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The Steklov Problem on Differential Forms

Mikhail A. Karpukhin

Abstract. In this paper we study spectral properties of the Dirichlet-to-Neumann map on differen-
tial forms obtained by a slight modification of the definition due to Belishev and Sharafutdinov. The
resulting operator A is shown to be self-adjoint on the subspace of coclosed forms and to have purely
discrete spectrum there. We investigate properties of eigenvalues of A and prove a Hersch-Payne-
Schiffer type inequality relating products of those eigenvalues to eigenvalues of the Hodge Laplacian
on the boundary. Moreover, non-trivial eigenvalues of A are always at least as large as eigenvalues
of the Dirichlet-to-Neumann map defined by Raulot and Savo. Finally, we remark that a particular
case of p-forms on the boundary of a 2p+2-dimensional manifold shares many important properties
with the classical Steklov eigenvalue problem on surfaces.

1 Introduction

Let M be a compact Riemannian manifold of dimension # with smooth boundary
0M. Recently, there has been much research dedicated to the Steklov eigenvalue prob-
lem that is defined in the following way. Number o is called a Steklov eigenvalue of M
provided there exists a non-zero solution u € C* (M) to the following problem:

Au=0on M,
0,u =0uon oM,

where 0, stands for the derivative with respect to the unit outer normal vector.

Steklov eigenvalues coincide with eigenvalues of the Dirichlet-to-Neumann oper-
ator D: C*(0M) — C*(0M). The operator D sends a function v to the normal de-
rivative of its harmonic extension. Then D is a self-adjoint elliptic pseudo-differential
operator of order 1, i.e., Steklov eigenvalues form a sequence tending to +oo. For de-
tails, we refer the reader to [6] and the references therein.

In the present paper we study Steklov eigenvalues on the space of differential forms
on M. Several definitions of the Dirichlet-to-Neumann operator are present in the lit-
erature [1,9,13]. The definition commonly used in spectral theory literature is due to
Raulot and Savo [13] and has the advantage of being a positive elliptic self-adjoint
pseudo-differential operator of order 1. However, in the literature on inverse prob-
lems, different definitions of the Dirichlet-to-Neumann map are used; see the full
Dirichlet-to-Neumann map in [9, 16] and the definition due to Belishev and Shara-
futdinov [1] that motivated by Maxwell’s equations. In the present paper we modify
the latter to obtain a self-adjoint operator with a purely discrete spectrum and study
its eigenvalues. We plan to tackle spectral theory of the full Dirichlet-to-Neumann
map in a subsequent article.
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2 Main Results
2.1 Notations

In the following, (M, g) is always assumed to be a smooth compact orientable mani-
fold of dimension n with smooth nonempty boundary 0 M. It seems that orientability
is a purely technical condition that could be eliminated with further investigation.
However, Theorem 2.7 requires orientability in an essential way.

Let (X, h) be a compact Riemannian manifold, possibly with boundary. The space
of smooth differential p-forms on X will be denoted by Qf (X). We denote the spaces
of smooth exact and closed p-forms by

EP(X) c CP(X) c QP (X),

respectively. A letter c in front of either of them denotes the prefix “co-”, concatenation
of the letters stands for intersection, e.g., CcCP (X) is the space of closed and coclosed
p-forms that will be denoted by H?(X) in the following. If 0X = @, then H?(X)
coincides with the space of harmonic forms, i.e., the kernel of the Hodge-Laplace
operator.

However, if 0X # @, those spaces are different, and we refer to elements of H? (X)
as harmonic fields and reserve the term harmonic form for elements of ker A. Let
i:0X — X be an embedding of the boundary and let i, denote the contraction of
a differential form with the outer unit normal vector field. The form w € QF (X) satis-
fies the Dirichlet (resp. Neumann) boundary condition if i* w = 0 (resp. i,w = 0). We
use subscripts D and N to indicate spaces of forms satisfying Dirichlet or Neumann
boundary conditions. Finally, for w € Qf (X), we denote by tw, nw € T(QP(X)|sx)
the tangent and normal parts of w on the boundary, i.e., tw is i*w considered as a
section of Qf (X)|5x and nw = dn A i, w, where dn is a 1-form, dual to the outer unit
normal vector field. In practice, the only difference between nw and i,w is the way
the Hodge *-operator acts on them; see Proposition 3.1. In the following we use i*
exclusively to denote the pullback of differential forms via map i as opposed to the
pullback of sections. For that reason, we write Q(X)|yx for the restriction of the
bundle.

For a subspace V ¢ Qf(X) we denote by H°V ¢ H*QP(X) the completion of
V with respect to the Sobolev H*-norm. We write L? instead of H°. For details
on Sobolev norms, see [15, §1.3]. We use angle brackets (-, - ) to denote the point-
wise L2-inner product, double angle brackets ( -, - )) to denote the integrated L?-inner
product, round brackets ( -, - ) to denote the H™* x H® — R duality pairing and | - | s
to denote H*-norm. Usually, it is clear from the context whether we are working on
the boundary or on the manifold itself. In cases where it needs clarification, we add
subscripts indicating the ambient space, e.g., | - [ 12(x) or |- | gr2(ax)-

Finally, we note that for manifolds with boundary, Green’s formula states that for
a, B e HQP (M)

2.1) fM(doc,ﬁ)dV=[M(oc,(Sﬁ)dVJrfaM(i*a,inﬁ)dA

:fM(a,aﬁ>+faMi*amn/3.
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2.2 Maxwell’s Equations

In the modern form, Maxwell’s equations are usually written in the language of dif-
ferential forms on an orientable 3-dimensional Riemannian manifold [20]. In the
exposition below, we follow [11]. Maxwell’s equations have the following form:

dé =-0,B, dH =9,D,
D(x,t) = *:E(x, 1), B(x,t) = *,H(x, 1),
dB = 0, d.D = 0)

where € and JH are 1-forms corresponding to electric and magnetic fields, B and D
are 2-forms corresponding to magnetic flux density and electric displacements, x*,
and *, are Hodge operators for some metrics corresponding to electric permittivity
and magnetic permeability. When the 3-manifold has a boundary, there is a natu-
ral response operator R that sends the component of the electric field tangent to the
boundary to the component of the magnetic field tangent to the boundary. In pa-
per [11] the authors studied the inverse problem of recovering the manifold M given
the response operator.

Consider the simplest case *. = *, = * and the time-harmonic solution to Max-
well’s equations, i.e., the t variable is separated and solutions depend on ¢ only via
factor e’*! for a fixed angular frequency k € R. Then Maxwell’s equations for & and B
becomes

-ikB=d€, d+B=ik+€E dB=0.
In terms of € this system has the form

(2.2) A& =k%E, 8&=0,

and the response operator sends t€ — t+B = i *nd¢&, i.e., it connects t€ withnd€&. In
the next section we use this calculation to motivate the definition of the Dirichlet-to-
Neumann map on differential forms for Riemannian manifolds of arbitrary dimen-
sion.

2.3 Definition and Basic Properties

Let M be a compact orientable manifold with smooth non-empty boundary oM. Mo-
tivated by the particular case k = 0 of (2.2), we define the Dirichlet-to-Neumann op-
erator A acting on the space of differential forms Q? (0 M) in the following way. First,
the Hodge Laplacian on Qf (M) is defined by the formula A = d§ + §d, where § is the
formal adjoint of d with respect to the metric on O (M) induced by g. Then for any
¢ € QP (M), consider the equations

(2.3) Aw=0, dw=0, i"w=¢.

Let us denote the space of solutions w by £(¢). In Proposition 3.11 we prove that
£(¢) is an affine vector space with an associated vector space % (M). We set A¢ :=
indw for any w € £(¢). Since dHE (M) = 0, the definition does not depend on the
choice of w. Let us denote by A(¢) € L£(¢) the unique solution of (2.3) satisfying
M($) L HE(M).
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Remark 2.1 In [1] the Dirichlet-to-Neumann map is defined up to a sign as *A.

Remark 2.2 Having in mind equation (2.2), it is more natural to consider the op-
erator A(A) for A € R defined in the same way as A, but instead of (2.3) one requires
w to be the solution of

Aw=Aw, dw=0, i‘w=4¢.
However, the study of A(1) for A # 0 exceeds the scope of the present article.

Our starting point is the following theorem.

Theorem 2.3  Operator A is identically zero on the space EP (OM). Restricted to the
space cCP(0M), it is a non-negative self-adjoint operator with compact resolvent. In
particular, its spectrum is discrete and is denoted by 0 < UI(P ) < 02(’7 ) < 2 oo,
where the eigenvalues are written with multiplicity and all multiplicities are finite. The
kernel satisfies ker A n cCP(OM) = i*HE (M) n cCP(OM) and has dimension I, =
dimim{i*: H?(M) - HP (oM)}.

Moreover, the eigenvalues can be characterised by the following min-max formula,

|dgl?
O'IEP) =max min #’
E  ¢1E;i*¢=¢ ”‘PHLZ(aM)

where E runs over all (k — 1)-dimensional subspaces of cCP(dM). The maximum is
achieved for E = Vi_1, where Vy_, is spanned by the first (k —1) eigenforms, ¢ being the
k-th eigenform and ¢ € ().

Remark 2.4 An alternative way to prove the first part of Theorem 2.3 is to show
that A|.e» is an elliptic pseudo-differential operator. We intend to explore this route
in a subsequent paper.

2.4 Main Results

Our main results are concerned with properties of eigenvalues of GIEP ). First, we prove
a comparison theorem between eigenvalues of A and eigenvalues of the Dirichlet-to-
Neumann map L defined by Raulot and Savo [13]. For any ¢ € Qf (0M), there exists
a unique solution w to the following problem [15, Theorem 3.4.10]:

Aw=0, i,w=0, i"w=4¢.

Then L(¢) is defined to be equal to i,,dw. Moreover, L is an elliptic pseudo-differential
operator of order 1, so its spectrum is discrete and is denoted by

0<u? <l <o oo

We also use notations [ZI(P ) and (71.([’ ) to denote the i-th non-zero eigenvalue of the
corresponding operator.

Theorem 2.5 Let M be a compact orientable Riemannian manifold of dimension n
with boundary. Then for each 0 < p < n -2 and all k € N, one has ﬁip) < &]Sp).
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Remark 2.6 Let us note that cC"'(dM) = H"1(dM) is one-dimensional and
from the long exact cohomology sequence of the pair (M, 0M)

o — H"Y(M) — H" ' (0M) — H"(M,dM) — H"(M) — 0,
one sees that I, ; = 1, i.e., A =0 on Q" (aM).

Recently, there have been several papers [10, 12-14, 17, 18, 21, 22] concerned with

estimates for eigenvalues ‘12,((‘” ). Most proofs of upper bounds in these papers can be

modified to yield upper bounds for U}EP ) Inasense, proofs of those bounds implicitly
make use of Theorem 2.5. In our last theorem, we illustrate that by proving a gener-
alisation of results of Yang and Yu [21].

Theorem 2.7 Let M be a compact oriented n-dimensional Riemannian manifold
with nonempty boundary. Then for any two positive integers m and r and for any
p=0,...,n—-2, onehas

(2.4) P 5(n=2=p) 7(p)

m+lp r+lya-p > VlptmAr+by_p—1°

where A;((p ) is the k-th eigenvalue of the Hodge-Laplace operator on the space cCP (0 M).

Remark 2.8 The theorem of Yang and Yu can be obtained from Theorem 2.7 by
setting p = 0 and applying Theorem 2.5 to the left-hand side. For details, see Section 7.

Remark 2.9 It will be shown in Section 8 that inequality (2.4) is sharp on the Eu-
clidean ball at least for m, r = 1. In fact, it is sharp for a wider range of values of m, r;
see Section 8 for details.

2.5 Discussion

In this section we discuss a particular case of n evenand p = 7 - 1.

Proposition 2.10  Let n = 2p+2 and consider operator A on the space QF (0M). Then

the eigenvalues G,EP ) are invariant under conformal changes of metric with conformal

factor identically equal to 1 on the boundary.

[EEY e
”‘P”Lz(am)
metric described in the statement. |

Proof The Rayleigh quotient is invariant under conformal changes of the

The case n = 2, p = 0 corresponds to Steklov eigenvalues on surfaces where con-
formal invariance is well known. Moreover, under the same relation between » and
P, the left-hand side of the bound in Theorem 2.7 only contains the eigenvalues ¢(?).
In particular, setting m = r yields the following theorem.

Theorem 2.11  Let M be a compact oriented (2p + 2)-dimensional Riemannian man-
ifold with nonempty boundary. Then for any m > 0, one has the inequality
(2.5) (ol

m+I,

)2 <V®

S Mp4bp+2m-1°
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The case n = 2, p = 0 corresponds to a particular case of the Hersch-Payne-
Schiffer inequality that is sharp on the disk for all m [4].

From explicit computations of A on the unit ball given in Section 8, one can see
that inequality (2.5) is sharp on the ball for m < %(2;’:12). It will be interesting to see
if the unit ball is the unique manifold with this property.

Conjecture 2.12  Suppose that for manifold M inequality (2.5) becomes an equality

form < %(21{’:12). Then M is a Euclidean ball.

Moreover, it seems that by using methods similar to the ones developed in [4], it is
possible to show that the inequality in Theorem 2.11 is sharp on the ball for all values
of m. We formulate it as a conjecture.

Conjecture 2.13  Inequality (2.5) is sharp for all values of m. To be more precise,
for any m and p there exists a sequence My of orientable Riemannian manifolds with
boundary such that the left-hand side of inequality (2.5) tends to the right-hand side
as k — oo. Moreover, manifolds My, can be chosen to be a collection of N = N(m, p)
Euclidean balls of equal radii glued together in the right way.

Previous remarks indicate that eigenvalues o(?) for (2p + 2)-dimensional man-
ifold M have many features similar to Steklov eigenvalues for surfaces. There is a
vast literature devoted to the geometric optimisation problem for Steklov eigenval-
ues [2-4, 6,10]. Here we propose a similar problem for eigenvalues o(P). Fix an
oriented closed Riemannian manifold (2, ) of dimension 2p + 1. Assume that the
orientable bordism class of X is trivial, i.e., there exists an orientable manifold W
such that 0W = X. Denote by [Z, h],, the set of all orientable Riemannian manifolds
(W, g) such that oW = %, glaw = h, and b,,; = m. According to Theorem 2.11, for

any element of [2, h],,, the eigenvalue GIEP ) is bounded from above by a quantity de-

pending only on (2, h) and m. For fixed k, m it would be interesting to understand
the quantity sups ;. algp). As we pointed out above, for (2, k) = (S***!, g,n) and
m = 0, Theorem 2.11 yields a sharp bound for the first several values of k and the
supremum is attained for (W, g) = (B?**2, gean).

2.6 Organisation of the Paper

The paper is organised in the following way. In Section 3 we show preliminary prop-
erties of A that were essentially demonstrated in [1]. In Section 4 we prove that A is an
operator with compact resolvent and Section 5 contains the corresponding variational
formulae. Sections 6 and 7 are devoted to proofs of Theorem 2.5 and Theorem 2.7, re-
spectively. Finally, in Section 8 we compute the eigenbasis of A in the case of the unit
ball in R"*!,
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3 Preliminaries

3.1 The Hodge-Morrey—Friedrichs decomposition

The cornerstone of our considerations is the Hodge decomposition for manifolds with
boundary. First, let us record an elementary result that can be proved by computation
in local coordinates.

Proposition 3.1  One has the following equalities: né = 0n, td = dt, and *n = tx.
Equivalently, i,8 = +8i,, i*d = di*, and *i, = +i**.

Remark 3.2 Itis possible to calculate the exact signs in the above expressions that
will depend on the degree of the form and dimension of the manifold. However, the
signs are not needed in the following and would make the exposition more cumber-
some.

This proposition, together with Green’s formula (2.1), clarifies the following theo-
rem.

Theorem 3.3 (Hodge-Morrey-Friedrichs decomposition [15]) Let M be a compact
orientable manifold with non-empty boundary. Then the space of differential p-forms
on M admits the following decomposition into a direct sum

QF (M) = dob (M) @ 8Q5™ (M) ® 3P (M).
Note that boundary conditions are taken before applying the operator so that
dOP (M) = {w e QP (M) | w = da, i*a = 0}.

The space of harmonic fields H? (M) can be further decomposed in one of two different
ways:

HP (M) = EHP (M) ® HE (M)
or
HP (M) = c€HP (M) & HE (M).
Moreover, HX (M) is finite-dimensional and constitutes the concrete realisation of the

absolute de Rham cohomology group H? (M, R), i.e., HX (M) ~ HP (M, R). Similarly,
3P (M) is the concrete realisation of the relative cohomology group H? (M, 9M, R).

In fact, one can say more regarding the connection between spaces 35 (M) and
HE(M).

Theorem 3.4 (DeTurck, Gluck [19]) Let M be a compact orientable Riemannian
manifold with nonempty boundary OM. Then within the space QF (M),

(i)  HE (M) and HE (M) meet only at the origin;
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(ii) each of those spaces has decomposition into boundary and interior subspaces,
HR (M) = c€HE (M) ® E,HE (M),
HE (M) = EFE (M) @ c€3HE (M),

where €5(c€,) denotes the spaces of forms w such that i* w(i,w) is a closed (co-
closed) form on oM;

(ili) c€HE (M) L HE (M) and EFE (M) 1L HE (M);

(iv) no larger subspace of HX (M) is orthogonal to all of 3% (M) and no larger sub-
space of HE (M) is orthogonal to all of 3% (M);

(v)  dim &;HE (M) = dim c&3HE (M).

The Hodge-Morrey-Friedrichs decomposition (simply the Hodge decomposition
in the following) can be used to solve boundary problems for differential forms. It is
the subject of Schwarz’s book [15]. Here we collect several results from that book.

Theorem 3.5 ([15, Theorem 3.1.1, Lemma 3.1.2])  The system
do=y 0dw=0, i"w=¢,

has a solution if and only if dy = 0, ty = td¢, and for any X € HE (M), (x, A) =
[501 ¢ A *nA. The solution is unique up to an element of 35

As an immediate corollary we obtain the following.
Corollary 3.6  One has the following description.

i*HP (M) = {y € €P(aM) |y L i, HE (M)},
Moreover, EP(0M) c i*HP (M).

Proof The equality is a direct consequence of Theorem 3.5. The inclusion follows
from the following calculation. For any da € E#(0M) and any A € f}{gﬂ (M), one has

(da,i,A) = [ da A *nd = f d(oc/\*n/\)i[ a A *ndld =0,
oM oM oM
where we used the Stokes theorem and identities n§ = én, 61 = 0. [ |

By applying the Hodge *-operator to the statement of Theorem 3.5, one obtains
the next theorem.

Theorem 3.7 ([15, Corollary 3.1.3])  The system
dw=0, dw=y, iw=4¢,
has a solution if and only if §y = 0, ny = nd¢ and for any A € f]-(ﬁ,_l(M),

(0 1) :—faMt)L/\*(p.

The solution is unique up to an element of }5.(M).
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Corollary 3.8 One has the following equalities:

(3.1) i HP (M) = {y e cCP (OM)|y L i*HE (M)},
(3.2) i HP (M) = (i*HPH(M))*

Proof The first equality is a direct consequence of Theorem 3.7.

Let us prove the second. Note that i*HP'(M) = i*€HPY(M) + i*HE (M),
where “+” denotes the sum of the subspaces (not necessarily direct). Moreover,

i*EHPY (M) c EP7 (M),
and by Corollary 3.6, E?7'(dM) c i*HP!(M). Therefore,
i*HPH(M) = P (OM) + i HE T (M).
Taking the orthogonal complement of both sides yields
(737 (M) = (77 (0M)* 0 (i3 (M))* = cCP7 (M) n (i3} (M)
which is exactly the right-hand side of equality (3.2). |

3.2 Properties of the Dirichlet-to-Neumann Map

In this section we study elementary properties of the map A.

Proposition 3.9  Any solution of

Aw=0, i*6w=0,
satisfies Sw = 0. Similarly, any solution of

Aw=0, i,dw=0,
satisfies dw = 0.

Proof To prove the first statement, note that the form & = dw satisfies
AE=0, 8E=0, i*E=0.

Therefore, by Green's formula | d&|* = (8d&, E)+ [, ErxndE =0,ie, E € HE (M)
and by construction & € c€HP™'(M). Since those spaces are orthogonal, w = & = 0.
An application of the first statement to the form *w yields the second statement.

|

In view of this proposition, the requirement §w = 0 for the harmonic extension
is equivalent to i*8w = 0. Thus, equation (2.3) is a particular case of the following
theorem.

Theorem 3.10 ([15, Lemma 3.4.7]) The system
Aw=1, iSw=vy, ifw=¢

has a solution if and only if, for any A € HE (M), (1, A)) = [5,, ¥ A *n). The solution
is unique up to an element of 3% (M).
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Belishev and Sharafutdinov proved the following proposition. Since the notations
in [1] slightly differ from ours, the proofs are provided for the sake of completeness.

Proposition 3.11  The space £(¢) of solutions ¢ to equation (2.3) is an affine space
with an associated vector space HE (M). Therefore there exists unique A(¢) € £(¢)
such that A(¢) L 3P (M).

Proof It suffices to check the solvability condition in Theorem 3.10, which is obvious
asn=0and y=0. ]

Proposition 3.12  ker A = i*HP(M).

Proof The inclusion i*H? (M) c ker A is obvious.

For the inverse, suppose ¢ € ker A and let w € £(¢). Then w satisfies Aw = 0 and
iydw = 0. Therefore, by Proposition 3.9, dw = 0. Moreover, §w = 0 by definition of
L(¢). Thus, w € HP (M) [ |

Proposition 3.13  Operator A is symmetric with respect to the L*-inner product on
Qr(M).

Proof Let ¢,y € QF (0M). Then Green’s formula (2.1) implies

0= [ (840(9).2(¥)) = (M) drW) - [ (6.0),

ie, {(dA(¢),dA(y)) = (¢, Ay)). Switching ¢ and v in the computation above com-
pletes the proof. ]

3.3 Image of A

In this section, we identify the image of A. From the previous section, one has the
following sequence of inclusions

c&P(OM) c (ker A)* = (I*HP(M))* = i, HP (M) c cCP(AM).

There are two natural ways to look at the domain of A. One can either set the domain
tobe cC? (M), which reflects intrinsic geometry of oM, or set it to be (i*H?(M))* =
i, JP*1 (M), which emphasises the role of M. A nice feature of the latter is that A is
strictly positive on that domain. However, in most of this article we adapt the former
convention and consider A as an operator on ¢C? (o M)

From symmetry, it follows that im A ¢ (i*H?(M))*. In fact, this inclusion is an
equality.

Proposition 3.14  The operator
(3.3) At i, Y (M) — i, (M)

is a bijection.
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Proof It is sufficient to show surjectivity. Let y € i,H?*!(M). Then there exists
& e QP M) satisfying
dé=0, 68=0, ié=y.
According to the Hodge decomposition for harmonic fields one can write & = df +y,
where § € QP(M) and y € H2'. Moreover, § can be chosen coclosed. Indeed,
consider its Hodge decomposition 8 = di+8f+7, where d(d&+) = 0, i.e., d8f = dp.
Thus, replacing 8 with 8 does not change &. Therefore, 8 solves the system
AB=0, 88=0, i,df=v,

ie, Ai*f=vy. ]

In view of this proposition, in the next section we use A ™! to denote the inverse of A
as an operator in (3.3). Our next goal is to prove compactness of A lasan operator on

the Hilbert space L*(i,3P*!(M)), that, together with symmetry, yields discreteness
of the spectrum.

4 Compactness of A~
In order to prove the compactness of A™! we would like to use the following theorem.

Theorem 4.1 ([15, Theorem 3.4.9]) For any form w € (i*HP(M))*, there exists a
unique solution w to

(4.1) Aw=0, i"6w=0, i,dw=y,

orthogonal to the space HP (M). Moreover, that solution satisfies the following Sobolev
bounds

(4.2) | @]z < Clly | resares

for any s € Zso.

However, for our purposes we need inequality (4.2) for s = -1, which is not guar-
anteed by the theorem above.
Theorem 4.2  For the solution of equation (4.1), one has the following bound
(43) lollen < Clylg-ve-

This theorem is proved below. For now assume that inequality (4.3) holds.

Theorem 4.3  Operator A~ L*((i*HP(M))*) — L*((i*HP(M))*) is compact.
Moreover, it is a bounded operator from
HOR(EHE (M) 0 B (M)
for's € Zsy.
Proof Note that A™'(y) = P(i*w), where w is a solution to (4.1) and P is an L*-or-
thogonal projection from L?Q? (9M) onto L?((i*HP(M))*). Since
H*(im &) c H*((i*HP(M))*) c H* (ker §)
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and H*(im 8) c H*(ker §) is a finite codimension closed subspace in a closed space
for any s (Hodge decomposition theorem for closed manifolds), then

HY2((i*HP(M))*)
is a split subspace. Thus, using (4.3) and trace formula one has
A7 W)z < Cli* @l e < C @l < C [y v

Bounds for H**'/2 norms with natural s are proved in a similar fashion using inequal-
ity (4.2). Compactness of A™* follows from inclusion L? ¢ H “1/2 and compactness of
HY/? o L2 ]

This completes the proof of the first part of Theorem 2.3. Note that Sobolev bounds
for A™! imply smoothness of A-eigenforms.

4.1 Proof of Theorem 4.2
First, let us provide a weak formulation of equation (4.1). For any
y e V(P (9M)) == (HY2 (07 (M)
such that (y, - ) is identically zero on i*H? (M), find w € H*(H?(M)*) such that for
any n € H'(Q?(M)) one has

(4.4) [\4( (dw,dn) + (8w, 0n)) = (y,i*n),

where the round brackets denote duality pairing.
First note that both sides of the equation are invariant under transformation

17»—>;1+f,

where & € HP(M). Therefore, without loss of generality  17: HP(M). By [15,
Lemma 2.4.10.(i)] the left-hand side of equation (4.4) defines a scalar product on
H'(3HP(M)*) equivalent to the usual H'-scalar product. Moreover, the right-hand
side is a bounded linear functional on H'(Q?(M)) as by the trace formula

[ < [l 702 < Cly gz |7 -

Thus, by the Riesz representation theorem, there exists solution w to (4.4) satisfying
bound (4.3).

Easy application of Green's formula shows that if solution w is in H?, then it is a
strong solution in the sense of Theorem 4.1 and y = i,dw € H/2(QP(oM)).

5 Min-max Principle

The goal of this section is to prove the second half of Theorem 2.3, i.e., to obtain a
min-max characterisation of eigenvalues similar to the one for Steklov eigenvalues on
functions. By Proposition 3.13, for w; € £(¢;), w, € £L(¢2) one has

faM<A¢1,¢2> = /M<dw1, dw,).
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This equality suggests that the Rayleigh quotient for operator A is a ratio of squares
of L*-norms of dw; and ¢;. The following proposition makes it possible to omit the
condition w; € £(¢;).

Proposition 5.1  Any form w in the space L (¢) minimises the quadratic form Q(w) =
|dw|3, in the class of p-forms p on M satisfying i*p = ¢.

Proof First note that Q(w) is constant on £(¢) as dH5 (M) = 0. Thus, it is suffi-
cient to prove that for any p with i*p = ¢, one has Q(p) > Q(w) for some w € L(¢).

Let p and w be as above. Then dp = d(p — w) + dw, where i*(p — w) = 0 and
dw € HP(M). Therefore, by Green’s formula d(p — w) L dw and

Q(p) = Q(p - @) + Q(w) > Q(w) u

Theorem 5.2 (Min-max principle) The k-th eigenvalue GIE‘D ) of
A:cCP(OM) — cCP(oM)
can be characterised in the following way:
14417
algp) =max min 7; 0 )
E ¢1Ei*$=¢ H(#SHLZ(BM)

where E runs over all (k — 1)-dimensional subspaces of cC*(0M). The maximum is
achieved for E = Vi._y, where V._, is spanned by the first (k —1) eigenforms, ¢ being the
k-th eigenform and ¢ € L(¢). In particular,
o 199l
S P

forany ¢ 1 Vi_, and any ¢ satisfying i*$ = ¢.
Proof Application of the min-max theorem for positive self-adjoint operator A guar-

antees that | | )
dA(¢) |12
algp) = max min ziL(M),
192 com,

where E runs over all (k-1)-dimensional subspaces of HY/2(cC? (aM)). Elliptic regu-
larity estimates of Theorem 4.3 guarantee that it is sufficient to consider E c cC? (dM).
Therefore, the min-max formula of the theorem follows from Proposition 5.1. |

6 Proof of Theorem 2.5
Raulot and Savo defined the operator L [13]. By [15, Theorem 3.4.10] for any ¢ ¢
QF (M) there exists a unique @ € QF (M) satisfying
(6.1) A@=0, i,0=0, i'@=¢.

Then L¢ is defined to be i,d@. Raulot and Savo demonstrated that L is an elliptic, self-
adjoint pseudo-differential operator of first order. Therefore, its spectrum consists of
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eigenvalues that will be denoted by 0 < ;/tl(P ) < ygp ) < ... The kernel of this map is

the space i*fH{,(M ). Eigenvalues /,tl(f ) have a min-max characterisation that is the
subject of the next theorem.

(»)

Theorem 6.1 (Min-max principle [13]) ~ The k-th eigenvalue ;" can be computed in
the following way:
14132 ury + 18617
yl(cp) = max min Pl () Pl ) ,

E  $LE;i*$=¢,in$=0 H‘/jHiZ(aM)

where E runs over (k—1)-dimensional subspaces of Of (0M). The maximum is achieved
for E = Vi_y, where Vy is spanned by the first (k — 1)-eigenforms, ¢ being the k-th
eigenform and @ is a solution to (6.1). In particular,

L 2
k X

191Zomm
forany ¢ L Vi_yand i*¢ = ¢, i,$ = 0.
We turn to Theorem 2.5. Let us recall the statement.

Theorem 6.2 Let 6,5”) and ﬂ,((p) denote the k-th non-zero eigenvalue of A and L,

respectively. Then for any 0 < p < (n - 2), ﬂI(CP) < 5}51)).

For completeness, let us state the same inequality for eigenvalues without the tilde.
Corollary 6.3  One has the following inequality px,p, < Oky1,, where
b, =dimH?(M) and I,=dimim{i,: H’(M) - H?(oM)}.
We start the proof with some preliminary results.
Proposition 6.4  Forany ¢ € EP(IM), there exists & € EHP (M) satisfying i*& = ¢.

Proof Let¢ = da. Then & = dA(«) is the form in question. Indeed, i* & = di*A(a) =
da = ¢ and ¢ = §dA(a) = AA(a) = 0. [ |

Proposition 6.5  For any ¢ € QP (M), there exists (not necessarily unique) v €
QP (OM) such that y — ¢ € i*HP (M), y L i*HR (M), and there exists a solution w to

(6.2) Aw=0, dw=0, i,w=0 ifw=y.
Proof By Proposition 6.4 there exists y € EHP*'(M) such that i*y = d¢ and y is

unique up to Eﬂfgl(M). Let w’ be a primitive of y, i.e., dw’ = x. Consider Hodge
decomposition w’ = da + 8f + y. Then w = §f3 + yn solves

Aw=0, Sw=0, i,w=0,

https://doi.org/10.4153/CJM-2018-028-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-028-6

The Steklov Problem on Differential Forms 431

forany yn € H& (M). Set w, to be a unique choice of yy such that i*w, L i*HR (M).
Consider the space W = {i*w, — ¢ | y € EHPY (M), i*x = d¢}. Then one has the
following properties.

* The space W is an affine space of dimension dim 83—(11’)“ (M). Indeed, if i* w,, =
i*wy,, then w,, — w,, is a harmonic form with zero tangent and normal parts on the
boundary. By Green’s formula, w,, — w,, € H5 (M) n HE (M). Therefore, it is zero
by Theorem 3.4 (i).

* There exists ¢o € W such that ¢ L i,,EfHI;;I(M).

* Since W c CP(dM), Corollary 3.6 and Theorem 3.4 (ii) imply that

o € i*HP(M).

* By definition, ¢+ W L i*HXK (M). Thus y = ¢ + ¢y satisfies all the requirements
of the theorem. [ |

Proof of Theorem 2.5 The idea is that if for y there exists a solution to equation
(6.2), then A(y) = L(y), which allows us to connect operators A and L.

Let Vi be the space spanned by the eigenforms of A corresponding to the first k
non-zero eigenvalues, i.e., Vi is spanned by ¢y, . .., ¢, where Ady = 6,51’). In partic-
ular, Vi L i*HP(M). Let y; be forms constructed from ¢ by applying Proposition 6.5
and let V; be the vector space spanned by v, ..., yx. Then Proposition 6.5 implies
the following properties of V.

(i) For any y € Vj there exists a solution to (6.2).

(i) Vi Li*HR(M).

(i) Ify = X5 a;y; € Vi, then ¢ = XX a;¢; € Vi satisfies ¢ — y € i* HP(M). If
there exist non-trivial a;s such that y = 0, then ¢ € i*HP(M). But Vi L i*HP (M),
therefore, the map Y%, a;y; = ¥X a;¢; is an isomorphism.

(iv) dim Vj = k.

By property (iv), there exists y € Vi orthogonal to the first k — 1 eigenforms of L
corresponding to non-zero eigenvalues. By property (ii) L ker L, and by property
(iii), there exists ¢ € Vj such that w — ¢ € ker A. Let ¥ € £ () be the solution to (6.2)
and let ¢ belong to £(¢). Then i*(dy — d$) = 0 and i,d(¥ - ¢) = A($p — ) = 0.

Therefore, dy = d¢. The min-max theorem yields the following estimates:

IR R L A L 412200
K W% Wy 19 Bacomn 19 = 92,
NPy 1 D
D AR P I e Y %k "
¢ L2(9M) ¢ L2(aM)  9<Vk ¢ L2(dM)

7 Proof of Theorem 2.7

Yang and Yu [21] used the concept of conjugate harmonic forms to generalise the
famous result of Hersch, Payne, and Schiffer [7]. They proved the following theorem.
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Theorem 7.1 Let M be a compact oriented n-dimensional Riemannian manifold with
nonempty boundary. Let A, be the m-th eigenvalue for the Laplacian operator on oM.

Then for any two positive integers m and r, one has yfﬁlyg"jr)r N

Let /X;C(P ) denote the k-th eigenvalue of the Hodge Laplacian A, on oM restricted
to the space cC? (dM). We will prove the following.

Theorem 7.2 Let M be a compact oriented n-dimensional Riemannian manifold with

nonempty boundary. Then for any two positive integers, m and r, and for any p =

(p) (n=2-p) . 11(p)

0,...,n—2, one has Omily Orslyasy S ALymersb, po-1

The proofis based on the notion of conjugate harmonic fields. Two harmonic fields
w; € QP (M) and w, € Q" "P~2( M) are called harmonic conjugates if *dw; = dw,. This
is a higher-dimensional generalisation of the notion of harmonic conjugate functions
on the plane.

We define a duality relation between (i*H?(M))* and (i*H"P~2(M))*. We say
that ¢ is dual to y if A(¢) and A(y) are harmonic conjugates.

Proposition 7.3  Let ¢ L i*HP(M). There exists y dual to ¢ if and only if *dA($) L
U—C;’prfl(M). If it exists, then v is unique, depends linearly on ¢, and is nonzero unless
¢ is zero.

Proof Let & = xdA(¢) € H"P1(M). If ¢ has a dual, then £ is exact. At the same
time, by the Hodge decomposition theorem & is exact if and only if & 1 H} 7 (M).
This proves implication =.

Assume & 1 Hy P “(M). Then £ is exact. Let py be a primitive of & and let
its Hodge decomposition be py = da + 8f + y, where y € H" > (M) and B ¢
Qx,_p_l(M). There exists yo L 3" P~2(M) such that i* (8 + yo) L i*H"P~2(M).
We set y = i*(88 + y0). Let p = 83 + . Then 8p = 0 and Ap = ddp = §¢ =0, ie.,
p € L(y). In particular, dp = dA(y) = *dA(¢). This proves implication <.

Suppose that y; and y, are both dual to ¢. Then d(A(y1)—-A(y2)) = 0,i.e, y1—y; €
ker A. At the same time, (y; — y2) L ker A, therefore y; = y,. Linearity is obvious.

If y = 0, then d¢ = 0 and similar arguments as above assert that ¢ = 0. ]

Proof of Theorem 7.2  Suppose that y is dual to ¢. Then
4 : 2 2 : 2
) AW = ([ windd@)) < [ WP [ i)

- [ Wk [ lagP,

where we used Green’s formula, the Cauchy-Schwarz inequality, and
indA(y) =i, * dA(P) = + * i"dA(§) = +d¢.

Let ¢; be the eigenforms of A,. Since the kernel of the Hodge Laplacian is the
space of harmonic p-forms on dM, one can choose ¢; to satisfy ¢1,..., ¢1, € ker A,

¢; L ker A for j > I,. Let wEQ) be eigenforms of A on cC9(0M). Let ¢ belong to the
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space span{ ¢y, 1,.. . 1,4 mer-14b,_,, ) Such that ¢ L span{y/;le, e wgzm_l} and
xdM(¢) L Hy P ~'(M). The latter guarantees the existence of the form y dual to ¢.
Moreover, ¢ can be chosen so that y | span{ w;:’_?_’ ;31) yeens 1//5:‘:1_’ ;fr)_l
count, it is easy to see that such a nonzero ¢ exists. Then  is also non-zero and by
min-max principles for A and A; and inequality (71) one has

o oap OB [y 1AW

X

}. Bydimension

0m+IP r+ly—2-p

Vom0 19 o 1912 onn
< Hd‘PHiZ(aM) < /(P)
H ¢H%2(8M) Ip+m+r=1+by_p

where in the first equality we used the isometry property of Hodge star and equality
*d(A(¢)) = dA(y). u

The combination of Theorem 2.5 and Theorem 2.7 yields the following generalisa-
tion of Theorem 7.1.

Corollary 74 Let M be a compact oriented n-dimensional Riemannian manifold

with nonempty boundary. Then for any two positive integers m and r and for any p =

(p) | (n=2-p) _ 4/(p)
0,...,n—2, one has tum+b1,#r+b,.,2,l, < Ip+m+r+by_py—1°

Note that I = 1; so for p = 0, this corollary yields the statement of Theorem 7.1.

8 Eigenvalues of the Unit Euclidean Ball B"*!

In this section, we compute an eigenbasis and eigenvalues for A on S" = 9B"*'. We
follow [14] where Raulot and Savo computed eigenspaces and eigenvalues for operator
LonS" = 9B"*!. Note that in order to preserve notations from [14], we deviate from
the convention that the ambient manifold has dimension 7 and instead in this section
the ambient manifold has dimension 7 + 1. In the case of the ball B"*!, operators L,
A, and A have a common basis of eigenforms that we describe below.

Let Py, , denote the space of homogeneous polynomial p-forms of degree k in R"*'.
We introduce the following subspaces of Py, ,:

* Hi,p={wePp|Apmw=0,0pmmw=0},

* Hy ,={weHi,p|dpmw=0},

* H{ ,={weH,|i,w=0}

Assume 1< p < (n—1). Then HP(S") = 0 and QP (S") = EP(S™) @ c&P(S"). It was
shown in [8] that E7(5") = @« (i*Hy, ,), c€P(S") = @« (i*Hy ,) and

ekl skl
d:i Hk,p —1 Hk+1,p—1

n+l

) +1) as all forms with con-

is an isomorphism. Thus, dim i*H{fp = dimi*H{,’erl = (

stant coefficients lie in Hp ;.
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We see that H , c HP(B"*1); therefore A is identically zero on each i*(Hy ,)-
Moreover, for ¢ € i*(Hy’ ,), the form A(¢) satisfies i,A(¢) = 0. Therefore, L(¢$) =
A(9).

We summarise the above observations and results of [8,14] in the following theo-
rem.
Theorem 8.1  Spaces i*Hj_, , and i*H} , for k > 1 form common eigenbases of A, L
and A. The corresponding eigenvalues are given below.

e Ifpeci*H, , ,then A¢p =0, L = (k+p—-1)"=2kd g gnd Ap = (k+p-1)(n +

k-1,p’ n+2k-1
k-p)¢.
* Ifpei*Hy , then A¢p = Lp = (k+p)p and Adp = (k+p)(n+k—-p-1)¢.

This theorem implies the sharpness properties of inequality (2.4) stated in Sec-
tion 2.5 and Remark 2.9. Indeed, according to Theorem 8.1, inequality (2.4) is sharp
for m = r = 1. Moreover, it is sharp as long as the eigenvalues involved coincide with
the first eigenvalue. The statement after Theorem 2.11 follows from the fact that the

multiplicities ofol(P) and Ai(P) are equal todim i*Hy/, = dim i*Hy ,,,; = dim Hp ;. =

(40)-
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