x(Zy)
12
— X(Zs)mBcov (Y1, wy) + x(Y1)TBCOV(Z1, W2)- (3.48)
On the other hand, by Lemma 3.5, (1.3) and (1.4), we have
S wix(Vr) =xa(Yow), Y wix(Zy) =0. (3.49)
ICA JCB
By (3.48) and (3.49), as ¢ — 0,

> whwitscov(X1,s,we) = xa(Yoy) Y witscov(Z.,wz). (3.50)
ICAJCB JCB

Beov (X717, we) — (dim(Y7)x(Y7) + c1Cdim(vy)—1(Y7)) loge

Step 2. We estimate ay j(vx,ws).
For I C Aand J C B, let K1 ; be as in (3.2) with (X, ~) replaced by (X, vx) and J replaced
by I'UJ. Then Ky ; is a holomorphic line bundle over X7 ;. Let
V1,0 € A (X175, K1) (3.51)

be as in (3.4) with (X, ~) replaced by (X,vx) and J replaced by I U J.

Let U CY be a small open subset. Set & = 7~1(U). Recall that vz € .#(Z, K%) was con-
structed in the paragraph containing (3.36). We fix an identification i = U x Z such that there
exists n € .4 (U, K¢) satisfying

x|y = prin @ pryyz, (3.52)

where pry : U x Z — U and pry : U X Z — Z are canonical projections.
For I C A, let K1 be as in (3.2) with (X,~) replaced by (U,7n). Then K is a holomorphic
line bundle over U N Y7. Let

nr %(U NnYy, K[) (353)

be as in (3.4) with (X, ) replaced by (U, n). For J C B, let K be as in (3.2) with (X, ) replaced
by (Z,7vz). Then K is a holomorphic line bundle over Z;. Let

vy € MZy, Ky) (3.54)

be as in (3.4) with (X,v) replaced by (Z,vz). By the constructions of Ky ; and 77 s in the
paragraph containing (3.51), we have

Krjlunx;, = priKr @praKy,  vislunx,, = Prinr @ pryy,. (3.55)

For I C Aand J C B, let ggTXI’J (respectively, gT¥7, gT%7) be the metric on TX; ; (respec-
tively, TY;, TZ;) induced by w. (respectively, wy, wz), let | - |k, ;. (respectively, | - |k, | - k)
be the norm on Ky ; (respectively, Ky, K ) induced by w. (respectively, wy, wz) in the same
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way as in the paragraph above (3.6). We denote

1
| er X tog (3.56)
uﬂX]’J

Ky y.e

CLI,J(U,’YX,WE) — E

Recall that w. was defined in (3.45). As geTXI‘J is induced by we, by Proposition 1.7, as € — 0.

(TXrg,00 ") = e(TZy, g7 )7 e(TYr, g71). (3.57)
Recall that 7y, v; and v7,; are linked by (3.55). As |- |k, ;¢ is induced by we, as € — 0,
log |7LJ|§<M7€ — <dim(Y)d + ij) log e — log |'7J|%<J + log |771|§(I. (3.58)
Jel

Let a;(vyz,wz) be as in (3.6) with (X, v,w) replaced by (Z,~vz,wz). More precisely,
1 d
aj(vz,wz) = / c(TZJ,gTZJ) log \’yzﬁ{/ ) (3.59)
12 /,, s
By (3.56)~(3.59), as £ — 0,

Z . 1
arg(U,vx,we) — X(12J) <d1m(Y) +7 Z’%) 10g5/UmY o(TY7,g™")
jel i

Z
e J)/ C(TYI,QTY’)IOgWI%IdJraJ(VZ,wZ)/ c(TY1,g"). (3.60)
12 unyy uny;y

By (3.49) and (3.60), as € — 0,
SN whwlar U, vx,we) = Y wias(vz,wz) Y wé/ o(TY7,g™"). (3.61)

ICAJCB JCB ICA unyr
The left-hand side of (3.61) yields a measure on X,
et U — Z Z whwar ;U vx,we), (3.62)
ICAJCB
The right-hand side of (3.61) yields a measure on Y,
viU— Y wias(yz,wz) Y wé/ o(TYr, g™"). (3.63)

The convergence in (3.61) is equivalent to the following: as ¢ — 0,

Talbe — V. (3.64)
By (3.49) and (3.62)-(3.64), as ¢ — 0,
SN whwiar s (vx,we) = pe(X) = v(Y) = xa(Viwy) > wias(vz,wz). (3.65)
ICAJCB JCB

Step 3. We estimate by j(we).
First we consider the case j € I. We denote I’ = I\{j}. By (3.9), we have

1 N TX
bI,J,j(UJE) = — / C(TX[7J, TXIIyJ’XI"I?gE I ’J|X1)J> . (366)
12 Jx, ,
By Proposition 1.9, as ¢ — 0,
B TX * ~ /
C<TXI,J7TXI/,J|X1,J>96 ! ’J’XLJ) - C(TZJa.gTZJ)ﬂ- C<T}/}7TYI/’Y17QTYI |Y[>‘ (367)
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y (3.66) and (3.67), as ¢ — 0,
Z .
bI,J,j(w&‘) - X( J) / C<TY}7TYI"Y179TYI/’Y]>' (368)
12 v

By (3.49) and (3.68), as ¢ — 0,

m; +d
Z Z Zwéwi br,7;(we) — 0. (3.69)
ICA JCB jeI
Now we consider the case j € J. We denote J' = J\{j}. By (3.9), we have
1 TX; pr
br,yj(we) = / (TXI HTXrplx,09e 7 x J) (3.70)
12 X1,

By Proposition 1.9, as € — 0,
TX; g1 *
<TXIJ7TXIJ"X] ]79 1J |XIJ> _>C(TZJ7TZJ/|ZJ79 J”ZJ>7T C(TY],gTYI). (371)

Let by (wz) be as in (3.9) with (X, v,w) replaced by (Z,vz,wz). More precisely,
1 .
bj(wz) = / C(TZJ7TZJ”ZJ79TZJI|ZJ>' (3.72)
12 /4,

y (3.70)—(3.72), as € — 0,
br,zj(we) = x(Y1)bsj(wz). (3.73)
By (3.49) and (3.73), as ¢ — 0,
m; +d mj+d
SO whwy br,aj(we) = xa(Yoyy) 3 Y wy L —brwz). (3.74)

ICAJCB jeJ JCB jeJ

Step 4. We conclude.
Taking ¢ — 0 on the right-hand side of (3.46) and applying (3.50), (3.65), (3.69) and (3.74),

we obtain
(X, vx) = xa(Y,w) Y wi( mBcov(Zs,wz) — as(vz,wz) = > g buj(wz) | (3.75)
JCB jet
On the other hand, by Definition 3.2 and (3.10), we have
m; +d
T(Z,yz) = ) _ wy (TBCOV(ZJMZ) —a;(vzwz) = Y ]d bJ,j(wz)>- (3.76)
JCB Jje€J
From (3.75) and (3.76), we obtain (3.42). This completes the proof. O

3.4 Proof of Theorem 0.5
Now we are ready to prove Theorem 0.5.

Proof of Theorem 0.5. The proof consists of several steps.

Step 1. Following [BFMT75, §1.5], we introduce a deformation to the normal cone.
Let 2" — X x C be the blow-up along Y x {0}. Let II : 2~ — C be the composition of the
canonical projections 2" — X x C and X x C — C. For z € C*, we denote

X, =1T1(2). (3.77)

Let ¥ be the trivial line bundle over Y. Recall that Ny is the normal bundle of ¥V — X.
Recall that X’ is the blow-up of X along Y. The variety II"!(0) consists of two irreducible
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XX(C Z:O %

FIGURE 1. Deformation to the normal cone.

components: [I71(0) = ¥ U ¥ with X1 ~ P(Ny @ ¥) and 33 ~ X’. We denote

Xo=2X1. (3.78)
For j=1,...,1, let 2; C 2 be the closure of D; x C* C 2. For z € C, we denote
D;.=92;NX,. (3.79)
Let % C 2 be the closure of Y x C* C 2. For z € C, we denote
Y, =% nX,. (3.80)

See Figure 1.
Let ¢”X be a Hermitian metric on TX. Let d(-,-) : X x X — R be the geodesic distance
associated with ¢7X. For € X, we denote

dy(x) = ;Ielf/ d(z,y). (3.81)

For z € C*, set

U,={ze X :dy(z) <|z|} x {2} C X.. (3.82)
We identify the fiber of ¥ with C. For v € Ny and s € C such that (v,s) # (0,0), we denote by
[v: 5] the image of (v,s) in P(Ny @ ¥). Let | - | be the norm on Ny induced by g7*X. Set

Up={[v:s] € P(Ny @FF): |v|] < |s|]} C Xp. (3.83)
For £ > 0 small enough, we have smooth families
(UZ)|z|<e, (Yz)|z|<sa (Uz N Dj,z)|z\<e with j =1,...,1. (3'84)

We remark that Y, C U, for z € C.
Let Z : 27 — 2 be the blow-up along #. For z € C, we denote

X, =774X,). (3.85)
Set
fo= Flx XL X, (3.86)
which is the blow-up along Y,. For z € C, set
D, = f1(¥2) € XL. (3.87)

For z€ Cand j=1,...,1, let D} C X be the strict transformation of D;, C X..
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For z € C, set
U, = f71(U). (3.88)
For € > 0 small enough, we have smooth families
(U;)‘ZKE, (U, ﬂD;72)|Z|<€ with 7 =0,...,[. (3.89)
We remark that Dy , C U, for z € C.

Step 2. We introduce a family of meromorphic pluricanonical sections.
Denote

m=mi+---+mg, (3.90)

which is the vanishing order of v on Y. Recall that r is the codimension of ¥ < X. Recall that
v € #(X,K%). For z # 0, we identify X, with X in the obvious way. For z # 0, set

V=2 Ty e (X, K. (3.91)
There is a unique vy € (X, K;i(o) such that for € > 0 small enough,

(Vz’Uz)\z|<£ (3'92)

is a smooth family. Now we briefly explain the existence of «y. We take a holomorphic local chart

p:C"DOV - X (3.93)
such that:
e 0 €V and p(0) €Y
e ol Y)={(21,...,z) EV iz1 = =2, =0};
o o'y =0(21,..,20)2" 20 (dz1 A - A dzp)?, where 6 is a holomorphic function on V' such
that 0(0,...,0,241,...,2,) # 0 for generic z,41,...,2y.

For z # 0, let ¢, : V — X, be the composition of ¢ : V' — X and the identification X = X,. We
take a holomorphic local chart

p:C'"x{zeC:lz|<e}2W > X (3.94)
such that for 0 < |z] < e:
o O(21,...,2n,2) € (V) C Xy;
o 0 (21,20, 2) = (221, ooy 220, Zrg 1y - s Zn)-
Then a direct calculation yields
ZTmrd gy — 0(221, oy 22ry Zrgdy ey 20) 20 o 2g W(dzr A A dzn)d
= 00,0, 20115 20) 2 2y N (d2y A A dzy)? (3.95)

as z — 0. Moreover, the calculation above shows that the hypothesis in § 3.3 holds with (X, ~yx)
replaced by (Xo,70). In particular, (Xo,7o) is a d-Calabi—Yau pair.

Step 3. We introduce a family of Kahler forms.
Let % C Z be such that Z N X, = U, for any z € C. Then % is an open subset of 2 . Set
U = F N U)C 2. We have %' N X, = U, for any z € C.
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Let w be a Kahler form on 2. Let w’ be a Kahler form on 2" such that

w/|3g;/\%/ = 9*(w|gg\q/) (396)
For z € C, set

w, =wlx,, w,=u|x;. (3.97)

By (3.86), (3.96) and (3.97), we have

wilxnor = fi(welx\v,) forzeC. (3.98)
For € > 0 small enough, we have smooth families
(wz|Uz)|z\<ev (w;|U;)|z\<e' (3'99)

Step 4. We show that the function z — 74(X., f¥v.) — 74(X:,~.) is continuous at z = 0.
Denote

mo=mi+---+mg+ (r—1)d. (3.100)
For z € C, by (3.79), (3.86), (3.87) and (3.92), we have

div(7z) Zm] iz div(flvz) ij (3.101)
7j=1

Here D; o and D’ ; may be empty for certain j. Let (DJ7Z)JQ{17.”’Z} be as in (0.9) with X replaced
by X, and Dj replaced by Dj.. Let (D’ ) cqo,..;; be as in (0.9) with X replaced by X and
Dj replaced by Dj .. By Definition 3.2 and (3.10), we have

( s fiv2) = 1a(Xe, )

. mj +d
= > wy <TBCOV(D’J,z,w;) —as(fivmwl) = jd bJ,j(W,/z)>

0€JC{0,...1} jeJ
- Z wj(aJ(f;’yzaw;) *aJ(’YZaWz))
JC{1,..1}
m; +d
= 2 Dwi g (baglel) — byy(ws))
JC{L.0} jed
J / /
+ Z Wwq (TBCOV(DJ,zv wz) - TBCOV(DJ,Z7 Wz)) (3102)
JCLL, 0}
For 0 € J C{0,...,1}, we have D C U. Thus,

(Dj2)zec (3.103)

is a smooth family. Hence, the first summation in (3.102) is continuous at z = 0.
For J C {1,...,l}, we denote

D;.= DY}, uDg, (3.104)

such that each i.rreducible component of Dijjz (respectively, DFY)) lies in (respectively, does not
lie in) Y,. As D7, CY. CU., the family

(DY.)zec (3.105)
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is smooth. On the other hand, we have

= [2(D))). (3.106)

Moreover, the map f z|D’J : Dy, — D, is the blow-up along D7, NY..
Recall that :

Kr, v 9577, | kyw (3.107)
were constructed in §§ 3.1 and 3.2 for a d-Calabi—Yau pair (X, ) together with a K&hler form w
on X. Let
TDy.
KJ,Z7 YJ,z5 Gu. 7 ) ’ : |KJ72,(.UZ (3108)

be as in (3.107) with (X,~) replaced by (X,,~.) and w replaced by w,. Let

TD'
Kjoo e 9w Dl e (3.109)

be as in (3.107) with (X, ) replaced by (X, f*~.) and w replaced by w’,. By (3.6), (3.98), (3.104)
and (3.106), for J C {1,...,1}, we have

1

* D, 2/d
aJ(fz727w;)_aJ(’YvaZ) = 12/ Cn—|J| (TD{],zhgw )10g|7.]2| /
D/, UL
1
2 Cn|J| <TDJ,Z7ng ) log \”YJz’KJZ ws
DS, U.
1
S (TDJ,Z,ng ) log |2 . (3.110)
12 pin g,z

By (3.89), each integration in (3.110) depends continuously on z. Thus, the second summation
in (3.102) is continuous at z = 0. The same argument shows that the third summation in (3.102)
is continuous at z = 0.

By (3.104), we have the obvious identity

mBcov (D’ ,,w.) — TBcov(Dyz,w:)
= mcov (DY, w.) — TBoOV (DTS, w.) — TBCOV (DY, w:). (3.111)

As the families in (3.99) are smooth, by Theorem 2.7 and (3.98), the function z—
mecov (D) ,,w2) — TBoov (DT, w,) is continuous at z = 0. As the families in (3.99) and (3.105)

are smooth, the function z+— Tcov(D Jz,wz) is continuous at z = 0. Hence, the fourth
summation in (3.102) is continuous at z = 0.

Step 5. We conclude.
By Step 4, we have

lim (7(X7, f272) = 7(X2,72)) = 7(X5, f570) = 7(Xo,7%0)- (3.112)

On the other hand, by Proposition 3.4 and (3.91), for z # 0, we have

X, —2(m+r
ra(Xe,72) = 7a(X, ) = XU yog o2t

* * X/’ - —2(m+r
Ta(X%, f2v) = 7(X', f 7)—W10gIZI 2mtrd)/d,

(3.113)
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Note that (m + rd)/d > 0, by (3.112) and (3.113), we have
Xd(X/, f*fy) - Xd(X7 7) =0,

Ta(X, [*y) — 1a(X,7) = 1a(Xo, fo70) — Ta(Xo,70)-

Note that X is a CP"-bundle over Yy ~ Y, by Theorem 3.6, we have
Td(X07 ’YO) = Xd(Y7 DY)Td ((CPT7 /Yr,ml,...,mq) . (3115)
Recall that E = f~1(Y). Note that X}, is a CP!-bundle over Dj o =~ E, by Theorem 3.6, we have
74(X0s £570) = Xa(E, DE)7a(CP, 71 1my ). (3.116)
From (3.114)—(3.116), we obtain (0.22). This completes the proof. O
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