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Abstract. We develop the algebraic theory of log abelian varieties. This

is Part II of our series of papers on log abelian varieties, and is an algebraic

counterpart of the previous Part I ([6]), where we developed the analytic theory

of log abelian varieties.

Part II. Algebraic theory

Introduction

This is Part II of our series of papers on log abelian varieties, and is an

algebraic counterpart of the previous Part I ([6]), where we developed the

analytic theory of log abelian varieties.

Degenerating abelian varieties can not preserve group structures,

properness, and smoothness at the same time. However, in a log world,

degenerating abelian varieties can become group objects called log abelian

varieties which behave like proper smooth objects. For some background,

see the introduction of Part I.

In Part I [6], we studied a complex analytic theory of log abelian va-

rieties. In this Part II and sequel, we develop an algebraic theory of log

abelian varieties.

Our philosophy, main ideas, and methods are illustrated in the intro-

ductory section, Section 1, by using Tate elliptic curves as examples. The

main definitions and basic results concerning log abelian varieties are given

in Sections 2–4. In Section 2 we introduce the notion log 1-motif, and by

using it, we define in Section 3 log abelian variety with constant degeneration

which is a special case of log abelian variety. We define log abelian variety

in Section 4. The proofs of the results are given in Sections 5–11.
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In Sections 1–4, we refer to Sections 5–11 for almost all the proofs. (In

the beginning of each section 1–4, we give a list of propositions whose proofs

are put off and explain where we give their proofs.) The reason why we put

the proofs in later sections is that the proofs of some results are very long

and we wish that the reader can understand the main story early. A reader

who prefers to know the proofs right after the results appear could read this

paper in the following order: 1, 5, 2, 6, 3, 7, 8, 4 and 9–11.

In the sequel (Part III, etc.), one of the main subjects will be moduli

spaces of log abelian varieties.

While we were writing this paper, we learned that V. Pahnke completed

a beautiful work [12] on log abelian varieties. His formulation is different

from ours: He works with the inverse limits of blowing ups along log struc-

tures. Log elliptic curves were already studied by M. C. Olsson in [11]. He

also worked with the inverse limits of blowing ups along log structures.

Acknowledgments. A part of this work was done while the second

author was a visitor of University of Minnesota in the spring of 1992. He

expresses his sincere gratitudes, especially to Professor W. Messing, for the

hospitality and stimulating discussions. The authors are very much grateful

to Professor Kazuhiro Fujiwara for enlightening discussions. They learned

much from his unpublished work [3] on degeneration of abelian varieties.

§1. Tate curves

In this section, we explain our methods by using Tate curves as exam-

ples. The proof of Proposition 1.7 is given in Section 5.

1.1. In this section, let K be a complete discrete valuation field, let q

be a non-zero element of the maximal ideal mK of the valuation ring OK of

K, and let Eq be the Tate elliptic curve over K with “q-invariant” q ([13],

[14] Appendix C, Section 14).

We have a canonical isomorphism

(1.1.1) Eq(L) ∼= L×/qZ

for any finite extension L of K.

We ask questions.

Question 1. Is there a proper model of Eq over OK to which the group

structure of Eq extends?
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The answer is “no” as is well known. We next ask

Question 2. Is there a best model among all proper models of Eq over

OK?

Question 3. If the best proper model exists, and if L is a finite exten-

sion of K, is the base change of the best model under Spec(OL)→ Spec(OK)

the best proper model of Eq ⊗K L over OL?

It is difficult to have a natural formulation of the best model which

gives affirmative answers to both the questions 2 and 3.

In fact, there is a unique minimal one among regular proper flat models

of Eq over OK (it is the model G
π
m/q

Z in [1] VII, which we review in 1.4–1.5

below, where π is a prime element of K), but this construction does not

commute with the base change Spec(OL) → Spec(OK) (π is not a prime

element in L if the ramification index of L/K is > 1).

In this paper, we show that all the questions 1, 2, 3 have the answers

“yes”, if we look for the answers in the log world. As we will see, in the log

world, Eq extends to a log elliptic curve (= 1-dimensional log abelian vari-

ety) Eq over OK , which has a group structure. This construction commutes

with the base change Spec(OL)→ Spec(OK). This Eq plays the role of the

best proper model of Eq over OK . Such a nice object does not exist in the

world of the usual algebraic geometry.

1.2. For an fs log scheme S (cf. [7], [10], [5] for basic terminology in log

geometry in the sense of Fontaine-Illusie), let (fs/S) be the category of fs

log schemes over S. We regard (fs/S) as a site endowed with the usual étale

topology. That is, a covering (Ui → U)i of an object U of (fs/S) means a

covering of the underlying scheme of U by étale schemes Ui over U which

are endowed with the inverse images of the log structure of U .

In our definition in Section 4, a log abelian variety over S is a sheaf of

abelian groups on (fs/S) satisfying certain conditions.

1.3. In this 1.3, we describe one basic property 1.3.1 of Eq. In 1.4–1.5,

we consider some proper models of Eq over OK which live in the world of

schemes, and compare them with Eq. In 1.6, we give an explicit construction

of Eq.

In the rest of Section 1, let S = Spec(OK) with the canonical log struc-

ture (that is, the log structure defined by the closed point). Our Eq is a

sheaf of abelian groups on (fs/S). Let (fs/S)′ be the full subcategory of
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(fs/S) consisting of objects on which mK is locally nilpotent. We endow

(fs/S)′ with the usual étale topology.

Define a commutative group sheaf Gm,log and its subgroup sheaf G
(q)
m,log

on (fs/S) as follows: For an object U of (fs/S),

Gm,log(U) = Γ(U,M gp
U ),

G
(q)
m,log(U) = {ϕ ∈ Γ(U,M gp

U ) | locally on U , there exist i, j ∈ Z

such that qi|ϕ|qj}.

Here, q ∈ MS ⊂ OS is viewed as a section of M gp
U , and for local sections

a, b ∈ Mgp
U , a|b means a−1b ∈ MU . (We write the monoid law of the

logarithmic structure multiplicatively as in [7].) To see that G
(q)
m,log is in

fact a subgroup sheaf, let ϕ,ϕ′ ∈ Γ(U,M gp
U ) satisfy qi|ϕ|qj and qi

′

|ϕ′|qj
′

.

Then qi+i
′

|ϕϕ′|qj+j
′

and q−j |ϕ−1|q−i so that the both ϕϕ′ and ϕ−1 belong

to G
(q)
m,log.

1.3.1. The restriction of Eq to (fs/S)′ coincides with

G
(q)
m,log/q

Z.

In particular, for a finite extension L of K and for n ≥ 1, we have

Eq(OL/m
n
L) = (G

(q)
m,log/q

Z)(OL/m
n
L) = (L×/U

(n)
L )/qZ,

where Spec(OL/m
n
L) is endowed with the inverse image of the canonical log

structure of Spec(OL), and U
(n)
L = Ker(O×

L → (OL/m
n
L)×). The canonical

isomorphism Eq(L) ∼= L×/qZ (1.1.1) is obtained as

Eq(L)
∼=
←− Eq(OL)

∼=
−→ lim
←−
n

Eq(OL/m
n
L) = lim

←−
n

(L×/U
(n)
L )/qZ = L×/qZ.

1.4. We now consider proper models of Eq over OK and describe their

relations with Eq.

For a non-empty subset I of Q which is stable under the translation by

Z such that I/Z is finite, there exists a proper scheme E
(I)
q over OK such

that E
(I)
q ⊗OK

K = Eq, having the characterizing property (1.4.1) below.

For example, for a non-zero element t of mK such that ordK(t) divides

ordK(q), the model G
t
m/q

Z in [1] VII, 1.6 coincides with E
((1/d)Z)
q , where

d = ordK(q)/ ordK(t). An explicit construction of the fs log scheme E
(I)
q is

explained in 1.5.
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The scheme E
(I)
q has a natural fs log structure (see 1.4.1 below). As we

will see in Section 5, the sheaf MorS( , E
(I)
q ) on (fs/S), which we identify

with E
(I)
q itself, is a subsheaf of Eq. That is, various proper models are

various subsheaves of Eq.

For α ∈ I, let α′ be the smallest element of the set {β ∈ I | β > α}.

Define a subsheaf G
(q,I)
m,log of Gm,log on (fs/S) as follows. For an object U of

(fs/S),

G
(q,I)
m,log(U) = {ϕ ∈ Γ(U,M gp

U ) | locally on U , there exist α ∈ I and

an integer k ≥ 1 such that kα, kα′ ∈ Z and qkα|ϕk|qkα
′

}.

We have

G
(q,I)
m,log ⊂ G

(q)
m,log, G

(q,I)
m,log/q

Z ⊂ G
(q)
m,log/q

Z.

Note that G
(q)
m,log is a subgroup sheaf of Gm,log as is explained in 1.3, but

G
(q,I)
m,log is not a subgroup sheaf of Gm,log. For example, if ϕ, ϕ′ are sections

of G
(q,Z)
m,log satisfying 1|ϕ|q and 1|ϕ′|q, then we have always 1|ϕϕ′|q2, but we

do not necessarily have 1|ϕϕ′|q or q|ϕϕ′|q2.

For an object W of (fs/S), we identify W with the sheaf

(fs/S) −→ (Sets) ; U 7−→ Mor(U,W )

represented by W . If the underlying scheme of W is proper over OK , the

underlying scheme of W is determined by the underlying schemes of W⊗OK

OK/m
n
K (n ≥ 1) ([4]) and hence determined by the restriction of the sheaf

W to (fs/S)′. Hence the following 1.4.1 characterizes the proper scheme

E
(I)
q over OK .

1.4.1. Define the log structure of E
(I)
q to be the subsheaf of the struc-

tural sheaf consisting of local sections whose restrictions to Eq are invertible.

Then this log structure of E
(I)
q is an fs log structure, and the restriction of

E
(I)
q to (fs/S)′ coincides with

G
(q,I)
m,log/q

Z.

For example, if t is a non-zero element of mK such that ordK(t) divides

ordK(q), the restriction of G
t
m/q

Z (= E
((1/d)Z)
q with d = ordK(q)/ ordK(t))

to (fs/S)′ coincides with

{ϕ ∈ Gm,log | locally, tr|ϕ|tr+1 for some r ∈ Z}/qZ.

We describe further properties of E
(I)
q .
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1.4.2. There is a natural bijection between I/Z and the set of all

irreducible components of the special fiber of E
(I)
q .

1.4.3. If J is a non-empty subset of I and is stable under the transla-

tion by Z, there is a unique morphism

E (I)
q −→ E (J)

q

of models of Eq whose restriction to (fs/S)′ is the evident inclusion map

of sheaves. For α ∈ I \ J , the irreducible component of the special fiber

of E
(I)
q corresponding to α collapses into one point in the special fiber of

E
(J)
q . For α ∈ J , the irreducible component of the special fiber of E

(I)
q

corresponding to α maps onto the irreducible component of the special fiber

of E
(J)
q corresponding to α.

As a morphism of sheaves, E
(I)
q → E

(J)
q is injective, and not surjective

if I 6= J . However the map of the underlying sets of schemes E
(I)
q → E

(J)
q is

surjective, and not injective if I 6= J .

For example, we have diagrams in which the right square is commuta-

tive:

As spaces; E
((1/2)Z)
q

surj
−−−→ E

(Z)
qysurj

E
((1/2)+Z)
q (no space here)

As sheaves; E
((1/2)Z)
q

inj
−−−→ E

(Z)
qyinj

yinj

E
((1/2)+Z)
q

inj
−−−→ Eq

The special fiber of E
((1/2)Z)
q has two irreducible components as mentioned

in (1.4.2). The irreducible component of the special fiber of E
((1/2)Z)
q cor-

responding to 1/2 mod Z collapses into one point in the special fiber of

E
(Z)
q , and the other irreducible component of the special fiber of E

((1/2)Z)
q

corresponding to 0 mod Z collapses into one point in the special fiber of

E
((1/2)+Z)
q . Hence if there were a proper flat model of Eq over OK which had

morphisms from both E
(Z)
q and E

((1/2)+Z)
q , the special fiber of such a model

should be a one point set (because all irreducible components of the special

fiber of E
((1/2)Z)
q should collapse in it), but this is impossible.

In the right diagram, Eq lives outside the world of schemes, and looks

like a “true minimal model”. We ask

Question 4. What does this mean for the total picture of the theory

of minimal models in algebraic geometry?
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For example, does such “true minimal model” outside the usual world

of schemes appear in degenerations of K3-surfaces? At present, we have no

answer to Question 4.

1.5. We explain the construction of E
(I)
q . We follow the method of

Raynaud in [1] VII, Section 1, applying log geometry.

Let n ≥ 1, and let Sn = Spec(OK/m
n
K) which we endow with the inverse

image of the canonical log structure of S = Spec(OK). For α ∈ I, let Vα,n
be the subsheaf of Gm,log on (fs/Sn) defined by

Vα,n(U) = {ϕ ∈ Γ(U,M gp
U ) | qkα|ϕk|qkα

′

for some integer k ≥ 1

such that kα, kα′ ∈ Z},

where α′ is the smallest element of I satisfying α′ > α. Let e = ordK(q),

and define an additive monoid Nα by

Nα = {(a, b) ∈ Z2 | a+ αeb ≥ 0, a+ α′eb ≥ 0}.

Then Vα,n is represented by the fs log scheme over Sn

Spec(Z[Nα]⊗Z[N] OK/m
n
K)

endowed with the log structure associated to Nα → Z[Nα] ⊗Z[N] OK/m
n
K ,

where N→ OK sends 1 to a fixed prime element π of K and the homomor-

phism N→ Nα sends 1 to (1, 0). This is because for an object U of (fs/Sn),

we have

MorSn(U,Spec(Z[Nα]⊗Z[N] OK/m
n
K))

∼= {h ∈ Hom(Nα,MU ) | h(1, 0) = π} ∼= Vα,n(U),

where the last isomorphism sends h to ϕ = hgp(0, 1). Let G
(q,I)
m,log,n be the

restriction of G
(q,I)
m,log to (fs/Sn). Then G

(q,I)
m,log,n =

⋃
α∈I Vα,n. For α, β ∈ I,

Vα,n ∩ Vβ,n = ∅ in G
(q,I)
m,log,n unless α = β or α′ = β or β′ = α, where α′

denotes the smallest element of I satisfying α′ > α. For α ∈ I, Vα,n∩Vα′,n =

Vα,n[1/f ] = Vα′,n[1/g], where f (resp. g) is any element (a, b) of Nα (resp.

Nα′) such that a+α′eb = 0, b 6= 0 which we regard as an element of O(Vα,n)

(resp. O(Vα′,n)), and hence Vα,n ∩ Vα′,n is an open fs log subscheme of Vα,n

and is also an open fs log subscheme of Vα′,n. Hence G
(q,I)
m,log,n is representable

and (Vα,n)α∈I is a covering of G
(q,I)
m,log,n by open fs log subschemes. Since
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qVα,n = Vα+1,n, the quotient sheaf G
(q,I)
m,log,n/q

Z is represented by the quotient

of the fs log scheme G
(q,I)
m,log,n over Sn by the action of qZ. The formal scheme

lim
−→n

G
(q,I)
m,log,n/q

Z is projective and algebraizable over OK . This is E
(I)
q . It

can be seen easily that with the log structure defined in 1.4.1, the restriction

of E
(I)
q to (fs/S)′ coincides with G

(q,I)
m,log/q

Z.

1.6. Now we give an explicit construction of Eq:

Eq = (
∐

(i,I)

E
(I)
qi )/ ∼,

where (i, I) ranges over all pairs with i an integer ≥ 1 and I a non-empty

subset of Q stable under the translation by Z such that I/Z is finite, and

∼ is the equivalence relation in the category of sheaves on (fs/S) generated

by the following equivalences 1.6.1 and 1.6.2.

1.6.1. For any (i, I) and (j, J) such that j|i and such that (i/j)I ⊃ J ,

any element of E
(I)
qi (U) for any fs log scheme U over S is equivalent to its

image in E
(J)
qj (U) under the canonical morphism E

(I)
qi → E

(J)
qj .

Here the morphism E
(I)
qi → E

(J)
qj is the one whose restriction to (fs/S)′

is the evident map of sheaves. Such a morphism uniquely exists since these

models are proper over S.

1.6.2. For any (i, I), if we denote J = I+(1/i), any element of E
(I)
qi (U)

for any fs log scheme U over S is equivalent to its image in E
(J)
qi (U) under the

morphism E
(I)
qi → E

(J)
qi whose pull back to (fs/S)′ is induced by G

(q)
m,log/q

iZ →

G
(q)
m,log/q

iZ ; ϕ 7→ qϕ.

The following proposition will be proved in Section 5.

Proposition 1.7. (1) The pull back of Eq to (fs/Spec(K)) coincides

with Eq. The pull back of Eq to (fs/S)′ coincides with G
(q)
m,log/q

Z.

(2) There exists a unique group law on Eq whose pull back to

(fs/Spec(K)) coincides with the group law of Eq and whose pull back to

(fs/S)′ coincides with the group law of G
(q)
m,log/q

Z.

(3) The canonical morphism E
(I)
q → Eq is injective. As a subsheaf of

Eq, the sheaf E
(I)
q coincides with the inverse image of G

(q,I)
m,log/(Gmq

Z) under

the canonical morphism Eq → G
(q)
m,log/(Gmq

Z) on (fs/S).
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1.8. Question 2 on the best model is related to compactifications of

moduli spaces of elliptic curves studied in Deligne-Rapoport [1]. Let n ≥ 1

be an integer which is invertible in OK , let Y (n) be the fine moduli space

over Z[1/n] of elliptic curves with n-level structures, and let X(n) be the

canonical compactification of Y (n) in [1]. Assume that the group of n-

division points in Eq(K) is isomorphic to (Z/nZ)2 and fix such an isomor-

phism. Then Eq with this n-level structure defines a morphism Spec(K)→

Y (n). Since X(n) is proper, this morphism is extended uniquely to a com-

mutative diagram

Spec(K)
Eq
−−−→ Y (n)

y
y∩

Spec(OK)
?
−−−→ X(n).

In [1], the space X(n) is a moduli space of degenerating elliptic curves

(called generalized elliptic curves) with n-level structures. That is, the lower

horizontal arrow corresponds to a generalized elliptic curve ? over OK with

n-level structure which is a candidate of the best model of Eq from the

viewpoint of compactifications of moduli spaces. This model, an answer to

Question 2, is E
((1/n)Z)
q in our notation. Thus the answer depends on n.

We will take Eq instead of E
((1/n)Z)
q at the place ? when we discuss

compactifications of moduli spaces of abelian varieties in the sequel of this

Part II. Advantages of Eq are that it is independent of n and furthermore,

since it has a group structure, the meaning of n-level structure becomes

simple. We already discussed the analytic version in [6].

§2. Log 1-motifs

In this section, we define the notion log 1-motif, as a preparation to

introduce the notion log abelian variety. The proofs of Proposition 2.5 and

Remark 2.8.2 will be given in Section 6.

Let S be an fs log scheme and let (fs/S) be the category of fs log schemes

over S. We regard (fs/S) as a site with the usual étale topology as in 1.2.

We identify an fs log scheme V over S with the sheaf on (fs/S) represented

by V . For a point v of V and a sheaf F on (fs/S), we denote by Fv the

stalk at v of the sheaf F |Vét
obtained by restricting F to the small étale site

Vét of V . Note that this Fv often differs from the set F (v) of v-sections,

where v denotes the Spec of the separable closure of the residue field of v,

and is endowed with the inverse image of the log structure of V (as is so
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already in the non-log case; say, in case where F = Ga, we have Fv = OV,v
and F (v) = Γ(v,Ov)).

2.1. Let G be a commutative group scheme over the underlying scheme

S which is an extension of an abelian scheme B by a torus T . We define

the logarithmic enlargement Glog of G, which is a sheaf of abelian groups

on (fs/S) containing G, as follows.

We regard G as a sheaf of abelian groups on (fs/S): For an fs log scheme

U over S, G(U) is defined by forgetting the log structure of U . This sheaf

is represented by G which is endowed with the inverse image of the log

structure of S.

Let X := Hom(T,Gm) be the character group of T (here Hom denotes

the hom sheaf), which is a locally constant sheaf of finitely generated free

Z-modules on (fs/S), and let Tlog := Hom(X,Gm,log). Here the sheaves Gm

and Gm,log on (fs/S) are defined by

Gm(U) = Γ(U,O×
U ), Gm,log(U) = Γ(U,M gp

U )

for an fs log scheme U over S. We have a canonical embedding T ⊂ Tlog.

We define Glog as the pushout of Tlog ← T → G in the category of

sheaves of abelian groups on (fs/S). We have a commutative diagram with

exact rows

(2.1.1)

1 −−−→ T −−−→ G −−−→ B −−−→ 1
y

y
∥∥∥

1 −−−→ Tlog −−−→ Glog −−−→ B −−−→ 1.

Definition 2.2. A log 1-motif M over S consists of the following data:

(a) a commutative group sheaf Y on (fs/S) which is, étale locally on S,

isomorphic to the constant sheaf defined by a free Z-module of finite rank;

(b) a commutative group scheme G over (the underlying scheme of) S

which is an extension of an abelian scheme B over S by a torus T over S;

(c) a homomorphism u : Y → Glog.

We denote by M = [u : Y → Glog] a log 1-motif over S as a complex of

sheaves on S with Glog degree 0.

Putting X = Hom(T,Gm), we say M is a log 1-motif of type (X,Y ).
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2.3. We define a canonical pairing 〈 , 〉 : X × Y → Gm,log/Gm for

a log 1-motif [u : Y → Glog], where X = Hom(T,Gm). Since the left

square in (2.1.1) is a pushout, we have isomorphisms Glog/G ∼= Tlog/T ∼=
Hom(X,Gm,log/Gm). Hence we have a natural pairing

〈 , 〉 : X × Y −→ X × (Glog/G) −→ Gm,log/Gm.

Definition 2.4. Let M = [u : Y → Glog], M
′ = [u′ : Y ′ → G′

log] be log

1-motifs over S. A morphism h : M →M ′ is a homomorphism of complexes

Y
u
−−−→ Glog

h−1

y
yh0

Y ′ u′
−−−→ G′

log.

Proposition 2.5. Let G and G′ be commutative group schemes which

are extensions of abelian schemes by tori. Then we have an isomorphism

Hom(G,G′)
∼=
−→ Hom(Glog, G

′
log).

The proof will be given in Section 6.

Corollary 2.6. Hom(Tlog,Gm,log) = X.

2.7. Let M := [u : Y → Glog] be a log 1-motif of type (X,Y ) over S.

The dual log 1-motif M ∗ to M is the log 1-motif [u∗ : X → G∗
log] of type

(Y,X) defined as follows.

2.7.1. Let B∗ = Ext(B,Gm) be the dual abelian scheme of B, and

T ∗ := Hom(Y,Gm) the torus with character group Y . We define G∗ as the

sheafification of the presheaf

U 7−→ {pairs (F, h) of an extension F of B by Gm over U and

a homomorphism h : Y → F such that the composition

Y
h
→ F → B coincides with Y

u
→ Glog

pr
→ B}/ ∼= .

Here pr: Glog → B is the canonical projection. We have an exact sequence

1 −→ T ∗ −→ G∗ −→ B∗ −→ 1,
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where G∗ → B∗ sends the class of (F, h) to that of F , and the map T ∗ → G∗

sends (t : Y → Gm) ∈ T ∗ to the class of (Gm⊕B, t⊕(pr◦u) : Y → Gm⊕B).

Thus G∗ is representable. We can also write

G∗ = Ext([Y
pr◦u
−−−→ B],Gm),

where B (resp. Y ) is in the degree 0 (resp. −1), and Ext is the Ext1-sheaf

for objects in the derived category.

2.7.2. Then we have the sheaf of commutative groups G∗
log associated

to G∗. We can also identify G∗
log with the sheafification of the presheaf

U 7−→ {pairs (F, h) of an extension F of B by Gm over U and

a homomorphism h : Y → Flog such that the composition

Y
h
→ Flog → Blog = B coincides with Y

u
→ Glog

pr
→ B}/ ∼= .

2.7.3. Let u∗ : X → G∗
log be the homomorphism which sends x ∈ X to

the class of (F, h), where F is the extension obtained as

1 −−−→ T −−−→ G −−−→ B −−−→ 1
yx

y
∥∥∥

1 −−−→ Gm −−−→ F −−−→ B −−−→ 1,

and h is the composite homomorphism Y → Glog → Flog.

Definition 2.7.4. The dual log 1-motif M ∗ to M = [u : Y → Glog] is

the log 1-motif [u∗ : X → G∗
log] of type (Y,X) defined as above. Note that,

by construction, we can easily show that M ∗∗ is canonically isomorphic to

M .

Definition 2.8. Let M = [u : Y → Glog] be a log 1-motif over S.

A polarization of M is a homomorphism h : M → M ∗ = [u∗ : X → G∗
log]

satisfying the following conditions (a)–(d):

(a) The homomorphism B → B∗ induced by h0 : Glog → G∗
log is a

polarization on B;

(b) The homomorphism h−1 : Y → X is injective and has finite cokernel;

(c) 〈h−1(y), y〉s ∈ (MS,s/O
×
S,s) \ {1} for y ∈ Ys \ {0} and s ∈ S. Here

〈 , 〉 : X × Y →M gp
S /O×

S is the pairing in 2.3;
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(d) The homomorphism Tlog → T ∗
log induced by h0 : Glog → G∗

log coin-

cides with the one induced by h−1 : Y → X.

We say that M is pointwise polarizable if the pullback of M to (fs/s)

admits a polarization for every s ∈ S.

Example 2.8.1. We give an example of polarization. Let X = Y = Z

and let q be an element of Γ(S,MS) such that α(q) (the image of q in

Γ(S,OS)) is locally nilpotent. Then the identity map from the log 1-motif

M = [Y
17→q
−→ Gm,log] to its dual [X

17→q
−→ Gm,log] is a polarization of M . In

the situation in Section 1, for q ∈ mK \ {0}, we have thus polarizations of

the log 1-motif [Z
17→q
−→ Gm,log] over S = Spec(OK/m

n
K) for n ≥ 1.

Remark 2.8.2. The condition (c) is equivalent to the following:

(c′) For any étale scheme U over the underlying scheme of S and for

any y ∈ Y (U) such that y 6= 0 at each point of U , the local section m :=

〈h−1(y), y〉 belongs to (MS/O
×
S )(U), and for any local lift m̃ ∈ MS of m,

α(m̃) is locally nilpotent.

See 6.2 for the proof of the equivalence.

Remark 2.8.3. The injectivity in the condition (b) in fact follows from

the condition (c).

Remark 2.8.4. It is easy to see that the existence of a polarization

implies that Y → Glog/G is injective.

§3. Log abelian varieties with constant degeneration

In this section, we define the notion log abelian varieties with constant

degeneration, and state a category equivalence between pointwise polariz-

able log 1-motifs and log abelian varieties with constant degeneration. Since

the proof of the result Theorem 3.4 is involved and long, we give it later in

Sections 7–8.

In the situation of Section 1, the pull back of Eq to (fs/Sn) with Sn =

Spec(OK/m
n
K) is a log abelian variety with constant degeneration over Sn,

but Eq itself is not a log abelian variety with constant degeneration over OK

though it is a log abelian variety over OK as is explained in Section 9.

Let S be an fs log scheme.
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3.1. Let X and Y be locally constant sheaves of finitely generated Z-

modules on (fs/S), and let 〈 , 〉 : X × Y → (Gm,log/Gm)S be a Z-bilinear

form.

We define a subgroup sheaf Hom(X,Gm,log/Gm)(Y ) of the sheaf

Hom(X,Gm,log/Gm) on (fs/S). For each fs log scheme U over S, we set

Hom(X,Gm,log/Gm)(Y )(U)

:= {ϕ ∈ Hom(X,Gm,log/Gm)(U) | for every u ∈ U and x ∈ Xu,

there exist yu,x, y
′
u,x ∈ Yu such that 〈x, yu,x〉u |ϕ(x)u | 〈x, y

′
u,x〉u}.

Here, for u ∈ U and a, b ∈ (M gp
U /O×

U )u, a|b means a−1b ∈ (MU/O
×
U )u.

We can easily verify that Hom(X,Gm,log/Gm)(Y ) is a subgroup sheaf of

Hom(X,Gm,log/Gm).

As is easily seen, the image of Y → Hom(X,Gm,log/Gm) is contained

in Hom(X,Gm,log/Gm)(Y ).

3.2. Let [u : Y → Glog] be a log 1-motif over S of type (X,Y ).

Let G
(Y )
log ⊂ Glog be the inverse image of Hom(X,Gm,log/Gm)(Y ) under

Glog → Glog/G ∼= Hom(X,Gm,log/Gm).

Then the image of Y → Glog is contained in G
(Y )
log .

For example, for q ∈ MS(S) and for the log 1-motif [Y
17→q
−→ Glog] with

Y = Z and G = Gm, we have G
(Y )
log = G

(q)
m,log, where

G
(q)
m,log(U) = {ϕ ∈ Γ(U,M gp

U ) | locally on U , there exist m,n ∈ Z

such that qm|ϕ|qn}.

Definition 3.3. (1) A log abelian variety with constant degeneration

over S is a sheaf of abelian groups on (fs/S) which is isomorphic to the

quotient sheaf G
(Y )
log /Y for a pointwise polarizable log 1-motif [u : Y → Glog]

over S.

(2) A homomorphism of log abelian varieties with constant degeneration

is a homomorphism as sheaves of abelian groups on (fs/S).

The proof of the following theorem will be given in Section 8.

Theorem 3.4. The functor [u : Y → Glog] 7→ G
(Y )
log /Y induces an

equivalence from the category of pointwise polarizable log 1-motifs over S

to that of log abelian varieties with constant degeneration over S.
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§4. Log abelian varieties

In this section, we define the notion log abelian varieties, and intro-

duce some basic properties. Since the proofs of some properties are long,

we will give the proofs for 4.3, 4.4, Proposition 4.5, Theorem 4.6, Proposi-

tion 4.7, and Proposition 4.8 in Section 9 and the proof for Theorem 4.10

in Sections 10–11.

Definition 4.1. A log abelian variety over an fs log scheme S is a

sheaf of abelian groups A on (fs/S) satisfying the following conditions 4.1.1,

4.1.2, and 4.1.3.

4.1.1. For any s ∈ S, the pull back of A to (fs/s) is a log abelian

variety with constant degeneration.

4.1.2. The following holds étale locally on S. There are a semiabelian

group scheme G over (the underlying scheme of) S, finitely generated free Z-

modules X and Y , a Z-bilinear form 〈 , 〉 : X×Y → (Gm,log/Gm)S on (fs/S)

(i.e. a Z-bilinear form 〈 , 〉 : X ×Y →M gp
S /O×

S ) satisfying the condition (i)

below, and an exact sequence

0 −→ G −→ A −→ Hom(X,Gm,log/Gm)(Y )/Y −→ 0.

Here Y denotes the image of Y in Hom(X,Gm,log/Gm). A semi-abelian

group scheme over a scheme V means, as usual, a smooth separated group

scheme over V each fiber of which is an extension of an abelian variety by

a torus. Let X be the image of X in Hom(Y,Gm,log/Gm).

(i) For each s ∈ S, there is a homomorphism φ : Y s → Xs with finite

cokernel such that 〈φ(y), z〉 = 〈φ(z), y〉 in (M gp
S /O×

S )s for any y, z ∈ Y s,

and such that 〈φ(y), y〉 ∈ (MS/O
×
S )s in (Mgp

S /O×
S )s for any y ∈ Y s.

4.1.3. The diagonal morphism A → A × A is represented by finite

morphisms. (See 4.2.)

4.2. We give an explanation of 4.1.3.

Let f : F1 → F2 be a morphism of contravariant functors from (fs/S) to

the category of sets. We say f is represented by finite morphisms if for any

object U of (fs/S) and any a : U → F2 (i.e. a ∈ F2(U)), the fiber product

U ×F2
F1 defined by a is represented by an fs log scheme over U whose

underlying scheme is finite over that of U .

We have
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(1) Let f : U → V be a morphism of fs log schemes over S. Then

f : MorS( , U) → MorS( , V ) is represented by finite morphisms if and

only if the underlying morphism of schemes of f is finite.

In fact, the only if part is clear. The if part follows from the fact that

the underlying scheme of the fiber product in the category of fs log schemes

is finite over the fiber product as schemes.

(2) Let V be an fs log scheme over S. Then the diagonal MorS( , V )→

MorS( , V )×MorS( , V ) is represented by finite morphisms if and only if

the underlying scheme of V is separated over that of S.

In fact, let W be the fiber product of V → S ← V in the category

of fs log schemes, and let W ′ be the fiber product as schemes. By (1),

the diagonal Mor( , V ) → Mor( , V ) ×Mor( , V ) is represented by finite

morphisms if and only if (the underlying morphism of schemes of) V →W

is finite. If V → W is finite, V → W ′ is finite since W → W ′ is finite, and

this shows that V is separated over S. Conversely, if V is separated over S,

then V → W is a morphism of W ′-schemes which are finite over W ′, and

hence is finite.

Since the equalizer of f, g : U → A for an fs log scheme U over S (i.e. the

fiber product of Mor( , U)
(f,g)
−→ A×A← A) is the equalizer of f−g, 0: U →

A, the condition 4.1.3 can be replaced by the following condition:

The 0-section S → A is represented by finite morphisms.

4.3. In [6], we considered the notion “admissible pairing” X × Y →

(Gm,log/Gm)S . See the beginning of Section 7 for the definition of the

admissibility. An equivalent definition of log abelian variety is given by

replacing the part

[a Z-bilinear form 〈 , 〉 : X × Y → (Gm,log/Gm)S ]

[satisfying the condition (i) below]

in 4.1.2 by

[an admissible pairing 〈 , 〉 : X × Y → (Gm,log/Gm)S ].

The equivalence of the definitions is explained in Section 9.
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4.4. The semi-abelian scheme G in 4.1.2 in fact exists globally on S

and is uniquely determined by A, as is explained in Section 9. We call G

the semi-abelian part of A.

We define the dimension of A to be the relative dimension of G over S,

which is a locally constant function on S.

The sheaves of Z-modules X = Image(X → Hom(Y,Gm,log/Gm)) and

Y , and the pairing X×Y → Gm,log/Gm are also determined by A and exist

globally on S, as is explained in Section 9.

The following results 4.5–4.8 are proved also in Section 9.

Proposition 4.5. A log abelian variety with constant degeneration

over S is a log abelian variety over S.

Theorem 4.6. (1) A log abelian variety over S is a log abelian variety

with constant degeneration if and only if the rank of the torus part of the

fiber of the semi-abelian scheme G is locally constant on S.

(2) If the sheaf MS/O
×
S on the (small) étale site of S is locally con-

stant, then a log abelian variety over S is a log abelian variety with constant

degeneration over S.

Proposition 4.7. Let K, OK and q be as in Section 1. Then the sheaf

of abelian groups Eq (the q-Tate curve) in Section 1 is a log abelian variety

over Spec(OK).

We have log abelian varieties which are more global than the above

example in 4.7, as follows.

Proposition 4.8. Let S be a 1-dimensional regular Noetherian excel-

lent scheme, and let G be a 1-dimensional semi-abelian scheme over S. Let

J be a finite set of closed points of S, let S ′ = S \ J , and for v ∈ J , let Ov
be the completion of the local ring OS,v, and let Kv be the field of fractions

of Ov. Assume that G ×S S
′ is an abelian scheme, and for each v ∈ J ,

G×S Spec(Kv) is a qv-Tate curve over Kv, where qv is a non-zero element

of the maximal ideal mv of Ov. Endow S with the log structure associated

to the divisor J , and endow Spec(Ov) (resp. Spec(Kv)) with the canonical

(resp. trivial) log structure.
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(1) For any fs log scheme U over S, define the group A(U) by the

cartesian diagram

A(U) −−−→
∏
v∈J Eqv(U ×S Spec(Ov))y

y

G(U ×S S
′) −−−→

∏
v∈J G(U ×S Spec(Kv)).

Here Eqv is the qv-Tate curve over Ov in Proposition 4.7. Then A is a

(1-dimensional) log abelian variety over S.

(2) The pull back of A to S ′ coincides with that of G. For each v ∈ J ,

the pull back of A to (fs/Ov) coincides with Eqv .

(3) We have an exact sequence

0 −→ G −→ A −→
⊕

v∈J

iv∗(G
(qv)
m,log/(Gm · q

Z
v )) −→ 0.

Here iv∗(G
(qv)
m,log/(Gm · q

Z
v ))(U) = H0(U ×S v,G

(qv)
m,log/(Gm · q

Z
v )) for an fs log

scheme U over S.

4.9. We give the relation with the theory of analytic log abelian vari-

eties in [6].

For an fs log scheme S over C whose underlying scheme is locally of

finite type over C, let San be the associated fs log analytic space. Let

(fsan/San) be the category of fs log analytic spaces over San. We re-

gard (fsan/San) as a site with respect to the usual topology. We have

a morphism of sites (fsan/San) → (fs/S) corresponding to the functor

(fs/S) → (fsan/San) ; U 7→ Uan. For a sheaf F on (fs/S), let F an be

the pull back of F on (fsan/San) by this morphism of sites. Then for an fs

log scheme U over S, we have

MorS( , U)an = MorSan( , Uan).

(Note that this last equality does not hold for the morphism of small sites

San → Sét or San → SZar.)

Theorem 4.10. Let S be an fs log scheme over C whose underlying

scheme is locally of finite type over C, and let A be a log abelian variety

over S. Then Aan is a log abelian variety over San in the sense of [6] 1.3.5.

(See 4.11 below.)

https://doi.org/10.1017/S002776300000951X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000951X


LOGARITHMIC ABELIAN VARIETIES 81

This last theorem will be proved in Section 11. There we show how the

condition 4.1.3 in the definition of log abelian variety is essential to have

this theorem.

4.11. For readers’ convenience, we review here the definition of ana-

lytic log abelian variety. See [6] for details.

Let S be an fs log analytic space. In this paragraph, a pairing into

Gm,log,S means a triple (X,Y, 〈 , 〉), where X and Y are finitely generated

free abelian groups, and 〈 , 〉 is a Z-bilinear form X × Y → Gm,log,S .

4.11.1. For a pairing (X,Y, 〈 , 〉) into Gm,log,S, a subgroup sheaf

Hom(X,Gm,log)
(Y ) of Hom(X,Gm,log) on (fsan/S) is defined in the same

way as in 3.1. We call the cokernel of Y →Hom(X,Gm,log)
(Y ) the quotient

associated to this pairing.

4.11.2. A pairing (X,Y, 〈 , 〉) into Gm,log,S is said to be non-degenerate

if for any point s of S, the following (i) and (ii) are satisfied.

(i) The induced Z-bilinear form X ×Y → S := M gp
S,s/O

×
S,s is admissible

in the sense of 7.1.

(ii) Let σ be the face {1} of S. Then the induced R-bilinear form

R⊗Xσ × R⊗ Yσ → R ; (x, y) 7→ log(|〈x, y〉(s)|) is non-degenerate. (See 7.1

for Xσ and Yσ.)

4.11.3. A pairing (X,Y, 〈 , 〉) into Gm,log,S is said to be polarizable if

there is a homomorphism p : Y → X satisfying the following (i)–(iii).

(i) p is injective and the cokernel of p is finite.

(ii) 〈p(y), z〉 = 〈p(z), y〉 for any y, z ∈ Y .

(iii) For any y ∈ Y , 〈p(y), y〉 ∈ MS in Mgp
S . For any y ∈ Y \ {0},

the map α : MS → OS sends 〈p(y), y〉 to a function on S whose values are

always of absolute value < 1.

It is shown in [6] 1.2.8 that any polarizable pairing into Gm,log,S is

non-degenerate in the sense of 4.11.2.

4.11.4. A sheaf A of abelian groups on (fsan/S) is said to be a log com-

plex torus if, locally on S, there exists a non-degenerate pairing (X,Y, 〈 , 〉)

into Gm,log,S such that A is isomorphic to the quotient associated to it.

4.11.5. A log complex torus is called polarizable if there exists a po-

larizable pairing (X,Y, 〈 , 〉) into Gm,log,S such that A is isomorphic to the

quotient associated to it.
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4.11.6. A log complex torus is said to be a log abelian variety if, for

any s ∈ S, the pull back of it to (fsan/s) is polarizable. Here s is endowed

with the inverse image of the log structure of S.

§5. Proofs of Section 1

Let K, OK , mK , S = Spec(OK), and q ∈ mK \ {0} be as in Section 1.

In this section, we prove Proposition 1.7.

5.1. We prove (1) of Proposition 1.7. It is easy to deduce that the pull

back of Eq to (fs/Spec(K)) is Eq from the fact that the pull back of E
(I)
qi to

(fs/Spec(K)) is Eqi and from the fact that Eq is the quotient of Eqi by the

action of qZ/qiZ as a sheaf for the étale topology.

We prove that the pull back of Eq to (fs/S)′ is G
(q)
m,log/q

Z. We have

evident morphisms on (fs/S)′ from the pull backs of the E
(I)
qi s to G

(q)
m,log/q

Z

and evidently the equivalence relations are killed in G
(q)
m,log/q

Z. Hence we

have a morphism on (fs/S)′ from the pull back of Eq to G
(q)
m,log/q

Z. Next

we will give a morphism on (fs/S)′ from G
(q)
m,log to the pull back of Eq. Let

ϕ be a local section of G
(q)
m,log. Locally, take a positive integer m such that

q−m|ϕ|qm. Consider the image of ϕ in the pull back of E
(1/2+Z)
q2m to (fs/S)′,

and then the image of it in the pull back of Eq to (fs/S)′. This gives a well-

defined morphism from G
(q)
m,log to the pull back of Eq, which factors through

the quotient by qZ and induces the converse of the above morphism on

(fs/S)′ from the pull back of Eq to G
(q)
m,log/q

Z.

Lemma 5.2. The map E
(I)
q → Eq is injective.

Proof. By a limit argument, it is sufficient to prove that the map

E
(I)
q (U) → Eq(U) is injective for any fs log scheme U over S whose un-

derlying scheme is the Spec of a Noetherian ring R. Since R → (R ⊗OK

K) × lim
←−n

(R/mn
KR) is faithfully flat and since E

(I)
q (lim
←−n

R/mn
KR) →

lim
←−n

E
(I)
q (R/mn

KR) is bijective, the map E
(I)
q (R) → E

(I)
q (R ⊗OK

K) ×

lim
←−n

E
(I)
q (R/mn

KR) is injective. Since E
(I)
q (R ⊗OK

K) = Eq(R ⊗OK
K),

we are reduced to the injectivity of E
(I)
q (R/mn

KR)→ Eq(R/m
n
KR) which is

clear from the descriptions of the restrictions of E
(I)
q and Eq to (fs/S)′. (For

Eq, the description was proved in 5.1.)
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5.3. We define a surjective morphism Eq → G
(q)
m,log/(Gmq

Z) as follows.

For an fs log scheme U over S, this is given as

Eq(U) −→ Eq(U ⊗OK
OK/mK) −→ (G

(q)
m,log/(Gmq

Z))(U ⊗OK
OK/mK)

∼=
←− (G

(q)
m,log/(Gmq

Z))(U),

where the second arrow is given by identifying the pull back of Eq to (fs/S)′

with G
(q)
m,log/q

Z.

It is easy to see that E
(I)
q coincides with the inverse image of

G
(q,I)
m,log/(Gmq

Z) in Eq. This completes the proof of 1.7 (3).

5.4. We consider the semi-abelian scheme G over OK which extends Eq

(see [1], [2] for example). It is the open set of the proper model E
(Z)
q , which is

the union of the general fiber of E
(Z)
q and the smooth part of the special fiber

of E
(Z)
q . We endow G with the inverse image of the log structure of S (then

G(U) for an fs log scheme U over S coincides with the usual G(U) defined

by forgetting the log structure of U). As a sheaf on (fs/S), G coincides with

the inverse image in E
(Z)
q of the unit section of G

(q)
m,log/(Gmq

Z). In particular,

the pull back of G to (fs/S)′ coincides with Gm.

There is a unique action of G on E
(Z)
q whose pull back to (fs/Spec(K))

coincides with the group law Eq ×Eq → Eq, and whose pull back to (fs/S)′

is induced from the evident action of Gm on G
(q)
m,log/q

Z (cf. [1]).

5.5. Consider the proper model (E
(Z)
q × E

(Z)
q )′ of Eq × Eq whose pull

back to (fs/S)′ is

{(ϕ1, ϕ2) ∈ Gm,log ×Gm,log | locally there exist a, b, c ∈ Z such that

qa|ϕ1|q
a+1, qb|ϕ2|q

b+1, qc|ϕ−1
1 ϕ2|q

c+1}/(qZ × qZ).

The existence of this proper model is shown as in the same way as the

existence of E
(I)
q in 1.5. We have a canonical log étale morphism of proper

models (E
(Z)
q ×E

(Z)
q )′ → E

(Z)
q ×E

(Z)
q , and a morphism ν : (E

(Z)
q ×E

(Z)
q )′ → E

(Z)
q

whose pull back to (fs/S)′ is given by (ϕ1, ϕ2) 7→ ϕ−1
1 ϕ2.

The open immersion G × E
(Z)
q → E

(Z)
q × E

(Z)
q factors uniquely through

an open immersion G × E
(Z)
q → (E

(Z)
q × E

(Z)
q )′, and the action of G on E

(Z)
q

coincides with the composition G×E
(Z)
q → G×E

(Z)
q → (E

(Z)
q ×E

(Z)
q )′

ν
→ E

(Z)
q ,

where the first arrow is (g, f) 7→ (g−1, f), the second arrow is the above open

immersion, and the last arrow is ν.
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Lemma 5.6. Let U be an fs log scheme over S. Let f, g ∈ Eq(U). Then

étale locally on U , there exist an integer m ≥ 1 and sections f̃ , g̃ of E
(Z)
qm such

that f comes from f̃ , g comes from g̃, and (f̃ , g̃) belongs to (E
(Z)
qm × E

(Z)
qm )′.

Here (E
(Z)
qm × E

(Z)
qm )′ is defined as in 5.5 replacing q there by qm.

Proof. We may assume that f comes from E
(I)
qi and g comes from E

(J)
qj

for some (i, I), (j, J). For α ∈ I, let E
(I,α)
qi be the open fs log subscheme

of E
(I)
qi characterized by the property that for any fs log scheme U over S,

E
(I,α)
qi (U) consists of all elements of E

(I)
qi (U) whose image in E

(I)
qi (U ⊗OK

OK/mK) belongs to the image of {ϕ ∈ Gm,log | q
kiα|ϕk|qkiα

′

for some k ≥

1 such that kα, kα′ ∈ Z}. Then E
(I)
qi is covered by E

(I,α)
qi for α ∈ I. Hence

we may assume that f comes from E
(I,α)
qi (U) and g comes from E

(J,β)
qj (U)

for some α ∈ I, β ∈ J . Furthermore we may assume α ≥ 0 and iα′ ≤ jβ

(use the equivalence 1.6.2). Take a common multiple m ≥ 1 of i and j

such that jβ ′ ≤ m. Then, since 0 ≤ iα, iα′ ≤ m, 0 ≤ jβ, jβ ′ ≤ m, and

0 ≤ −iα′ + jβ,−iα+ jβ ′ ≤ m, étale locally, both f and g come from f̃ and

g̃ in E
(Z)
qm such that (f̃ , g̃) belongs to (E

(Z)
qm × E

(Z)
qm )′.

Lemma 5.7. Let SpecR be an fs log scheme over S with R a Noetherian

ring. Then Eq(R)→ Eq(R⊗OK
K)× lim

←−n
Eq(R/m

n
KR) is injective.

Proof. Let f, g ∈ Eq(R) and assume that the images of f and g in

Eq(R⊗OK
K)× lim

←−n
Eq(R/m

n
KR) coincide. We prove f = g. By Lemma 5.6,

étale locally on SpecR, there exists m ≥ 1 such that f , g come from

f̃ , g̃ ∈ E
(Z)
qm and such that (f̃ , g̃) ∈ (E

(Z)
qm × E

(Z)
qm )′. Since the images of

f , g in G
(q)
m,log/(Gmq

Z) coincide, there exists i ∈ Z such that f̃ belongs

to E
((−i/m)+Z)
qm and the images of qif̃ and g̃ in G

(q)
m,log/(Gmq

mZ) coincide.

Let G′ be the semi-abelian scheme over OK corresponding to Eqm . Then

a := ν(qif̃ , g̃) belongs to G′, that is, a ∈ G′(R). Let G be the semi-abelian

scheme over OK which extends Eq. The image of a in G(R⊗OK
K) and the

image of a in lim
←−n

G(R/mn
KR) vanish. Since R→ R⊗OK

K× lim
←−n

R/mn
KR

is faithfully flat and since G(lim
←−n

R/mn
KR) = lim

←−n
G(R/mn

KR) is bijective,

G(R)→ G(R⊗OK
K)× lim

←−n
G(R/mn

KR) is injective. Hence the image of a

in G(R) is the unit element. This proves f = g.

Lemma 5.8. In the situation of Lemma 5.7, Eq(R) is a subgroup of

Eq(R ⊗OK
K)× lim

←−n
Eq(R/m

n
KR).
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Proof. Let f, g ∈ Eq(R). By Lemma 5.6, we may assume that f , g come

for some m ≥ 1 from f̃ , g̃ ∈ E
(Z)
qm such that (f̃ , g̃) belongs to (E

(Z)
qm × E

(Z)
qm )′.

Hence the product of f−1 and g takes values in E
(Z)
qm , and hence in the subset

Eq(R) of Eq(R ⊗OK
K)× lim

←−n
Eq(R/m

n
KR).

5.9. We prove the unique existence of the group structure of Eq stated

in Section 1. The uniqueness follows from the injectivity in Lemma 5.7 by

limit argument (which reduces the problem to Noetherian rings). Also we

have the functorial group structure on Eq(R) by Lemma 5.8 and hence a

group structure on Eq by the limit argument.

§6. Proofs of Section 2

6.1. Proof of Proposition 2.5. To prove Proposition 2.5, we first show

the following lemma:

Lemma 6.1.1. Let H be a commutative group scheme over the under-

lying scheme of S with connected fibers. Then Hom(H,Gm,log/Gm) = 0.

Proof. Let ϕ ∈ Hom(H,Gm,log/Gm), and U an object of (fs/S). We

show that the map H(U) → (Gm,log/Gm)(U) induced by ϕ is trivial. For

u ∈ U , we denote the Spec of the residue field of u endowed with the inverse

image of the log structure of U , simply by u. Since (Gm,log/Gm)(U) →∏
u∈U (Gm,log/Gm)(u) is injective, we are reduced to the case that (the un-

derlying scheme of) U is the Spec of a field. Consider the restriction of

ϕ to the full subcategory C of (fs/S)/U consisting of all objects whose log

structures are the inverse images of the log structure of U . By assuming

U is the Spec of a field, the restriction of Gm,log/Gm to C is a locally con-

stant sheaf, and hence is represented by an étale group scheme over U .

Since a homomorphism of group schemes from H ×S U to an étale group

scheme over U is trivial, the restriction of ϕ to C is trivial. Hence the map

H(U)→ (Gm,log/Gm)(U) induced by ϕ is trivial.

Let G, G′ be as in 2.5.

Corollary 6.1.2. Hom(G,G′
log/G

′) = 0.

Proof. This follows from Lemma 6.1.1 because G′
log/G

′ is étale locally

isomorphic to a finite product of copies of Gm,log/Gm.
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Lemma 6.1.3. Let ϕ : Glog → G′
log be a homomorphism. Then ϕ(G) ⊂

G′.

Proof. This follows from Corollary 6.1.2.

6.1.4. Now let ϕ ∈ Hom(Glog, G
′
log). By Lemma 6.1.3, the map ϕ

induces a homomorphism ψ : G → G′. Let ψlog : Glog → G′
log be the ho-

momorphism induced by ψ. We prove ϕ = ψlog. Since ϕ − ψlog kills G,

we have only to show Hom(Glog/G,G
′
log) = 0. Since Glog/G is étale locally

isomorphic to a finite product of copies of Gm,log/Gm, by replacing Glog/G

by Gm,log/Gm and then G′ by G, it is enough to prove the following lemma:

Lemma 6.1.5. Hom(Gm,log/Gm, Glog) = 0.

Proof. Let W = Spec(OS [t]) endowed with the log structure asso-

ciated to MS × N → OS [t] which sends 1 ∈ N to t. Let U be an ob-

ject of (fs/S). Then, any section of Gm,log/Gm on U is obtained, étale

locally on U , as a∗(t)b∗(t)−1 mod Gm, where a, b : U → W . Hence it is

sufficient to prove that any homomorphism ϕ : Gm,log/Gm → Glog sends

(t mod Gm) ∈ (Gm,log/Gm)(W ) to 0 ∈ Glog(W ). Since (t mod Gm) van-

ishes on W ′ = Spec(OS [t±1]), the section ϕ(t mod Gm) ∈ Glog(W ) van-

ishes on Glog(W
′). Since B(W ) → B(W ′) and Gm,log(W ) → Gm,log(W

′)

are injective, the map Glog(W ) → Glog(W
′) is injective. Hence we have

ϕ(t mod Gm) = 0.

6.2. Proof of 2.8.2. It is easy to see that (c′) implies (c). Assume that

(c) holds. Let y, m be as in (c′). Then m belongs to MS/O
×
S at each point.

Hence m ∈ MS/O
×
S . Let m̃ be a local lift of m to MS . Since m̃ does not

belong to the stalk of O×
S at each point, α(m̃) ∈ OS does not belong to the

stalk of O×
S at each point. Then, since the intersection of all prime ideals

of a commutative ring coincides with the set of nilpotent elements, α(m̃) is

locally nilpotent.

§7. Computations of Hom and Ext

Since log abelian varieties are abelian group objects, for the study of

them, computations of Hom sheaves and Ext sheaves for abelian group

objects related to them are useful. The aim of this section is to prove

Theorem 7.3, Theorem 7.4, and Theorem 7.6 concerning such Hom sheaves

and Ext sheaves, which will be used in Section 8 and Section 9.
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7.1. Let S be an fs log scheme.

In the analytic theory [6], the notion “admissible pairing” played an

important role. We consider it in the algebraic situation.

LetX and Y be finitely generated free Z-modules, let S be an fs monoid,

and let 〈 , 〉 : X × Y → Sgp be a Z-bilinear form. We say 〈 , 〉 is admissible

(or S-admissible for precise) if the following condition is satisfied.

For any face σ of S and any homomorphism N : S → R≥0 into the

additive monoid R≥0 = {r ∈ R | r ≥ 0}, if we denote the face {a ∈ σ |

N(a) = 0} of S by τ , then the pairing of R-linear spaces

R⊗ (Xσ/Xτ )× R⊗ (Yσ/Yτ ) −→ R ; (x, y) 7−→ N(〈x, y〉)

is non-degenerate. Here Xσ (resp. Yσ) denotes the subgroup of X (resp.

Y ) consisting of all elements x (resp. y) such that 〈x, Y 〉 (resp. 〈X, y〉) is

contained in σgp, and Xτ (resp. Yτ ) is defined similarly.

We have (see [6] 1.2.5, and the statement and the proof of [6] 1.2.9)

7.1.1. Let 〈 , 〉 : X × Y → Sgp be an S-admissible pairing and let

S → S ′ be a homomorphism of fs monoids. Then, the induced pairing

X × Y → (S ′)gp is S ′-admissible. Furthermore, if σ′ is a face of S ′ and σ is

the inverse image of σ′ in S, then Xσ = Xσ′ .

7.1.2. If there is a homomorphism φ : Y → X whose cokernel is finite

such that 〈φ(y), z〉 = 〈φ(z), y〉 for any y, z ∈ Y and such that 〈φ(y), y〉 ∈ S

for any y ∈ Y , then 〈 , 〉 is admissible.

Let S be an fs log scheme, let X and Y be finitely generated free Z-

modules, and let 〈 , 〉 : X×Y → (Gm,log/Gm)S be a Z-bilinear form. We say

〈 , 〉 is admissible if the induced pairing X×Y → (M gp
S /O×

S )s is (MS/O
×
S )s -

admissible for any s ∈ S.

For an admissible pairing X×Y → (Gm,log/Gm)S , we denote the image

of X → Hom(Y,Gm,log/Gm) (regarded as a sheaf on (fs/S)) by X , and

the image of Y → Hom(X,Gm,log/Gm) by Y . These sheaves X and Y are

inverse images of sheaves on the small étale site of S. This is seen from the

fact that by the second statement in 7.1.1, for any fs log scheme U over S,

for any s ∈ S and any u ∈ U lying over s, the map of stalks X s → Xu is an

isomorphism.

An admissible pairing 〈 , 〉 is said to be non-degenerate if X →

Hom(Y,Gm,log/Gm) and Y → Hom(X,Gm,log/Gm) are injective. That is,

an admissible pairing is non-degenerate if and only if X = X and Y = Y .
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Example 7.2. (1) For a log 1-motif of type (X,Y ) whose X and Y

are constant sheaves and which has a polarization, the associated pairing

X × Y → (Gm,log/Gm)S is admissible and non-degenerate. This follows

from 7.1.2.

(2) Let q ∈ MS(S), let X = Y = Z, and define the pairing X × Y →

(Gm,log/Gm)S by (m,n) 7→ qmn. Then this pairing is admissible. We have

X = i∗Z with i : Sq=0 → S, where Sq=0 denotes the closed subscheme of

S defined as the zero of the image of q in OS(S). Hence this pairing is

non-degenerate if and only if the image of q in OS is locally nilpotent.

In the rest of this section, S denotes an fs log scheme.

Now we state the theorems 7.3, 7.4, and 7.6 whose proofs will be given

in 7.7–7.26.

Theorem 7.3. Let X and Y be finitely generated free Z-modules, and

let 〈 , 〉 : X × Y → (Gm,log/Gm)S be a non-degenerate admissible pairing.

Let G be a commutative group scheme over the underlying scheme of S

having an exact sequence 0→ T → G→ B → 0 with T a torus over S and B

an abelian scheme over S. Assume that we are given an isomorphism T ∼=
Hom(X,Gm). Let T

(Y )
log = Hom(X,Gm,log)

(Y ) ⊂ Tlog = Hom(X,Gm,log)

(resp. G
(Y )
log ⊂ Glog) be the inverse image of Hom(X,Gm,log/Gm)(Y ) ⊂

Hom(X,Gm,log/Gm) ∼= Tlog/T ∼= Glog/G.

(1) Let H be a commutative group scheme over S and regard H as a

sheaf of abelian groups on (fs/S) in the natural way. Then we have canonical

isomorphisms

Hom(G
(Y )
log ,H) ∼= Hom(B,H), Ext(G

(Y )
log ,H) ∼= Ext(B,H),

induced by the projection G
(Y )
log → B. We have

Hom(G
(Y )
log /G,H) = 0,

and an isomorphism

Ext(G
(Y )
log /G,H) ∼= Hom(T,H)

given as the boundary map associated to the exact sequence 0 → T →

T
(Y )
log → G

(Y )
log /G→ 0.
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(2) We have

Hom(T
(Y )
log ,Gm,log) ∼= X,

Hom(T
(Y )
log /T,Gm,log) = 0, Ext(T

(Y )
log /T,Gm,log) = 0, Ext(T

(Y )
log ,Gm,log) = 0.

(3) Let G′ be a commutative group scheme over the underlying scheme

of S having an exact sequence 0→ T ′ → G′ → B′ → 0 with T ′ a torus over

S and B′ an abelian scheme over S. Let X ′ = Hom(T ′,Gm). Then

Hom(G,G′)
∼=
−→ Hom(G

(Y )
log , G

′
log),

Hom(X ′, X)
∼=
−→ Hom(G

(Y )
log /G,G

′
log/G

′).

Theorem 7.4. Let [Y → Glog] be a log 1-motif over S of type (X,Y )

such that the induced pairing X × Y → Gm,log/Gm is admissible and non-

degenerate (see Remark 7.5 (1) below), and let [X → G∗
log] be its dual. Let

A = G
(Y )
log /Y . Then we have:

(1) Ext(A,Z) ∼= Hom(Y,Z);

(2) Ext(A,Gm) ∼= G∗;

(3) Ext(A,Gm,log) ∼= G∗
log/X;

(4) The sheaves Hom(A,Z), Hom(A,Gm), Hom(A,Gm,log) are zero.

Remark 7.5. (1) In the above, we say a pairing with locally constant

X and Y is admissible and non-degenerate if it is locally so in the sense of

7.1.

(2) From Part III, we plan to consider the dual of a log abelian va-

riety. Recall that the dual abelian scheme A∗ of an abelian scheme A is

Ext(A,Gm). In the case of a log abelian variety with constant degeneration

A = G
(Y )
log /Y associated to a pointwise polarizable log 1-motif [Y → G

(Y )
log ],

the dual A∗ of A is given by A∗ = (G∗
log)

(X)/X. Thus, in this case, Theo-

rem 7.4 (3) shows that A∗ is embedded in Ext(A,Gm,log). Our plan is that

A∗ of a general log abelian variety A should be defined as a certain subgroup

sheaf of Ext(A,Gm,log).

(3) In Theorem 7.3 and Theorem 7.4, we assumed that the admissible

pairing X × Y → (Gm,log/Gm)S is non-degenerate. The log abelian va-

rieties to which these results are directly applied are those with constant

degeneration.
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Theorem 7.6. Let X, Y , X ′, Y ′ be finitely generated free Z-modules

and let

〈 , 〉 : X × Y −→ (Gm,log/Gm)S , 〈 , 〉′ : X ′ × Y ′ −→ (Gm,log/Gm)S

be admissible pairings. (They need not be non-degenerate.)

(1) Let F be the sheaf of pairs (u, v) of homomorphisms u : X
′
→

X, v : Y → Y
′

such that 〈u(x′), y〉 = 〈x′, v(y)〉′ for any x′ ∈ X
′
, y ∈

Y . (Here X
′

denotes the image of X ′ → Hom(Y ′,Gm,log/Gm) and Y
′

is defined similarly.) Let H = Hom(X,Gm,log/Gm)(Y )/Y , H ′ = Hom(X ′,

Gm,log/Gm)(Y
′)/Y

′
. Then the canonical homomorphism F → Hom(H,H ′)

is an isomorphism.

(2) Assume that we are given an isomorphism

h : Hom(X,Gm,log/Gm)(Y )/Y ∼= Hom(X ′,Gm,log/Gm)(Y
′)/Y

′
.

Then there is a unique pair of isomorphisms X ' X
′
and Y ' Y

′
which is

compatible with X × Y → (Gm,log/Gm)S and X
′
× Y

′
→ (Gm,log/Gm)S and

which induces h.

Remark 7.6.1. (1) In 7.6 (1), the canonical homomorphism F →

Hom(H,H ′) is defined since any section of Hom(X,Gm,log/Gm)(Y ) fac-

tors through X → X. The last fact is shown as follows. Take a sec-

tion ϕ of Hom(X,Gm,log/Gm)(Y ). If x ∈ X, locally on S, there exist

y, y′ ∈ Y such that 〈x, y〉|ϕ(x)|〈x, y′〉 in Mgp
S /O×

S . If x belongs to the

kernel of X → X, since the pairing X × Y → Gm,log/Gm factors as

X × Y → X × Y → Gm,log/Gm, 〈x, y〉 and 〈x, y′〉 vanish in M gp
S /O×

S .

Hence ϕ(x) vanishes in M gp
S /O×

S .

(2) In 7.6, (2) is a corollary of (1).

The rest of Section 7 is devoted to the proofs of the theorems 7.3, 7.4,

and 7.6.

For the proofs of these theorems, we use the following Proposition 7.9.

First we make a preparation to state it.

7.7. Let X, Y be finitely generated free Z-modules, and let 〈 , 〉 : X ×

Y → (Gm,log/Gm)S be an admissible pairing. Then étale locally on S, there

exist an fs chart S → MS and an admissible pairing X × Y → Sgp which

induces the original pairing.
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Assume that we are given such S →MS and X × Y → Sgp (we denote

the last pairing also by 〈 , 〉). Let C be the subcone of Hom(S,N) ×

Hom(X,Z) defined as

C = {(N, l) | l(Xker(N)) = 0}

(cf. [6] 3.4). By a finitely generated subcone of C, we mean a finitely

generated submonoid ∆ of the additive monoid C such that for any a ∈ C

satisfying na ∈ ∆ for some n ≥ 1, we have a ∈ ∆.

For a finitely generated subcone ∆ of C, define subsheaves

V (∆) ⊂ Hom(X,Gm,log)
(Y ), V (∆) ⊂ Hom(X,Gm,log/Gm)(Y )

as follows ([6] 3.5). For an fs log scheme U over S,

V (∆)(U) = {ϕ ∈ Hom(X,Gm,log/Gm)(U) |

µϕ(x) ∈MU/O
×
U for any (µ, x) ∈ ∆∨},

where ∆∨ is the dual cone of ∆ in Sgp ×X, that is,

∆∨ = {(µ, x) ∈ Sgp ×X | N(µ) + l(x) ≥ 0 for all (N, l) ∈ ∆}.

Let V (∆) be the inverse image of V (∆) in Hom(X,Gm,log)
(Y ). Then

V (∆) is represented by the fiber product S ×Spec(Z[S]) Spec(Z[∆∨]).

If ∆′ is also a finitely generated subcone of C such that ∆ ⊂ ∆′, then

V (∆) ⊂ V (∆′) and V (∆) ⊂ V (∆′).

We have

Hom(X,Gm,log)
(Y ) =

⋃

∆

V (∆), Hom(X,Gm,log/Gm)(Y ) =
⋃

∆

V (∆),

where ∆ ranges over all finitely generated subcones of C. (The proofs

are the same as the analytic version given in [6] 3.5.) The unit section

of Hom(X,Gm,log)
(Y ) (resp. Hom(X,Gm,log/Gm)(Y )) is contained in V (∆)

(resp. V (∆)) if S∨ × {1} ⊂ ∆.

Example 7.8. LetK and q be as in Section 1. Let S = Spec(OK/m
n
K),

let S = N with a homomorphism S → MS which sends 1 to the class

of a prime element of K, X = Y = Z, X × Y → Sgp = Z the pairing

(m,n) 7→ mne, where e = ordK(q). Then Vα,n in 1.5 coincides with V (∆),

where ∆ ⊂ Hom(S,N) ×Hom(X,Z) ⊂ Z2 is the intersection of Z2 and the

cone {a(1, eα) + b(1, eα′) | a, b ∈ Q, a, b ≥ 0} in Q2. (The Nα there is ∆∨

here.)

https://doi.org/10.1017/S002776300000951X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000951X


92 T. KAJIWARA, K. KATO AND C. NAKAYAMA

Proposition 7.9. Assume that we are given an fs chart S → MS,

finitely generated free Z-modules X, Y , and an admissible pairing 〈 , 〉 : X×

Y → Sgp. Let ∆ be a finitely generated subcone of C.

(1) There exists a finitely generated subcone ∆′ of C containing ∆ and

satisfying the following conditions (i) and (ii).

(i) If (µ, x) ∈ (∆′)∨ (µ ∈ Sgp, x ∈ X), then µ ∈ S.

(ii) Let σ be a face of S. If (µ, x) ∈ (∆′)∨ and x /∈ Xσ, then there exist

µ′, µ′′ ∈ S such that µ = µ′µ′′ and such that (µ′, x) ∈ ∆∨ and µ′′ 6∈ σ.

(2) Let ∆′ be a finitely generated subcone of C as in (1). Let f : V (∆)→

V (∆′) be the inclusion morphism. Then

f−1(Mgp
V (∆′)/O

×
V (∆′)) 'M

gp
S /O×

S ⊕X.

Here we denote the inverse image of M gp
S /O×

S on V (∆) also by M gp
S /O×

S .

(3) Assume that the pairing X × Y →M gp
S /O×

S is non-degenerate. As-

sume that S is quasi-compact. Then there exists a finitely generated subcone

∆′ of C containing ∆ ∪ (S∨ × {1}) such that the morphism of underlying

schemes of the inclusion morphism V (∆)→ V (∆′) coincides with the mor-

phism of underlying schemes of the composition V (∆)→ S → V (∆′), where

the first arrow is the structural morphism and the second arrow is the unit

section of Hom(X,Gm,log)
(Y ).

(1) of Proposition 7.9 is the same as Proposition 3.4.8 of [6].

In Proposition 7.9 (3), in the case where the underlying scheme of S is

the Spec of a field, any ∆′ satisfying the conditions (i) and (ii) has the desired

property. This fact is proved by the same method as [6] Proposition 3.5.6

(1) (i) which treats the analytic situation.

7.10. We prove Proposition 7.9 (2). For a finitely generated subcone

∆ of C, we have a chart ∆∨ → MV (∆). This induces a homomorphism

Sgp ⊕X = (∆∨)gp →Mgp
V (∆). We claim

7.10.1. The induced homomorphism ϕ : X → M gp
V (∆)

/O×
V (∆)

factors

through X.

Proof. Since V (∆) ⊂ Hom(X,Gm,log)
(Y ), this reduces to the fact

proved in Remark 7.6.1 (1).
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Now assume that ∆′ satisfies the conditions (i) and (ii). Let v ∈ V (∆′),

and let s be the image of v in S. Let σ be the kernel of S → (MS/O
×
S )s

and let τ be the kernel of (∆′)∨ → (MV (∆′)/O
×
V (∆′)

)v. Since S → MS and

(∆′)∨ →MV (∆′) are charts, we have

Sgp/σgp ∼= (Mgp
S /O×

S )s,

(Sgp ⊕X)/τgp = ((∆′)∨)gp/τgp ∼= (Mgp
V (∆′)/O

×
V (∆′))v.

Furthermore, Xv = X/Xσ . Hence it is sufficient to prove that if v is the

image of some point u ∈ V (∆), then τ gp = σgp × Xσ. By 7.10.1, we have

τgp ⊃ σgp×Xσ. To prove the converse inclusion, it is sufficient to prove τ ⊂

σgp×Xσ. Let (µ, x) ∈ (∆′)∨. By the condition (i), we have µ ∈ S. If x /∈ Xσ,

then by the condition (ii), µ = µ′µ′′ for some µ′, µ′′ ∈ S such that (µ′, x) ∈

∆∨ and µ′′ /∈ σ. This shows that the image of (µ, x) in (MV (∆)/O
×
V (∆))u does

not vanish. Then the image of (µ, x) in (MV (∆′)/O
×
V (∆′)

)v does not vanish.

Hence (µ, x) /∈ τ . Hence if (µ, x) ∈ τ , we have x ∈ Xσ ⊂ τgp and hence the

image of µ belongs to τ . Since the kernel of (MS/O
×
S )s → (MV (∆′)/O

×
V (∆′))v

is trivial, we have µ ∈ σ. This completes the proof of 7.9 (2).

In the following 7.11–7.12, we give preliminaries for the proof of Propo-

sition 7.9 (3). We prove Proposition 7.9 (3) in 7.13–7.16.

7.11. (This is 3.4.9 of [6].) Let X and Y be finitely generated free Z-

modules, let S be an fs monoid, and let 〈 , 〉 : X×Y → S gp be an admissible

pairing. For each face σ of S, fix an element sσ of the interior of σ and fix

a Z-basis (eσ,i)i of Xσ. For an integer a ≥ 0, let

C(a) := {(N, l) ∈ Hom(S,N)×Hom(X,Z) |

a ·N(sσ) ≥ |l(eσ,i)| for all σ and i}.

The following is Lemma 3.4.10 of [6].

Lemma 7.12. (1) C(a) is a finitely generated subcone of C.

(2)
⋃
a C(a) = C.

Lemma 7.13. Let the assumptions be as in Proposition 7.9 (3). Let Θ

be the set of all faces σ of S for which there exists a point s of S such that

σ coincides with the kernel of S →MS,s/O
×
S,s.

(1) If σ ∈ Θ, then Xσ = {1}.

(2) If N ∈ Hom(S,N) and Ker(N) ∈ Θ, then we have (N, l) ∈ C for

any l ∈ Hom(X,Z).
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Proof. (2) follows from (1). We prove (1). Let s be a point of S such

that σ is the kernel of S →MS,s/O
×
S,s. Then Xσ is contained in the kernel

of X → Hom(Y,M gp
S,s/O

×
S,s) and hence should be {1} because the pairing is

nondegenerate.

Lemma 7.14. For each σ ∈ Θ, fix a homomorphism Nσ : S → N such

that Ker(Nσ) = σ. Let µ ∈ S, and assume that Nσ(µ) > 0 for any σ ∈ Θ.

Then the image of µ in Γ(S,OS) is nilpotent.

Proof. Since the intersection of all prime ideals of a commutative ring

coincides with the set of nilpotent elements, and since S is quasi-compact,

it is sufficient to prove that for any s ∈ S, the image of µ in MS,s/O
×
S,s is

non-trivial. Let σ ∈ Θ be the kernel of S →MS,s/O
×
S,s. Since S →MS is a

chart, we have S/σ
∼=
→MS,s/O

×
S,s. Since µ does not belong to Ker(Nσ) = σ,

this implies that the image of µ in MS.s/O
×
S,s is non-trivial.

The following Lemma 7.15 is a refinement of Lemma 7.14:

Lemma 7.15. Let

I := {µ ∈ S | the image of µ in Γ(S,OS) is nilpotent}.

Then for each n ≥ 1, the following holds for any sufficiently large integer

m: If µ ∈ S and if Nσ(µ) ≥ m for any σ ∈ Θ, then µ belongs to the n-th

power In of the ideal I of S.

Here an ideal J of S means a subset J of S such that aµ ∈ J for any

a ∈ S and µ ∈ J . For n ≥ 1, the n-th power of the ideal J means the subset

{
∏n
i=1 µi | µi ∈ J}.

Proof. We may assume that I is not empty. An ideal of S is finitely

generated. (This follows from the fact that the ring Z[S] is Noetherian.) Let

J be a finite subset of I which generates the ideal I, and let b be the integer

max(
⋃
σ∈ΘNσ(J)). We show that any m ≥ bn has the property stated in

Lemma 7.15. We use the induction on n. If n = 1, then Lemma 7.14 in

fact shows that any m ≥ 1 has the property stated in Lemma 7.15. Assume

n ≥ 2, and let µ be an element of S such that Nσ(µ) ≥ bn for any σ ∈ Θ.

Then µ ∈ I by Lemma 7.14. Hence µ = µ′µ′′ for some µ′ ∈ S and for

µ′′ ∈ J . We have

Nσ(µ
′) = Nσ(µ)−Nσ(µ

′′) ≥ bn− b = b(n− 1).

By induction on n, we have µ′ ∈ In−1. Hence µ ∈ In.
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7.16. We now prove Proposition 7.9 (3).

For each face σ of S, fix an element sσ of the interior of σ and a basis

(eσ,i)i of Xσ. For an integer a ≥ 0, let C(a) be as in 7.11. Fix also a

finite subset B of Hom(X,Z) which generates the Z-module Hom(X,Z).

By Lemma 7.13 (2) and by
⋃
a C(a) = C (7.12 (2)), the following condition

(∗) is satisfied if a is large enough:

(∗) (Nσ, l) ∈ C(a) for any σ ∈ Θ and l ∈ B.

Since ∆ ⊂ C(a) for some of such an a > 0, we may assume ∆ = C(a) for

some a > 0 satisfying (∗).

Fix a finite set of generators {(Ni, li)}1≤i≤r of ∆ = C(a), and fix also a

finite set of generators J of the ideal I of S. Fix k ≥ 1 such that α(I k) = {0}.

Here α is the chart. Now let m ≥ 1 be a sufficiently large integer satisfying

the following (i) and (ii):

(i) If µ ∈ S and if Nσ(µ) ≥ m for any σ ∈ Θ, then µ ∈ Ik (Note that

(i) is satisfied if m is large enough by Lemma 7.15);

(ii) m > k ·max{Ni(µ) | 1 ≤ i ≤ r, µ ∈ J}.

We prove that ∆′ = C(am) has the property stated in 7.9 (3). Let

(µ, x) ∈ (∆′)∨. It is sufficient to prove the following (a) and (b):

(a) µ ∈ S;

(b) α(µ) = α((µ, x)) on V (∆).

First, (a) follows from Ni(µ) ≥ |mli(x)| ≥ 0 for all i. (Here we use

(Ni,±mli) ∈ C(am) = ∆′.) We prove (b). If x = 1, then µ = (µ, x) and so

there is no problem. We prove that if x 6= 1, then there are elements µ′ and

µ′′ of S such that µ = µ′µ′′, α(µ′′) = 0, and (µ′, x) ∈ ∆∨. Then on V (∆),

we will have

α((µ, x)) = α((µ′, x)µ′′) = α((µ′, x))α(µ′′) = 0,

α(µ) = α(µ′µ′′) = α(µ′)α(µ′′) = 0.

Assume x 6= 1. Take l ∈ B such that l(x) 6= 0. For any σ ∈ Θ,

(Nσ, l) ∈ C(a) by (∗) and hence (Nσ,ml) ∈ C(am). Hence

Nσ(µ) ≥ m|l(x)| ≥ m.

By (i), we have µ ∈ Ik. Hence µ = µ′ ·
∏k
j=1 µj for some µ′ ∈ S and µj ∈ J .

Let µ′′ =
∏k
j=1 µj. Then α(µ′′) = 0. We prove (µ′, x) ∈ ∆∨. It is sufficient
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to prove Ni(µ
′) + li(x) ≥ 0 for 1 ≤ i ≤ r. If li(x) = 0, we have nothing to

prove. If li(x) 6= 0,

Ni(µ
′) + li(x) = Ni(µ)−

k∑

j=1

Ni(µj) + li(x)

≥ m|li(x)| − k ·max({Ni(µj)}i,j) + li(x)

(this follows from (Ni,±mli) ∈ ∆′)

≥ m− 1− k ·max({Ni(µj)}i,j) ≥ 0 (by (ii)).

7.17. We now start the proof of Theorem 7.3. We first prove that

the sheaves Hom(T
(Y )
log ,H), Hom(T

(Y )
log /T,Gm,log), Ext(T

(Y )
log ,H), Ext(T

(Y )
log ,

Gm,log) are zero. Without a loss of generality, let the assumptions be as in

Proposition 7.9 (3). For a finitely generated subcone ∆ of C which contains

S∨×{1}, let S∆ be the fs log scheme over S whose underlying scheme over S

is that of S and which is endowed with the inverse image of the log structure

of V (∆) under the unit section S → V (∆) of T
(Y )
log . Then by 7.9 (3), T

(Y )
log is

the union of subsheaves represented by S∆, where ∆ ranges over all finitely

generated subcones of C.

Proof of Hom(T
(Y )
log ,H) = 0. Let h be a homomorphism T

(Y )
log → H. It

is sufficient to prove that the restriction of h to each S∆ is trivial. Since

MorS(S∆,H) is identified with the set of S-morphisms S → H, and since

the origin S → S∆ of Tlog is sent to the origin of H by h, the morphism

S∆ → H induced by h is trivial.

Proof of Hom(T
(Y )
log /T,Gm,log) = 0. Let h be a homomorphism T

(Y )
log →

Gm,log and assume that h kills T . We show that the restriction of h to each

S∆ is trivial. By Proposition 7.9 (2), if we replace ∆ by a sufficiently big

finitely generated subcone of C, then the set Γ(S∆,M
gp
S∆

) is identified with

Γ(S,Mgp
S ×X). Let (µ, x) ∈ Γ(S,M gp

S ×X) be the element corresponding

to the restriction of h to S∆. The pull back µ of (µ, x) to the origin S → S∆

of Tlog is trivial, and this shows that the restriction of h to S∆ is induced

by an element x of X. But h kills T , and this implies that x : T → Gm,log

is trivial, that is, x is trivial. Hence the restriction of h to S∆ is trivial.

Proof of Ext(T
(Y )
log ,H) = 0. Let 1 → H → F

p
→ T

(Y )
log → 1 be an

exact sequence. We show that this sequence has a splitting s : T
(Y )
log → F

locally on S. For a finitely generated subcone ∆ of C, consider the H-torsor

F∆ := p−1(S∆) over S∆. By the generality of sites, for any sheaf of abelian
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groups F on (fs/S∆) and any q ∈ Z, the cohomology group H q((fs/S∆),F)

coincides with the Hq of the restriction of F to the small étale site Sét of

S. By applying this to F = H and q = 0, 1, we see that the category of

H-torsors on (fs/S∆) is equivalent to that of H-torsors on Sét. Since the

unit section S → S∆ of T
(Y )
log induces the identity functor of the small étale

site of S, the pull back by this morphism gives an equivalence from the

category of H-torsors on (fs/S∆) to the category of H-torsors on (fs/S).

Since the pull back of F∆ by the unit section S → S∆ of T
(Y )
log is the trivial

H-torsor H ⊂ F , the above equivalence shows that there is a unique section

s∆ : S∆ → F∆ of p : F∆ → S∆ whose pull back by the unit section S → S∆

of T
(Y )
log coincides with the unit section of H. Since these s∆ are compatible

with the inclusion morphisms S∆ → S∆′ for ∆ ⊂ ∆′, and since T
(Y )
log is the

union of S∆ for all ∆, we have a section s : T
(Y )
log → F of p : F → T

(Y )
log by

gluing s∆. It is easily checked that s is a homomorphism.

Proof of Ext(T
(Y )
log ,Gm,log) = 0. Let 1 → Gm,log → F

p
→ T

(Y )
log → 1 be

an exact sequence. We show that this sequence has a splitting s : T
(Y )
log → F

locally on S. For a finitely generated subcone ∆ of C, consider the Gm,log-

torsor F∆ := p−1(S∆) over S∆. The set of isomorphism classes of all Gm,log-

torsors on (fs/S∆) is identified with H1(Sét,M
gp
S∆

). If ∆ is sufficiently large,

by 7.9 (2), M gp
S∆

= Mgp
S ×X and this sheaf on Sét is independent of the choice

of such ∆. Thus the category of Gm,log-torsors on (fs/S∆) is independent

of the choice of such ∆. Hence by working locally on S, we may assume

that there is a section s∆ : S∆ → F∆ for all ∆ which are compatible with

the inclusion maps between S∆. Let s : T
(Y )
log → F be the unique morphism

whose restriction to S∆ coincides with s∆ for all ∆. The problem is that s

need not be a homomorphism. Consider the morphism

g : T
(Y )
log × T

(Y )
log −→ Gm,log ; g(a, b) = s(a+ b)s(a)−1s(b)−1.

Then g satisfies

(∗) g(a, b) · g(a, b + c)−1 · g(a + b, c) · g(b, c)−1 = 1.

Since Mor(S∆×SS∆,Gm,log) = Γ(S,M gp
S ×X×X) for any sufficiently big ∆

by Proposition 7.9 (2), g corresponds to an element (µ, x, y) of Γ(S,M gp
S ×

X ×X). The property (∗) of g implies

(µ, x, y, 1) · (µ, x, y, y)−1 · (µ, x, x, y) · (µ, 1, x, y)−1 = 1

in Γ(S,M gp
S ×X ×X ×X).
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This implies x = y = 1, and hence g is the constant morphism with value

µ. Hence if we replace s by µs, then g becomes trivial and hence s becomes

a homomorphism.

7.18. We prove (1) of Theorem 7.3.

By the exact sequence 0 → T
(Y )
log → G

(Y )
log → B → 0, the results

on Hom(G
(Y )
log ,H) and Ext(G

(Y )
log ,H) follow from Hom(T

(Y )
log ,H) = 0 and

Ext(T
(Y )
log ,H) = 0 (7.17).

From the exact sequence 0→ T → T
(Y )
log → G

(Y )
log /G → 0, we obtain an

exact sequence

0 −→ Hom(G
(Y )
log /G,H) −→ Hom(T

(Y )
log ,H)

−→ Hom(T,H) −→ Ext(G
(Y )
log /G,H) −→ Ext(T

(Y )
log ,H).

Since Hom(T
(Y )
log ,H) and Ext(T

(Y )
log ,H) vanish by 7.17, we obtain the results

on Hom(G
(Y )
log /G,H) and Ext(G

(Y )
log /G,H).

7.19. We prove the first part of Theorem 7.3 (3). Let h : G
(Y )
log → G′

log

be a homomorphism. Since Hom(G,G′
log/G

′) = 0 as we have seen in Corol-

lary 6.1.2, h sends G into G′. This homomorphism G → G′ induces by

functoriality a homomorphism Glog → G′
log. Let g be the restriction of the

last homomorphism to G
(Y )
log . We prove h = g. In fact, h − g is a homo-

morphism G
(Y )
log /G→ G′

log and G
(Y )
log /G

∼= T
(Y )
log /T . Hence we are reduced to

showing Hom(T
(Y )
log /T,G

′
log) = 0. This follows from Hom(T

(Y )
log /T,B

′) = 0

and Hom(T
(Y )
log /T, T

′
log) = 0 proved in 7.17.

7.20. We prove (2) of Theorem 7.3. By 7.17 and by the fact

Hom(T
(Y )
log ,Gm,log) ∼= X which is a special case (B = 0 and G′ = Gm) of the

first part of (3) of Theorem 7.3, it remains to prove Ext(T
(Y )
log /T,Gm,log) = 0.

We have an exact sequence Hom(T
(Y )
log ,Gm,log) → Hom(T,Gm,log) →

Ext(T
(Y )
log /T,Gm,log)→ Ext(T

(Y )
log ,Gm,log), which can be rewritten as

X
1
−→ X −→ Ext(T

(Y )
log /T,Gm,log) −→ 0,

where the first X appears here by the first part of (3) of Theorem 7.3,

the second X appears by Hom(T,Gm,log/Gm) = 0 (6.1.1), and the last 0

appears by 7.17.
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7.21. We prove the second part of Theorem 7.3 (3).

We have an exact sequence

Hom(G
(Y )
log /G, T

′
log) −→ Hom(G

(Y )
log /G,G

′
log/G

′)

−→ Ext(G
(Y )
log /G, T

′) −→ Ext(G
(Y )
log /G, T

′
log).

The first and the last sheaves are zero by (2) of Theorem 7.3. The third

is Hom(T, T ′) = Hom(X ′, X) by (1) of Theorem 7.3. This completes the

proof of Theorem 7.3.

Before we prove Theorem 7.4, we show the following result.

Proposition 7.22. (1) Ext(B,Z) = 0.

(2) Ext(B,Gm,log/Gm) = 0.

Proof. Let K be either Z or Gm,log/Gm. Let f : (fs/B)→ (fs/S) be the

morphism of sites associated to the functor (fs/S)→ (fs/B) ; U 7→ U ×S B.

We first prove R1f∗K = 0. We have to prove that the restriction of R1f∗K

to the small étale site of each object U of (fs/S) is zero. By replacing U by

S, we are reduced to proving that the stalk (R1f∗K)s is zero for any s ∈ S.

Since B is proper over S, by the proper base change theorem, the canonical

map (R1f∗K)s → R1(f ×S s)∗(K) is injective, where f ×S s : B ×S s → s.

Hence it is sufficient to prove that H1(Bét,K) = 0 in the case where the

underlying scheme of S is the Spec of a separably closed field. In this case, K

is a torsion-free constant sheaf. It is well known that for a Noetherian normal

scheme W and for a torsion-free abelian group J , we have H 1(Wét, J) = 0.

Now let 0 → K → F
p
→ B → 0 be an exact sequence. We prove that

locally on S, there is a splitting t : B → F of this sequence. By R1f∗K = 0,

we have, locally on S, a morphism t : B → F such that p ◦ t is the identity.

The problem is that t need not be a homomorphism. Since p ◦ t(0) = 0, the

map t(0) is a morphism S → K. By replacing t by t(0)−1t (this t(0) denotes

the constant morphism B → S
t(0)
→ K), we have t such that t(0) is the unit

section of K. We prove that such a map t is a homomorphism. For such a

map t, consider the morphism

g : B ×B −→ K ; (a, b) 7−→ t(a+ b)t(a)−1t(b)−1.

To prove that g is the unit section of K, since the stalk Ks (s ∈ S) is

isomorphic to K(s), we may assume that the underlying scheme of S is the

https://doi.org/10.1017/S002776300000951X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000951X


100 T. KAJIWARA, K. KATO AND C. NAKAYAMA

Spec of a separably closed field. Then the restriction of K on the small

étale site of B × B is a constant sheaf, and the restriction of g to the

origin S → B × B of B × B coincides with the unit section of K. Hence

g : B ×B → K is the unit section.

Corollary 7.23. Ext(G
(Y )
log ,Z) = 0.

Proof. This follows from Proposition 7.22 (1) and the case H = Z of

(1) of Theorem 7.3.

7.24. We prove Theorem 7.4.

We prove (1) and Hom(A,Z) = 0. From the exact sequence 0 → Y →

G
(Y )
log → A→ 0, we obtain an exact sequence

0 −→ Hom(A,Z) −→ Hom(G
(Y )
log ,Z)

−→ Hom(Y,Z) −→ Ext(A,Z) −→ Ext(G
(Y )
log ,Z).

But Hom(G
(Y )
log ,Z) vanishes by the case H = Z of (1) of Theorem 7.3 and by

Hom(B,Z) = 0, and Ext(G
(Y )
log ,Z) vanishes by Corollary 7.23. This proves

(1) and Hom(A,Z) = 0.

We prove (2), (3) and the vanishings of Hom(A,Gm) and Hom(A,

Gm,log). By A = [Y → G
(Y )
log ] and B = G

(Y )
log /T

(Y )
log , we have an exact

sequence for any sheaf F of abelian groups on (fs/S)

0 −→ Ker(Hom(B,F ) −→ Hom(Y, F )) −→ Hom(A,F ) −→

Hom(T
(Y )
log , F ) −→ Ext([Y → B], F ) −→ Ext(A,F ) −→ Ext(T

(Y )
log , F ).

Put F = Gm. Then we obtain (2) by G∗ = Ext([Y → B],Gm) and 7.17,

and we also obtain Hom(A,Gm) = 0 by 7.17 and Hom(B,Gm) = 0.

To prove (3), we first prove

(∗) Ext([Y → B],Gm,log) = G∗
log.

By 7.22 (2) and Hom(B,Gm,log/Gm) = 0 (6.1.1), we have

Ext(B,Gm,log) ∼= Ext(B,Gm) and Hom(B,Gm,log) ∼= Hom(B,Gm) = 0.
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Hence Ext([Y → B],Gm,log) is the push out of the diagram

Hom(Y,Gm) −−−→ Ext([Y → B],Gm)
y

Hom(Y,Gm,log),

that is, the push out of T ∗
log ← T ∗ → G∗, i.e., G∗

log.

By (∗) and the above exact sequence for F = Gm,log, and by

Hom(B,Gm,log) = 0, we have an exact sequence

0 −→ Hom(A,Gm,log) −→ Hom(T
(Y )
log ,Gm,log) −→ G∗

log

−→ Ext(A,Gm,log) −→ Ext(T
(Y )
log ,Gm,log).

We have Hom(T
(Y )
log ,Gm,log) = X (7.3 (2)), Ext(T

(Y )
log ,Gm,log) = 0 (7.3 (2)),

and X → G∗
log is injective. Hence we obtain Ext(A,Gm,log) ∼= G∗

log/X and

Hom(A,Gm,log) = 0. This completes the proof of Theorem 7.4.

7.25. Now we start the proof of Theorem 7.6.

First, we prove that the morphism F →Hom(H,H ′) is an isomorphism

in the case where the pairing X × Y → (Gm,log/Gm)S is non-degenerate.

Let L = Hom(X,Gm,log/Gm)(Y ). We have an exact sequence

Hom(L,Z) −→ Hom(Y,Z) −→ Ext(L/Y,Z) −→ Ext(L,Z).

Applying (1) of Theorem 7.3 to H = Z, we obtain Hom(L,Z) = 0 and

Ext(L,Z) ∼= Hom(T,Z) = 0. Hence we obtain

Ext(L/Y,Z) ∼= Hom(Y,Z).

Assume that we are given a homomorphism h : L/Y → L′/Y ′. Then via

the above isomorphism, the homomorphism Ext(L′/Y ′,Z) → Ext(L/Y,Z)

induced by h gives a homomorphism g : Y → Y ′. The construction of g

shows that the two extensions of L/Y by Y ′, one is obtained from 0 →

Y ′ → L′ → L′/Y ′ → 0 by pulling back by h and the other is obtained

from 0 → Y → L → L/Y → 0 by pushing forward by g, are isomorphic.

Since Hom(L/Y, Y ′) ⊂ Hom(L, Y ′) = 0 by the case H = Y ′ of (1) of

Theorem 7.3, this shows that there is a unique homomorphism f : L → L′

which commutes with g and h. By the second part of (3) of Theorem 7.3,

this f comes from a unique homomorphism X ′ → X.
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7.26. We complete the proof of Theorem 7.6.

It is sufficient to prove that for any fs log scheme U over S and any u ∈

U , the map of stalks Fu → Hom(H,H ′)u is bijective. As is easily seen, the

map Fu → F (u) is bijective. The map F (u) → Hom(H,H ′)(u) is bijective

by 7.25. Hence it is sufficient to prove that the map Hom(H,H ′)u →

Hom(H,H ′)(u) is injective.

We construct an injective morphism of sheaves Hom(H,H ′) →

Hom(X ′, X). Since Hom(X ′, X)u → Hom(X ′, X)(u) is bijective as is eas-

ily seen, this will prove the injectivity of Hom(H,H ′)u → Hom(H,H ′)(u).

(The morphism which we construct is a part of the inverse map of F →

Hom(H,H ′), but we will not need this fact.)

Working locally on S, take an fs chart S → MS and an admissible

pairing X × Y → Sgp which induces 〈 , 〉.

The pull backs by the canonical morphisms V (∆) → H for finitely

generated subcones ∆ of C define an injective morphism of sheaves

Mor(H,H ′)
⊂
−→ lim
←−
∆

Mor(V (∆),H ′).

Here Mor denotes the sheaf of morphisms (the group structures are ne-

glected). Let ∆ be a finitely generated subcone of C such that V (∆) con-

tains the unit section of Hom(X,Gm,log)
(Y ), and take a finitely generated

subcone ∆′ of C containing ∆ satisfying the conditions (i) and (ii) of Propo-

sition 7.9 (1). Let f : V (∆)→ V (∆′) be the inclusion map, and let H ′
∆′ be

the restriction of H ′ to the small étale site of V (∆′). By Proposition 7.9

(2), we have

(1) f−1(H ′
∆′) ⊂ Hom(X ′,Mgp

S /O×
S )/Y

′
×Hom(X ′, X).

Here we denote the inverse image of the sheaf M gp
S /O×

S under V (∆) → S

by Mgp
S /O×

S . By the following 7.26.1 which is proved easily, and which we

apply to P = V (∆) and Q = S, H0(V (∆), ) of the sheaf on the right

hand side of (1) is H0(S,Hom(X ′,Mgp
S /O×

S )/Y
′
×Hom(X ′, X)). Hence the

inclusions (1) for varying ∆ give an injective morphism

lim
←−
∆

Mor(V (∆),H ′)
⊂
−→ Hom(X ′,Gm,log/Gm)/Y

′
×Hom(X ′, X).

For g ∈Mor(H,H ′), if we denote the image of g inHom(X ′,Gm,log/Gm)/Y
′

×Hom(X ′, X) as (c, h) with c ∈ Hom(X ′,Gm,log/Gm)/Y
′
and h : X ′ → X,
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then the composition g ◦ 0: S → H ′ of g with the unit section S → H

coincides with c. Hence if g is a homomorphism, then c vanishes. Hence we

have an injective morphism of sheaves Hom(H,H ′)→Hom(X ′, X).

7.26.1. Let a : P → Q, b : Q → P be continuous maps of topological

spaces such that a ◦ b is the identity map of Q and such that a−1(s) is

connected for any s ∈ Q. Then for any sheaf F on Q, the canonical map

F → a∗a
−1(F ) is an isomorphism.

§8. Proofs of Section 3

We prove Theorem 3.4. Since a pointwise polarizable log 1-motif of type

(X,Y ) induces a non-degenerate admissible pairingX×Y → (Gm,log/Gm)S ,

(7.5 (1)), it is sufficient to prove the following theorem.

Theorem 8.1. Let C1 be the category of log 1-motifs [Y → Glog] such

that the induced pairing X × Y → (Gm,log/Gm)S is admissible and non-

degenerate. Let C2 be the category of sheaves of abelian groups on (fs/S).

Then the functor

C1 −→ C2 : [Y → Glog] 7−→ G
(Y )
log /Y

is fully faithful.

8.2. Let M = [Y → Glog] and M ′ = [Y ′ → G′
log] be objects of C1 and

let A = G
(Y )
log /Y , A′ = G′(Y

′)
log /Y ′ ∈ C2.

We show that a morphism h : A → A′ comes from a unique homomor-

phism M →M ′.

First, by Theorem 7.4 (1), we have

(1) Ext(A,Z) ∼= Hom(Y,Z).

By this and by Hom(A,Z) = 0 (7.4 (4)), we see that the exact sequence

0 → Y → G
(Y )
log → A → 0 given by the above isomorphism is the “uni-

versal” extension of A by locally constant sheaves of finitely generated free

Z-modules, that is, the initial object among them.

By the isomorphism (1), the homomorphism Ext(A′,Z) → Ext(A,Z)

induced by h gives a homomorphism g : Y → Y ′. The construction of

g shows that the two extensions of A by Y ′, one is obtained from 0 →

Y ′ → G′(Y
′)

log → A′ → 0 by pulling back by h and the other is obtained

from 0 → Y → G
(Y )
log → A → 0 by pushing forward by g, are isomorphic.
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Since Hom(A, Y ′) = 0, this shows that there is a unique homomorphism

f : G
(Y )
log → G′(Y

′)
log which commutes with g and h. By the first part of (3)

of Theorem 7.3, this f comes from a unique homomorphism G→ G′. This

completes the proof of the theorem.

§9. Proofs of Section 4, I

In this section we give the proofs of results in Section 4, except that the

proof of Theorem 4.10 will be given in Sections 10–11.

9.1. Proof of the equivalence of definitions stated in 4.3.

By 7.1.2, which is applied to the pairings X s × Y s → (Gm,log/Gm)S,s
(s ∈ S), if the condition 4.1.2 is satisfied, then the alternative condition by

using admissibility is satisfied.

We prove the converse. Assume that the conditions in the alternative

definition using admissibility on X × Y → (Gm,log/Gm)S are satisfied. Let

s ∈ S. Then the pull back of A to (fs/s) is associated to a polarizable

log 1-motif [Y ′ → Glog] of type (X ′, Y ′). By Theorem 7.6, the pairing

X ′×Y ′ → (Gm,log/Gm)s is identified with Xs×Y s → (Gm,log/Gm)s. Hence

a polarization Y ′ → X ′ induces a homomorphism Y s → Xs satisfying the

condition (i) in the condition 4.1.2.

9.2. We explain the facts stated in 4.4. The semi-abelian part G is

uniquely determined by A as the biggest subgroup sheaf of A which is rep-

resented by a commutative group scheme over the underlying scheme of S

with connected fibers (endowed with the inverse image of the log structure

of S). To see this, it is sufficient to prove that for any commutative group

scheme H over the underlying scheme of S with connected fibers, we have

Hom(H,Hom(X,Gm,log/Gm)(Y )/Y ) = 0. This last fact is shown by the

same method as Lemma 6.1.1 just replacing Gm,log/Gm in the proof of it

by Hom(X,Gm,log/Gm)(Y )/Y .

9.3. Since G is uniquely determined by A, the quotient A/G =

Hom(X,Gm,log/Gm)(Y )/Y is uniquely determined by A. By Theorem 7.6,

this implies that the sheavesX and Y and the pairingX×Y →(Gm,log/Gm)S
are uniquely determined by A.

By the uniqueness, they exist globally on S (local objects glue together

into a global object).

Remark 9.3.1. The sheafX in fact coincides with the “character sheaf”

of the semi-abelian scheme G defined in [2]. We will discuss this in a sequel

of this Part II.
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9.4. Proof of Proposition 4.5. We prove that a log abelian variety with

constant degeneration is a log abelian variety. It is sufficient to prove that

the condition 4.1.3 is satisfied.

Let U be an fs log scheme over S, let f : U → A be a morphism,

let 0 : U → A be the unit section, and let E(f, 0) be the equalizer of f

and 0 defined as a subsheaf of U over (fs/S). It is sufficient to show that

E(f, 0) is represented by an fs log scheme over U whose underlying scheme

is finite over that of U . It is enough to show it étale locally on S. Hence

we may assume that X and Y are constant and that there are a chart

S → MS with an fs monoid S and an admissible pairing X × Y → S gp

which induce the given pairing X × Y → Gm,log/Gm. Since A = G
(Y )
log /Y ,

étale locally on U , the morphism f lifts to f ′ : U → G
(Y )
log . Then E(f, 0)

is the disjoint union of subsheaves which are isomorphic to E(f ′ + y, 0) for

y ∈ Y . Since G
(Y )
log =

⋃
∆G

(∆)
log , where ∆ ranges over all finitely generated

subcones of C and G
(∆)
log denotes the inverse image of V (∆) under Glog →

Hom(X,Gm,log/Gm), étale locally on U , f ′ + y is a morphism into G
(∆)
log for

some ∆. We claim that V (∆)∩V (∆+ y) = ∅ for almost all y ∈ Y and this

shows that G
(∆)
log ∩G

(∆+y)
log = ∅ for almost all y ∈ Y .

We prove the claim. When σ ranges over all faces of S, as a set,

Spec(Z[S]) is a disjoint union of the locally closed subschemes Z(σ) =

SpecZ[σgp] = Spec(Z[Sσgp]/(Sσgp−σgp)). It suffices to show that for each

σ such that S ×Spec Z[S] Z(σ) is not empty, V (∆ ∩ (∆ + y)) ×Spec Z[S] Z(σ)

is empty for almost all y, or equivalently that the image of ∆ ∩ (∆ + y) in

Hom(S,N) does not intersect with the set {N ∈ Hom(S,N) | Ker(N) = σ}

for almost all y. By Lemma 7.12 (2), we may assume that ∆ = C(a) for

some a. Then by [6] 5.2.7, there are only a finite number of y modulo

Yσ that fail the condition. Finally, since S ×Spec Z[S] Z(σ) is not empty,

X×Y → Sgp/σgp is non-degenerate. This implies Yσ = {1}, and completes

the proof of the claim.

Hence it is sufficient to prove that for each f : U → G
(∆)
log , the equalizer

E(f, 0) is represented by an fs log scheme over U whose underlying scheme

is finite over that of U . But this E(f, 0)→ U is the pull back of the diagonal

G
(∆)
log → G

(∆)
log ×S G

(∆)
log by (f, 0) : U → G

(∆)
log ×S G

(∆)
log (the fiber products are

those in the category of fs log schemes), and G
(∆)
log is separated over S since

it is a scheme which is affine over B. Hence E(f, 0) → U is represented by

a finite morphism.
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9.5. Proof of Theorem 4.6 (a criterion which tells when a log abelian

variety is with constant degeneration).

We prove (1). The only if part is clear. We prove the if part. We

may assume that the condition in 4.1.2 is satisfied not only étale locally but

globally on S. Assume that the rank of the torus part of the fiber of G is

locally constant. Then since the rank of the stalk of X at s is the rank of

the torus part of the fiber of G on s ∈ S, we see that X is locally constant.

Since the rank of Y at s is equal to the rank of X at s, we see that Y is

also locally constant. Hence we may assume that the admissible pairing

X × Y → (Gm,log/Gm)S which appears in the second condition 4.1.2 in the

definition of log abelian variety is non-degenerate (i.e. X = X and Y = Y ).

Hence we can apply Theorem 7.3.

Let L = Hom(X,Gm,log/Gm)(Y ). Let

(1) 0 −→ G −→ Ã −→ L −→ 0

be the exact sequence obtained from 0 → G → A → L/Y → 0 by pulling

back by L → L/Y . By (1) of Theorem 7.3 which we apply by taking

the present G as H, we have that this extension 0 → G → Ã → L → 0

comes from the canonical extension 0 → T → T
(Y )
log → L → 0 by pushing

forward by a homomorphism T → G. By checking at a fiber, we see that

at each fiber, this homomorphism T → G is an embedding whose quotient

is an abelian variety. On the other hand, by [2] I, 2.11, the assumption on

the locally constant torus rank shows that G is an extension of an abelian

scheme by a torus. Hence this homomorphism T → G is an isomorphism

between T and the torus part of G. This shows that the extension (1) of L

by G is isomorphic to the standard extension

0 −→ G −→ G
(Y )
log −→ L −→ 0

(G
(Y )
log denotes the inverse image of L in Glog). We have Y → Glog as the

composite of Y → Ã ∼= G
(Y )
log . We have thus A = G

(Y )
log /Y . Since this log

1-motif [Y → Glog] is pointwise polarizable by Theorem 8.1, we see that A

is a log abelian variety with constant degeneration.

We prove (2). This follows from (1) and Lemma 9.6 below.

Lemma 9.6. Let X and Y be finitely generated free Z-modules, and let

X × Y → (Gm,log/Gm)S be an admissible pairing. Assume that MS/O
×
S is

a locally constant sheaf on the small étale site of S. Then X and Y are

locally constant on (fs/S).
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The proof is immediate.

9.7. Proof of Proposition 4.7. We show that A = Eq defined in Sec-

tion 1 is a log abelian variety.

By 1.7, we have that A satisfies the condition 4.1.1 in the definition of

log abelian variety.

The condition 4.1.2 in the definition of log abelian variety is satisfied as

is seen from the exact sequence

0 −→ G −→ Eq −→ G
(q)
m,log/(Gmq

Z) −→ 0

which follows from 5.3–5.4.

We prove that the condition 4.1.3 is satisfied. Morphisms f, g : U → A

locally come from f ′, g′ : E
(I)
qn for some n, I. By the exact sequence 0 →

Z/nZ → Eqn → Eq → 0, we see that the equalizer E(f, g) is the disjoint

union of E(f ′, g′qi) for i ∈ Z/nZ. It is hence sufficient to prove that for any

morphisms f, g : U → E
(I)
qn over S, the equalizer E(f, g) is finite over U . But

this is valid since E
(I)
qn is a separated scheme over OK .

9.8. We start the proof of the proposition 4.8 about global log abelian

varieties. We first show that if U is an fs log scheme over S, the diagram

G(U) −−−→
∏
v∈J G(U ×S Spec(Ov))y

y

G(U ×S S
′) −−−→

∏
v∈J G(U ×S Spec(Kv))

is cartesian. By limit argument, this is reduced to the case where U is

Noetherian, and to the following proposition.

Proposition 9.9. Let R be a Noetherian commutative ring, f an el-

ement of R, and let R′ be a commutative ring over R which is flat over R

such that R/fR
'
→ R′/fR′. Then for a separated scheme F over R, the

following diagram is cartesian.

F (R) −−−→ F (R′)
y

y

F (R[ 1
f ]) −−−→ F (R′[ 1

f ])

https://doi.org/10.1017/S002776300000951X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000951X


108 T. KAJIWARA, K. KATO AND C. NAKAYAMA

Proof. Let

I = {a ∈ R | fna = 0 for some n ≥ 1}.

It is sufficient to prove that the following two squares are cartesian.

(1)

F (R) −−−→ F (R′)
y

y

F (R/I) −−−→ F (R′/IR′)
y

y

F (R[ 1
f ]) −−−→ F (R′[ 1

f ])

We first prove that the upper square is cartesian. First note that R/f nR
'
→

R′/fnR′ for any n ≥ 1 (this is deduced from R/fR
'
→ R′/fR′ by induction

on n and by the flatness of R → R′). Since R is Noetherian, there is an

n ≥ 1 such that fnI = 0. We have fnR ∩ I = 0 as is easily seen. Hence we

have a cartesian diagram of surjections of rings

R −−−→ R/I
y

y

R/fnR −−−→ R/(I + fnR).

Hence the diagram

(2)

F (R) −−−→ F (R/I)
y

y

F (R/fnR) −−−→ F (R/(I + fnR))

is cartesian. The image of f in R/I is a non zerodivisor. By the flatness of

R → R′, the image of f in R′/IR′ is a non zerodivisor, and it follows that

IR′ = {a ∈ R′ | fna = 0 for some n ≥ 1}. Hence we have again a cartesian

diagram if we replace R in the diagram (2) by R′, and I by IR′. Since

R/fnR
'
→ R′/fnR′, this diagram is written as

(3)

F (R′) −−−→ F (R′/IR′)
y

y

F (R/fnR) −−−→ F (R/(I + fnR)).
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By comparing the two diagrams (2) and (3), we see that the upper square

of (1) is cartesian.

We next prove that the lower square in (1) is cartesian. For this, we

may assume that f is a non zerodivisor in R and I = 0. By the fpqc descent

for the faithfully flat morphism R→ R[1/f ]×R′, we have

F (R)
'
−→ {(a, b) ∈ F (R[ 1

f ])× F (R′) | g(a) = h(b), p1(b) = p2(b)},

where g : F (R[ 1
f ]) → F (R′[ 1

f ]), h : F (R′) → F (R′[ 1
f ]), p1, p2 : F (R′) →

F (R′ ⊗R R′). Since the image of f in R′ ⊗R R′ is a non zerodivisor,

R′ ⊗R R
′ → (R′ ⊗R R

′)[1/f ] is injective. Since F is separated, this shows

that the map F (R′ ⊗R R
′) → F ((R′ ⊗R R

′)[1/f ]) is injective. Let (a, b) ∈

F (R[1/f ]) × F (R′) and assume g(a) = h(b). Then the images of p1(b)

and p2(b) in F ((R′ ⊗R R
′)[1/f ]) coincides with the image of a, and hence

p1(b) = p2(b). This shows that there is a unique element c of F (R) whose

image in F (R[1/f ])× F (R′) is (a, b).

9.10. Proof of Proposition 4.8. First we prove that A satisfies the

second condition in 4.1 of a log abelian variety by showing 4.8 (3). By

comparing the cartesian diagram defining A in 4.8 (1) and the cartesian

diagram for G in 9.8, we have an exact sequence

0 −→ G(U) −→ A(U) −→
∏

v∈J

Eqv(U ×S Spec(Ov))/G(U ×S Spec(Ov)).

Hence we have an exact sequence

0 −→ G −→ A −→
⊕

v

F (v), where F (v) = iv∗(G
(qv)
m,log/(Gm · q

Z
v )).

It remains to prove that the last arrow is surjective. It is sufficient to

prove assuming U is of finite type over S that Au = A(OU,u)→ F (v)(OU,u)

is surjective for any u ∈ U lying over v. Let R′ = OU,u and let R be

the completion of R′. We first show that A(R) → F (v)(R) is surjective.

For f ∈ F (v)(R), there exists an element g ∈ Eqv(R) with image f . Then

(g, g) ∈ G(Spec(R)×SS
′)×Eqv(Spec(R)×SSpec(Ov)) defines an element h of

A(R). Thus A(R)→ F (v)(R) is surjective. Via the isomorphism F (v)(R′)
'
→

F (v)(R), we regard f also as an element of F (v)(R′). Then there are a finitely

generated subring R′′ of R over R′ and an element h′′ ∈ A(R′′) whose image

in A(R) coincides with h and whose image in F (v)(R′′) coincides with the
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image of f under F (v)(R′) → F (v)(R′′). By Artin’s approximation (which

holds since S is excellent), there is an R′-homomorphism R′′ → R′. Let h′

be the image of h′′ in A(R′) under A(R′′) → A(R′). Then the image of h′

in F (v)(R′) is f .

Next we prove (2) of Proposition 4.8.

The pull back of A to S ′ is clearly G. We prove that the pull back

A|Ov of A to Ov is Eqv for each v ∈ J . We have a canonical homomorphism

A|Ov → Eqv , and a commutative diagram of exact sequences

0 −−−→ G|Ov −−−→ A|Ov −−−→ G
(qv)
m,log/(Gm q

Z
v ) −−−→ 0

∥∥∥
y

∥∥∥

0 −−−→ G|Ov −−−→ Eqv −−−→ G
(qv)
m,log/(Gm q

Z
v ) −−−→ 0.

This proves A|Ov
∼= Eqv .

Now by (2) of Proposition 4.8, we see that A satisfies the first condition

4.1.1.

It remains to prove that A satisfies the third condition 4.1.3. Let U

be an fs log scheme over S, let f : U → A be a morphism, and let E(f, 0)

be the equalizer of f and the zero section 0 of A. We will prove that

E(f, 0) is representable étale locally on U . If we prove this, then since the

morphism from the disjoint union of S ′ and Spec(Ov) for all v ∈ J to S

is faithfully flat, the finiteness of E(f, 0) over U is reduced to the fact the

zero section of G ×S S
′ is finite and the zero section of Eqv is represented

by finite morphisms for any v ∈ J . (Note that by the finiteness, étale local

representability implies the representabiliy.)

To prove E(f, 0) is étale locally representable, working locally on S, we

may assume that J is a one point set {v} and there is an element t of O(S)

whose image in Kv belongs to qvO
×
v and which is invertible on S \ {v}. We

have iv∗(G
(qv)
m,log/(Gm q

Z
v )) = G

(t)
m,log/(Gm t

Z). We prove

9.10.1. For any morphism f : U → G
(t)
m,log/(Gm t

Z), the equalizer

E(f, 0) is representable étale locally on U . Here 0 denotes the unit sec-

tion of G
(t)
m,log/(Gm t

Z).

If we prove this, then for f : U → A, the étale local representability of

E(f, 0) is shown as follows. Let f : U → G
(t)
m,log/(Gm t

Z) be the morphism

induced by f . Then f induces f ′ : E(f, 0) → G, and E(f, 0) is identified
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with the equalizer of f ′ and 0: E(f, 0) → G which is representable over

E(f, 0).

We prove 9.10.1. Étale locally on U , take a lifting f̃ : U → Gm,log/Gm of

f . Then E(f, 0) is the union of E(f̃ tn, 0) for n ∈ Z. If m,n ∈ Z and m 6= n,

the intersection of E(f̃ tm, 0) and E(f̃ tn, 0) is open both in E(f̃ tm, 0) and in

E(f̃ tn, 0) (the open sets are the parts where t mod Gm vanishes), and hence

it remains to prove

9.10.2. For any fs log scheme U and any morphisms f, g : U →

Gm,log/Gm, the equalizer E(f, g) is étale locally on U , representable by

an fs log scheme over U .

In fact, étale locally on U , writing f = f1f
−1
2 , g = g1g

−1
2 , E(f, g) =

E(f1g2, f2g1). Hence we may assume that f , g come from sections of MU ,

which are denoted by the same letters respectively. Then E(f, g) is rep-

resented by the fiber product of U → Spec(Z[T1, T2]) ← Spec(Z[T3, T
±
4 ]),

where Spec(Z[T1, T2]) is endowed with the log structure associated to N2 →

Z[T1, T2] ; (m,n) 7→ Tm1 T
n
2 , Spec(Z[T3, T

±
4 ]) is endowed with the log struc-

ture associated to N → Z[T3, T
±
4 ] ; n 7→ T n3 , U → Spec(Z[T1, T2]) is given

by T1 7→ f , T2 7→ g, and Spec(Z[T3, T
±
4 ]) → Spec(Z[T1, T2]) is given by

T1 7→ T3, T2 7→ T3T4.

§10. Computation of Hom and Ext (analytic theory)

In this section, we study Hom sheaves and Ext sheaves as in Section 7,

but in analytic sites. The aim is to prove Theorem 10.3, which will be

used in Section 11. Let S be an fs log analytic space. Let (fsan/S) be the

category of fs log analytic spaces over S which we regard as a site with the

usual topology. In this section, Ga, Gm, Gm,log, V (∆), V (∆) are analytic

versions considered in [6].

10.1. Let X × Y → (Gm,log/Gm)S be an admissible pairing, that is,

a pairing such that for any s ∈ S, the induced Z-bilinear form X × Y →

Mgp
S,s/O

×
S,s is admissible in the sense of 7.1. (We do not assume that it is

non-degenerate.) Let T = Hom(X,Gm). In this section, for a commutative

Lie group G over the underlying analytic space of S with connected fibers,

we compute

Hom(T
(Y )
log , G), Hom(T

(Y )
log /T,G), Ext(T

(Y )
log , G), Ext(T

(Y )
log /T,G).

Here a Lie group over an analytic space V means a smooth analytic space

over V which is separated over V endowed with an (analytic) group structure
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over V . (“G is separated over V ” means that for any Hausdorff open subset

U of V , the inverse image of U in G is Hausdorff.)

The result on Ext(T
(Y )
log /T,G) will be used in 11.5 for the proof of The-

orem 4.10.

10.2. Let G be a commutative Lie group over the underlying analytic

space of S with connected fibers.

The exponential map Lie(G) → G is surjective. Let H1(G,Z) be the

kernel of it, so we have an exact sequence

0 −→ H1(G,Z) −→ Lie(G) −→ G −→ 0.

This H1(G,Z) is the pull back to (fsan/S) of a sheaf on the underlying

topological space of S.

We have

(1) H1(G,Z)(−1) ∼= Hom(Gm, G).

((−1) means ⊗Z Z · (2πi)−1.) Indeed, a homomorphism Gm → G gives a

homomorphism from Z(1) = H1(Gm,Z) → H1(G,Z) and this gives

Hom(Gm, G) → H1(G,Z)(−1). The converse map is given as follows. A

section of H1(G,Z) induces a homomorphism Ga → Ga ⊗ H1(G,Z) which

sends Z into H1(G,Z). Hence a section of H1(G,Z)(−1) induces a ho-

momorphism from Ga/Z(1) = Gm to (Ga ⊗Z H1(G,Z))/H1(G,Z), and

via the canonical projection Ga ⊗Z H1(G,Z) → Lie(G), a homomorphism

Gm → Lie(G)/H1(G,Z) ' G.

The isomorphism (1) induces an isomorphism

(2) X ⊗H1(G,Z)(−1) ∼= Hom(T,G).

Theorem 10.3. Let G be a commutative Lie group over the underlying

analytic space of S with connected fibers. Then the sheaves Hom(T
(Y )
log /T,G)

and Ext(T
(Y )
log , G) are zero, we have an isomorphism

Ext(T
(Y )
log /T,G) ∼= X ⊗Z H1(G,Z)(−1)

induced by the boundary map X ⊗ H1(G,Z)(−1) ∼= Hom(T,G) →

Ext(T
(Y )
log /T,G), and we have an isomorphism

Hom(T
(Y )
log , G) ∼= Ker(X → X)⊗Z H1(G,Z)(−1).

Here X denotes the image of X in Hom(Y,Gm,log/Gm).

The rest of this section is devoted to the proof of this theorem.
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10.4. It is enough to prove Theorem 10.3 locally on S. Hence it may be

supposed that we have a chart S →MS with an fs monoid and an admissible

pairing X × Y → Sgp which induce the given pairing X × Y → Gm,log/Gm.

Let C ⊂ Hom(S,N) × Hom(X,Z) be as in 7.7. Let ∆ be a finitely

generated subcone of C.

Let K be the complex of sheaves on S whose degree n part Kn is

H0(V (∆)×T n,O) for n ≥ 0 and is 0 for n < 0, where H0(V (∆)×T n, ) de-

notes the direct image from the site (fsan/(V (∆)×T n)) to the site (fsan/S),

and the differential dn : Kn → Kn+1 for n ≥ 0 is defined by

(dnf)(v, t1, . . . , tn+1) = f(t1v, t2, . . . , tn+1)

+

n∑

i=1

(−1)if(v, t1, . . . , ti−1, titi+1, ti+2, . . . , tn+1)

+ (−1)n+1f(v, t1, . . . , tn).

For example, in the case n = 0, (d0f)(v, t) = f(tv)− f(v).

Let K be the complex defined by replacing H0 in the definition of K by

H0.

These K and K are the Cech complexes associated to the covering

V (∆)→ V (∆) (note

V (∆)× T ' V (∆)×V (∆) V (∆) ; (v, t) 7−→ (v, tv)).

Lemma 10.5. Assume that the projection ∆ → Hom(S,N) is surjec-

tive. Then the canonical map OS → K is a quasi-isomorphism. Here OS
is the sheaf U 7→ O(U) on (fsan/S) regarded as a complex concentrated in

degree 0.

Proof. Locally on S, S is isomorphic to a closed analytic subspace of

S′ = W × Spec(C[S])an whose ideal sheaf is generated by a finite number

of global sections, where W is a finite product of copies of {z ∈ C | |z| < 1}

(W is with no log structure) and S is endowed with the inverse image of

the log structure of S ′. For such S, we will prove that O(S) → K is a

quasi-isomorphism. This will show that OS → K is a quasi-isomorphism in

general.

Let the situation S ⊂ S ′ be as above, and letK ′ be the “K for S ′”. Then

K = O(S) ⊗O(S′) K
′. To prove that O(S) → K is a quasi-isomorphism, it

is sufficient to construct homomorphisms of O(S ′)-modules

sn : (K ′)n → (K ′)n−1 for n ≥ 1, s0 : (K ′)0 → O(S′)
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such that dsn+sn+1d for n ≥ 0 (resp. s0d) is the identity map of (K ′)n (resp.

O(S′)). Here we denote by d = d−1 the canonical map O(S ′)→ (K ′)0.

We construct sn as follows. We may and will assume S ′ = S = W ×

Spec(C[S])an.

Let P = ∆∨. Note

S = S × {1} ⊂ P ⊂ Sgp ×X.

The surjectivity of ∆→ Hom(S,N) shows that the homomorphism S → P

is exact (that is, S coincides with the inverse image of P under S gp → P gp).

The set H0(V (∆)×T n,O) is identified with the set of all formal infinite

sums ∑
cp,x1,...,xnp⊗ x1 ⊗ · · · ⊗ xn,

satisfying the following condition (i), where p ranges over P , xi (1 ≤ i ≤ n)

ranges over X, and cp,x1,...,xn ∈ O(W ).

(i) For any w ∈W and any homomorphism ϕ : P ×Xn → C×, we have

∑
|cp,x1,...,xn(w)| · |ϕ(p, x1, . . . , xn)| <∞.

For p ∈ P , let p be the image of p in X. Then the map

H0(V (∆)× T n,O) −→ H0(V (∆)× T n+1,O)

is given by (the infinite O(W )-linear combination of)

p⊗ x1 ⊗ · · · ⊗ xn 7−→ p⊗ p⊗ x1 ⊗ · · · ⊗ xn

+

n∑

i=1

(−1)ip⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xn

+ (−1)n+1p⊗ x1 ⊗ · · · ⊗ xn ⊗ 1.

We define a homotopy (sn)n as follows. The map

sn : H0(V (∆)× T n,O) −→ H0(V (∆)× T n−1,O) (n ≥ 1)

sends p ⊗ x1 ⊗ · · · ⊗ xn to 0 if xn 6= 1, and to (−1)np ⊗ x1 ⊗ · · · ⊗ xn−1 if

xn = 1. The map

s0 : H0(V (∆),O) −→ O(S)

sends p /∈ S to 0, and p ∈ S to p. (To prove d−1s0 + s1d0 = 1, we use the

exactness of S → P , that is, p ∈ P belongs to S if and only if p = 1).
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Corollary 10.6. Assume that the projection ∆→ Hom(S,N) is sur-

jective.

(1) H0(V (∆),O) = OS.

(2) H1(V (∆),O) = 0.

Here Hm(V (∆), ) denotes the m-th higher direct image functor asso-

ciated to the direct image functor from the category of sheaves on the site

(fsan/S)/V (∆) of the objects of (fsan/S) over the sheaf V (∆) to the category

of sheaves on (fsan/S).

Proof. (1) In fact, H0(V (∆),O) is identified with the kernel of d0 :

H0(V (∆),O)→H0(V (∆)× T,O).

(2) A Ga-torsor on V (∆) is a Ga-torsor on V (∆) endowed with a descent

data on V (∆)× T . Since V (∆) is Stein locally on S, a Ga-torsor on V (∆)

is trivial locally on S. For a trivial Ga-torsor on V (∆), the descent data is

regarded as an element of the kernel of d1 : H0(V (∆)×T,O)→ H0(V (∆)×

T 2,O). By Lemma 10.5, it comes locally on S from H0(V (∆),O). This

shows that a Ga-torsor on V (∆) is trivial locally on S.

10.7. In the rest of this section, we use some simplicial topological

spaces.

A simplicial topological space is a contravariant functor from the cate-

gory of non-empty totally ordered finite sets to the category of topological

spaces.

A sheaf F on a simplicial topological space X means a family (Fn)n≥0,

where Fn is a sheaf on Xn = X ({0, . . . , n}), endowed with a morphism

aF : X (a)−1(Fm) → Fn for each m,n ≥ 0 and for each increasing map

a : {0, . . . ,m} → {0, . . . , n}, satisfying (ab)F = aF ◦ X (a)−1(bF ) for any

increasing maps a : {0, . . . ,m} → {0, . . . , n} and b : {0, . . . , l} → {0, . . . ,m},

where X (a)−1(bF ) is the pull back of bF by X (a).

For a sheaf F = (Fn)n of abelian groups on a simplicial topological

space X , we have a spectral sequence

(1) Ei,j
1 = Hj(Xi, Fi)⇒ Ei

∞ = Hi(X , F ).

For a topological space V and for a topological group Γ acting on V con-

tinuously, let [V ]/[Γ] be the following simplicial topological space. We de-

fine ([V ]/[Γ])({0, . . . , n}) = V ×Γn. For an increasing map a : {0, . . . ,m} →

{0, . . . , n}, the corresponding map V ×Γn → V×Γm is given by (v, t1, . . . , tn)

7→ (u, s1, . . . , sm), where u = ta(0) · · · t1v and si = ta(i) · · · ta(i−1)+1 .
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We apply this construction to the cases where (V,Γ) = (V (∆),

Hom(X,C×)), (V,Γ) = (V (∆)log,Hom(X,C×)) and (V,Γ) = (V (∆)log,

Hom(X,S1)). For any sheaf of abelian groups F on the underlying topolog-

ical space of S, we have

10.7.1. Hm(V (∆), F ) ∼= Hm([V (∆)]/[Hom(X,C×)], F ).

10.7.2. Hm([V (∆)log]/[Hom(X,C×)], F ) ∼= Hm([V (∆)log]/[Hom(X,

S1)], F ).

Here we denote the inverse images of F by the same letter F .

We prove 10.7.1. In fact, we will prove this not only for a sheaf F of

abelian groups on the underlying topological space of S, but also for any

sheaf F of abelian groups on (fsan/S)/V (∆). For m = 0, since V (∆) is the

quotient of V (∆) by the action ofHom(X,C×)×S in the category of sheaves

on (fsan/S), we have an evident isomorphism 10.7.1. Hence it is sufficient

to prove that the functors Hm([V (∆)]/[Hom(X,C×)], ) for m ≥ 1 applied

to sheaves of abelian groups on (fsan/S)/V (∆) are “effaceable”. Any sheaf

of abelian groups F on (fsan/S)/V (∆) is embedded in a sheaf F ′ of abelian

groups such that the restriction of F ′ on each object of (fsan/S)/V (∆) is

flasque (for example, we can take the sheaf F ′(U) =
∏
u∈U Fu). Further-

more, F ′ is embedded in F ′′ = f∗f
−1F ′, where f∗ is the direct image functor

from the category of sheaves on (fsan/V (∆)) = (fsan/S)/V (∆) to the cate-

gory of sheaves on (fsan/S)/V (∆). By the flasque property of F ′, we have

Rmf∗f
−1F ′ = 0 for m ≥ 1. Hence in the above spectral sequence (1) for

X = [V (∆)]/[Hom(X,C×)] and for F ′′, we have

Ei,j1 = Hj(V (∆)× Γi, F ′′)

= Hj(V (∆)× Γi, Rf∗f
−1F ′)

= Hj(V (∆)× Γi+1, F ′),

where Γ = Hom(X,C×). Hence the group Ei,j
1 is zero if j ≥ 1 by the

flasque property of F ′. As is seen by a standard argument, the complex E ·,0
1

is acyclic in degree ≥ 1. Hence H i([V (∆)]/[Hom(X,C×)], F ′′) = 0 for any

i ≥ 1.

Next 10.7.2 follows from the fact that the inclusion Hom(X,S1) →

Hom(X,C×) is a homotopy equivalence.

For a sheaf F of abelian groups on the underlying topological space of

S, let

Hm([V (∆)], F ), Hm([V (∆)]log, F ), Hm([S]log, F )
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be the sheaves on (fsan/S) associated to the presheaves U 7→ Hm([V (∆)×S
U ]/[Hom(X,C×)], F ), U 7→ Hm([(V (∆) ×S U)log]/[Hom(X,C×)], F ), and

U 7→ Hm(U log, F ), respectively. By 10.7.1 which is applied on U by taking

a compatible chart with S, we have

10.7.3. Hm(V (∆), F ) ∼= Hm([V (∆)], F ).

Remark 10.7.4. (This remark is not used in the rest of this paper.)

Let (fsan/S)log be the site which is denoted as (fs/S)log in [6] 3.1.6. For a

sheaf V on (fsan/S), let τ−1(V ) be the inverse image of V on (fsan/S)log,

and let Rmν∗ be the m-th higher direct image functor from the category of

sheaves of abelian groups on (fsan/S)log/τ−1(V ) to the category of sheaves

of abelian groups on (fsan/S). Let F be a sheaf of abelian groups on the

underlying topological space of S (the following in fact holds for any sheaf of

abelian groups on (fsan/S)log/τ−1(V )). Then, if V is representable, Rmν∗F

coincides with the sheaf associated to the presheaf U 7→ Hm((U×SV )log, F )

(hence in the case V = S, this coincides with Hm([S]log, F ) defined above).

In the case V = V (∆), we have

Rmν∗F ∼= H
m([V (∆)]log, F ).

This last isomorphism is the ( )log-space analogue of 10.7.3, and is proved

in the same way.

10.8. We say a projective system (Hλ)λ∈Λ in an abelian category with

a directed ordered index set Λ is essentially zero if for each λ ∈ Λ, there is

µ ∈ Λ such that µ ≥ λ and such that Hµ → Hλ is the zero morphism.

We say a homomorphism (fλ : Hλ → H ′
λ)λ∈Λ of projective systems with

directed ordered index set Λ is essentially an isomorphism if (Ker(fλ))λ and

(Coker(fλ))λ are essentially zero.

Lemma 10.9. Let F be a sheaf of abelian groups on the underlying

topological space of S. When ∆ ranges over all finitely generated subcones

of C, the canonical map (Hm([S]log, F )→Hm([V (∆)]log, F ))∆ is essentially

an isomorphism.

Proof. The kernel of the map in 10.9 for ∆ becomes zero as soon as

V (∆) contains the unit section of T
(Y )
log .

The essential surjectivity is shown as follows. For each ∆, take a finitely

generated subcone ∆′ of C containing ∆ satisfying the conditions (i) and
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(ii) in 7.9 (1). The existence of the homotopy ([6] Proposition 3.5.6 (1)

(iii)) between the canonical map V (∆)log → V (∆′)log and the composition

V (∆)log → Slog × Hom(X,S1) → V (∆′)log (the second arrow comes from

the unit section of T
(Y )
log which is contained in V (∆′) by the condition (i) in

7.9 (1)) shows the following: The canonical map

Hm([V (∆′)log]/[Hom(X,S1)], F ) −→ Hm([V (∆)log]/[Hom(X,S1)], F )

coincides with the composition

Hm([V (∆′)log]/[Hom(X,S1)], F )

−→ Hm([Slog ×Hom(X,S1)]/[Hom(X,S1)], F )

−→ Hm([V (∆)log]/[Hom(X,S1)], F ),

where the first arrow comes from the unit section. We have Hm([Slog ×

Hom(X,S1)]/[Hom(X,S1)], F ) = Hm(Slog, F ). This shows that the im-

age of Hm([V (∆′)log]/[Hom(X,S1)], F ) → Hm([V (∆)log]/[Hom(X,S1)], F )

is contained in the image of Hm(Slog, F ).

Lemma 10.10. Let F be a sheaf of abelian groups on the underlying

topological space of S. When ∆ ranges over all finitely generated subcones

of C, the projective system (H1(V (∆), F ))∆ is essentially zero.

Proof. We first prove

10.10.1. For m ≥ 1, the map (Hm(V (∆), F ) → Hm([V (∆)]log, F ))∆
is essentially zero.

In fact, take ∆′ as in the proof of 10.9. Then the composition

Hm(V (∆′), F )→Hm(V (∆), F )→Hm([V (∆)]log, F ) factors as Hm(V (∆′),

F ) → Hm(S, F ) → Hm([S]log, F ) → Hm([V (∆)]log, F ). Since Hm(S, F ) =

0 for m ≥ 1, this proves that the map Hm(V (∆′), F ) → Hm([V (∆)]log, F )

is the zero map.

Now we can prove Lemma 10.10. Let τ : [V (∆)log]/[Hom(X,C×)] →

[V (∆)]/[Hom(X,C×)] be the canonical morphism. Then we have τ∗(F ) =

F . Hence the canonical map

H1(V (∆), F ) = H1([V (∆)], F )→ H1([V (∆)]log, F )

is injective. By 10.10.1, these injections for varying ∆ form an essentially

zero map. This proves Lemma 10.10.
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Let G be as in 10.2.

Lemma 10.11. When ∆ ranges over all finitely generated cones of C,

the projective system of maps (G → H0(V (∆), G))∆ is essentially an iso-

morphism.

Proof. The kernel becomes zero as soon as V (∆) contains the unit

section of T
(Y )
log .

To prove the essential surjectivity, we apply Lemma 10.10 to F =

H1(G,Z). The exact sequence 0 → F → Lie(G) → G → 0 induces an

exact sequence

H0(V (∆),Lie(G)) −→ H0(V (∆), G) −→ H1(V (∆), F )

for any ∆. Take ∆′ ⊃ ∆ such that H1(V (∆′), F )→H1(V (∆), F ) is the zero

map. Then since H0(V (∆),Lie(G)) = Lie(G) if ∆ is sufficiently large by

Corollary 10.6, the image of H0(V (∆′), G) → H0(V (∆), G) is contained in

the image of Lie(G)→H0(V (∆), G), but the last map factors as Lie(G)→

G→H0(V (∆), G).

10.12. We prove Hom(T
(Y )
log /T,G) = 0. We have an injection

Hom(T
(Y )
log /T,G)→ lim

←−
∆

H0(V (∆), G).

By Lemma 10.11, this inverse limit coincides with G. Since a homomor-

phism T
(Y )
log /T → G sends the unit section of T

(Y )
log /T to the unit section of

G, this injection Hom(T
(Y )
log /T,G)→ G is the zero map.

Lemma 10.13. We have an exact sequence

0 −→ Hom(T
(Y )
log ,Gm) −→ X −→ X −→ 0.

Proof. By 10.12 applied to the case G = Gm, the map Hom(T
(Y )
log ,Gm)

→ Hom(T,Gm) = X is injective. We prove that the image coincides with

Ker(X → X). For x ∈ X, the map Y → Gm,log/Gm induced by x is the

composition Y → T
(Y )
log /T → Gm,log/Gm, where the last arrow is induced

by x. If x belongs to the image of Hom(T
(Y )
log ,Gm), this last arrow is zero,

and hence the image of x in X is zero. Let ϕ be a local section of T
(Y )
log .

Then locally there are y1, y2 ∈ Y such that 〈x, y1〉|(ϕ(x) mod Gm)|〈x, y2〉.

If the image of x in X vanishes, then 〈x, yi〉 vanish for i = 1, 2, and hence

ϕ(x) mod Gm vanishes. Hence x induces T
(Y )
log → Gm.
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Corollary 10.14. The connecting map X = Hom(T,Gm) →

Ext(T
(Y )
log /T,Gm) factors through the canonical surjection X → X.

Lemma 10.15. (1) If ∆ is a sufficiently big finitely generated subcone of

C, the canonical map Gm,log/Gm⊕X →H
0(V (∆),Gm,log/Gm) is injective.

(2) Let ∆ be a finitely generated subcone of C containing S∨ × {1}

and let ∆′ be a finitely generated subcone of C containing ∆ and sat-

isfying the conditions (i) and (ii) of Proposition 7.9 (1). Then the im-

age of H0(V (∆′),Gm,log/Gm) → H0(V (∆),Gm,log/Gm) coincides with the

image of the composition Gm,log/Gm ⊕ X → H0(V (∆′),Gm,log/Gm) →

H0(V (∆),Gm,log/Gm).

Proof. Let f : V (∆)→ V (∆′) be the canonical map. Then we have

Mgp
S /O×

S ⊕X
'
−→ f−1(Mgp

V (∆′)/O
×
V (∆′)).

The algebraic version of this is Proposition 7.9 (2). This analytic ver-

sion is proved in the same way. This shows that H 0(S,Mgp
S /O×

S ⊕ X) →

H0(V (∆′),Mgp
V (∆′)/O

×
V (∆′)) is injective. This proves (1). To prove (2), it is

sufficient to prove

H0(S,Mgp
S /O×

S ⊕X)
'
−→ H0(V (∆),M gp

S /O×
S ⊕X).

This follows from the case P = V (∆), Q = S of 7.26.1.

10.16. Let ∆ be a finitely generated subcone of C. We define a canon-

ical homomorphism

(1) X −→ H2(V (∆),Z(1))

as follows. By 10.14, we have a canonical homomorphism X → Ext(T
(Y )
log /T,

Gm). The canonical map Ext(T
(Y )
log /T,Gm) → H1(V (∆),Gm) and the con-

necting map H1(V (∆),Gm) → H2(V (∆),Z(1)) of the exact sequence 0 →

Z(1)→ Ga
exp
−→ Gm → 0 induce the composition X → H2(V (∆),Z(1)).

For any sheaf of abelian groups F on S, the homomorphism (1) induces

(2) X ⊗ F (−1) −→ H2(V (∆), F ).

Lemma 10.17. Let F be a sheaf of abelian groups on the underlying

topological space of S. Then the projective system of maps (X ⊗ F (−1) →

H2(V (∆), F ))∆ is essentially an isomorphism.
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Proof. Consider the spectral sequence

Ei,j2 = Hi([V (∆)], Rjτ∗F )⇒ Ei
∞ = Hi([V (∆)]log, F )

and the corresponding spectral sequence for ∆′. Here Hi([V (∆)], Rjτ∗F )

is the sheafification of U 7→ H i([V (∆)×S U ]/[Hom(X,C×)], Rjτ∗F ) with τ

the canonical map [(V (∆)×SU)log]/[Hom(X,C×)]→ [V (∆)×SU ]/[Hom(X,

C×)].

We have

10.17.1. H1([S]log, F ) ∼= Gm,log/Gm ⊗ F (−1).

This follows from [9] (1.5).

For τ : V (∆)log → V (∆), we have R1τ∗Z(1) = M gp
V (∆)/O

×
V (∆). Hence

the canonical homomorphism X →M gp
V (∆)/O

×
V (∆) gives a homomorphism

X ⊗ F (−1) −→ E0,1
2 = H0([V (∆)], R1τ∗F ).

We can check that the canonical homomorphism X ⊗F (−1)→ E2,0
2 in

10.16 coincides with the composition of the above X ⊗ F (−1)→ E0,1
2 with

the differential E0,1
2 → E2,0

2 of the spectral sequence.

By Lemma 10.15, we have

10.17.2. ((Gm,log/Gm⊗F (−1))⊕(X⊗F (−1))→H0([V (∆)], R1τ∗F ))∆
is essentially an isomorphism.

The spectral sequence gives an exact sequence

H1([V (∆)]log, F ) −→ H0([V (∆)], R1τ∗F )

−→ H2([V (∆)], F ) −→ H2([V (∆)]log, F ).

When ∆ varies, by 10.9, 10.10.1, 10.17.1, 10.17.2, this gives an exact se-

quence in the category of projective systems modulo essentially zero systems

Gm,log/Gm ⊗ F (−1) −→ ((Gm,log/Gm ⊗ F (−1)) ⊕ (X ⊗ F (−1)))∆

−→ (H2([V (∆)], F ))∆ −→ 0.

This proves Lemma 10.17.
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Lemma 10.18. The composition

X ⊗H1(G,Z)(−1)
10.2(1)
∼= X ⊗Hom(Gm, G)

10.14
−→ Ext(T

(Y )
log /T,Gm)⊗Hom(Gm, G)

−→ Ext(T
(Y )
log /T,G) −→ H1(V (∆), G)

gives an essential isomorphism (X ⊗H1(G,Z)(−1) →H1(V (∆), G))∆.

Proof. Applying Hm(V (∆), ) to the exact sequence 0→H1(G,Z)→

Lie(G) → G → 0, and using H1(V (∆),Ga) = 0 (Corollary 10.6), we have

an injection H1(V (∆), G) → H2(V (∆),H1(G,Z)). The composition X ⊗

H1(G,Z)(−1) → H1(V (∆), G) → H2(V (∆),H1(G,Z)) is, when ∆ varies,

an essential isomorphism by Lemma 10.17. This proves Lemma 10.18.

10.19. We prove the result on Ext(T
(Y )
log /T,G) in Theorem 10.3.

We have a canonical homomorphism Ext(T
(Y )
log /T,G)→ lim

←−∆
H1(V (∆),

G). The latter sheaf is isomorphic to X ⊗H1(G,Z)(−1) by Lemma 10.18.

Since we have a canonical homomorphismX⊗H1(G,Z)(−1)→ Ext(T
(Y )
log /T,

G) whose composite with the above canonical homomorphism gives the

identity map of X ⊗ H1(G,Z), it is sufficient to prove that a section of

Ext(T
(Y )
log /T,G) is trivial if its image in lim

←−∆
H1(V (∆), G) is trivial. For

such an extension 0 → G → F → L → 0 (L = T
(Y )
log /T ), we have sec-

tions s∆ : V (∆) → F if we neglect the group structure. Replacing s∆ by

s∆s∆(e)−1, we may assume that s∆ sends the unit section e to 1 whenever

V (∆) contains e. Let ŝ∆ : V (∆) → F be the restriction of s∆′ for a suffi-

ciently large ∆′, which is independent of the choice of ∆′ by Lemma 10.11.

Then the ŝ∆s glue together into a section s : L→ F sending e to 1. Again

by Lemma 10.11 (which we apply by using ∆ × ∆ in the place of ∆), the

restricted morphism s(xy)s(x)−1s(y)−1 : V (∆) × V (∆) → G comes from

a ∈ G. Since s(e) = 1, we have a = 1, so that s(xy) = s(x)s(y) on V (∆)

for any ∆. Thus s preserves the group structure.

10.20. We prove the statements on Hom(T
(Y )
log , G) and Ext(T

(Y )
log , G) in

Theorem 10.3.

By the exact sequence 0→ T → T
(Y )
log → T

(Y )
log /T → 0, we have an exact
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sequence

0 −→ Hom(T
(Y )
log /T,G) −→ Hom(T

(Y )
log , G) −→ Hom(T,G)

−→ Ext(T
(Y )
log /T,G) −→ Ext(T

(Y )
log , G) −→ Ext(T,G).

By 10.12 and 10.19, this is rewritten as

0 −→ 0 −→ Hom(T
(Y )
log , G) −→ X ⊗H1(G,Z)(−1)

−→ X ⊗H1(G,Z)(−1) −→ Ext(T
(Y )
log , G) −→ Ext(T,G).

Hence we obtain the statement for Hom(T
(Y )
log , G). To prove Ext(T

(Y )
log , G) =

0, it is sufficient to show Ext(T,G) = 0 and hence it is sufficient to prove

Ext(Gm, G) = 0. By the exact sequence 0 → Z(1) → Ga → Gm → 0, we

have an exact sequence

Hom(Ga, G) −→ Hom(Z(1), G) −→ Ext(Gm, G) −→ Ext(Ga, G).

The map Hom(Ga, G) → Hom(Z(1), G) is surjective because for a local

section a of G, a = exp(b) locally for some local section b of Lie(G), and the

homomorphism Ga → G ; t 7→ exp((2πi)−1(tb)) induces Z(1) → G which

sends 2πi to a. It remains to prove Ext(Ga, G) = 0. Consider an exact

sequence 0 → G → F → Ga → 0. By taking Lie, we have a commutative

diagram of exact sequences

0 −−−→ Lie(G) −−−→ Lie(F ) −−−→ Lie(Ga) −−−→ 0
y

y
y

0 −−−→ G −−−→ F −−−→ Ga −−−→ 0.

Here the vertical arrows are the exponential maps. Since the exponential

map of Ga is an isomorphism, this shows that the extension 0→ G→ F →

Ga → 0 comes from an exact sequence 0→ Lie(G)→ Lie(F )→ Lie(Ga)→

0 of locally free modules on S by pushing forward via exp: Lie(G) → G,

and hence splits locally on S.

§11. Proofs of Section 4, II

In this section, S denotes an fs log scheme over C locally of finite type.

We will prove 4.10.
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Proposition 11.1. Let M = [Y → Glog] be a log 1-motif over S of

type (X,Y ) such that the associated pairing X × Y → (Gm,log/Gm)S is

admissible and non-degenerate. Let A = G
(Y )
log /Y .

(1) Aan is a log complex torus over San in the sense of [6] (cf. 4.11.4).

(2) If M is polarizable étale locally on S, Aan is polarizable locally on

San in the sense of [6] (cf. 4.11.5).

The log complex tori obtained in this way are of very special type. They

have to be “with constant degeneration”.

11.2. We prove Proposition 11.1 (1). It is sufficient to prove that

locally on San, there are finitely generated free Z-modules X ′, Y ′, surjective

homomorphisms X ′ → X, Y ′ → Y , and a Z-bilinear form 〈 , 〉 : X ′ ×

Y ′ → (Gm,log)S satisfying the following conditions (1) and (2), such that

Aan ∼= Hom(X ′,Gm,log)
(Y ′)/Y ′.

(1) The diagram

X ′ × Y ′ 〈 , 〉
−−−→ (Gm,log)Sy

y

X × Y
〈 , 〉
−−−→ (Gm,log/Gm)S

is commutative.

(2) Let X ′′ = Ker(X ′ → X) and Y ′′ = Ker(Y ′ → Y ). Then the induced

pairing 〈 , 〉 : X ′′ × Y ′′ → (Gm)S has the following property. For each

s ∈ San, the pairing of R-vector spaces

(R⊗X ′′)× (R⊗ Y ′′) −→ R ; (x, y) 7−→ log(|〈x, y〉(s)|) (x ∈ X ′′, y ∈ Y ′′)

is non-degenerate.

We first construct X ′′, Y ′′ and a pairing X ′′ × Y ′′ → (Gm)S .

Since OSan ⊗Z H1(B
an,Z)→ Lie(Ban) is surjective, we can find locally

on San a locally constant subgroup sheaf of H1(B
an,Z) which we denote by

(X ′′)∗ satisfying the following conditions (3) and (4).

(3) The homomorphism OSan ⊗Z (X ′′)∗ → Lie(Ban) is an isomorphism.

(4) H1(B
an,Z)/(X ′′)∗ is torsion free.

Define

X ′′ = Hom((X ′′)∗,Z)(1), Y ′′ = H1(B
an,Z)/(X ′′)∗.
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We have an exact sequence

(5) 0 −→ Hom(X ′′,Z)(1) −→ H1(B
an,Z) −→ Y ′′ −→ 0.

Since we have a perfect pairing of finitely generated free Z-modules

H1(B
an,Z)×H1((B

∗)an,Z) −→ Z(1),

(5) gives an exact sequence

(6) 0 −→ Hom(Y ′′,Z(1)) −→ H1((B
∗)an,Z) −→ X ′′ −→ 0.

The homomorphism OSan⊗Z (Y ′′)∗ → Lie((B∗)an) is an isomorphism, where

(Y ′′)∗ = Hom(Y ′′,Z)(1).

The isomorphism Hom(X ′′,Ga)
'
→ Lie(Ban) induces a homomorphism

of subgroups Hom(X ′′,Z)(1) = (X ′′)∗ →H1(B
an,Z) which is injective with

cokernel Y ′′, and hence it induces a homomorphism of quotient groups

Hom(X ′′,Gm) → Ban which is surjective with kernel Y ′′. Thus we have

an exact sequence (a multiplicative presentation of Ban)

(7) 0 −→ Y ′′ −→ Hom(X ′′,Gm) −→ Ban −→ 0.

The same construction using (6) gives an exact sequence

(8) 0 −→ X ′′ −→ Hom(Y ′′,Gm) −→ (B∗)an −→ 0.

It can be shown that the pairing X ′′×Y ′′ → (Gm)S obtained in (7) coincides

with the one obtained in (8), and that this pairing satisfies the condition

(2).

We define X ′ and Y ′ by the following cartesian diagrams (∗) with which

we have commutative diagrams of exact sequences

(9)

0 −−−→ Y ′′ −−−→ Y ′ −−−→ Y −−−→ 0
∥∥∥

y (∗)
y

0 −−−→ Y ′′ −−−→ Hom(X ′′,Gm) −−−→ Ban −−−→ 0,

(10)

0 −−−→ X ′′ −−−→ X ′ −−−→ X −−−→ 0
∥∥∥

y (∗)
y

0 −−−→ X ′′ −−−→ Hom(Y ′′,Gm) −−−→ (B∗)an −−−→ 0.
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We have exact sequences

0 −→ Y ′′ −→ Hom(X ′,Gm) −→ Gan −→ 0,(11)

0 −→ X ′′ −→ Hom(Y ′,Gm) −→ (G∗)an −→ 0.(12)

Here Hom(Y ′,Gm)→ (G∗)an is defined as the composition

Hom(Y ′,Gm) −→ Ext([Y ′ →Hom(X ′′,Gm)],Gm)

∼= Ext([Y → Ban],Gm) = (G∗)an,

and Hom(X ′,Gm)→ Gan is defined similarly.

Let (X ′)∗ = Hom(X ′,Z)(1), X∗ = Hom(X,Z)(1). The exact sequence

(11) induces an injective homomorphism (X ′)∗ = H1(Hom(X ′,Gm),Z) →

H1(G
an,Z), and we have a commutative diagram of exact sequences and its

dual version

(13)

0 −−→ X∗ −−→ (X ′)∗ −−→ (X ′′)∗ −−→ 0
∥∥∥

y∩

y∩

0 −−→ H1(T
an,Z) −−→ H1(G

an,Z) −−→ H1(B
an,Z) −−→ 0,

(14)

0 −−→ Y ∗ −−→ (Y ′)∗ −−→ (Y ′′)∗ −−→ 0
∥∥∥

y∩

y∩

0 −−→ H1((T
∗)an,Z) −−→ H1((G

∗)an,Z) −−→ H1((B
∗)an,Z) −−→ 0.

Now we define the pairing 〈 , 〉 : X ′ × Y ′ → (Gm,log)S as follows.

Let Hom(X ′,Gm,log)0 be the subgroup sheaf of Hom(X ′,Gm,log) con-

sisting of all local sections which send X ′′ into Gm. Then the homomor-

phism Hom(X ′,Gm)→ Gan induces a homomorphism Hom(X ′,Gm,log)0 →

(Glog)
an. This and the similar construction by using Hom(Y ′,Gm) →

(G∗)an give cartesian diagrams

(15)

Hom(X ′,Gm,log)0 −−→ (Glog)
an

y
y

Hom(X ′′,Gm) −−→ Ban,

Hom(Y ′,Gm,log)0 −−→ (G∗
log)

an

y
y

Hom(Y ′′,Gm) −−→ (B∗)an.

By the left cartesian diagram, the pair of the homomorphisms Y ′ → Y →

(Glog)
an and Y ′ →Hom(X ′′,Gm) induces a homomorphism Y ′ →Hom(X ′,
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Gm,log)0. Similarly, by the right cartesian diagram, the pair of the homo-

morphisms X ′ → X → (G∗
log)

an (here the last arrow comes from the dual

log 1-motif M ∗ = [X → G∗
log] of M) and X ′ → Hom(Y ′′,Gm) induces a

homomorphism X ′ →Hom(Y ′,Gm,log)0. It can be shown that the pairings

X ′×Y ′ → (Gm,log)S obtained in these two ways are the same. The diagram

Y ′ −−−→ Y
y

y

Hom(X ′,Gm,log)
(Y ′) −−−→ (G

(Y )
log )an.

is cartesian. Hence we have

Aan = (G
(Y )
log )an/Y ∼= Hom(X ′,Gm,log)

(Y ′)/Y ′.

This proves that Aan is a log complex torus over San.

11.3. We prove Proposition 11.1 (2). Assume that we have a po-

larization h : M = [Y → Glog] → M∗ = [X → G∗
log]. This gives a

polarization h : B → B∗. The composition H1(B
an,Z) × H1(B

an,Z) →

H1(B
an,Z)×H1((B

∗)an,Z)→ Z(1) induced by h is an anti-symmetric pair-

ing. We can find (X ′′)∗ in 11.2 such that this pairing kills (X ′′)∗ × (X ′′)∗.

Then the pairing induces (X ′′)∗×Y ′′ = (X ′′)∗×H1(B
an,Z)/(X ′′)∗ → Z(1),

that is, a homomorphism φ : Y ′′ → X ′′. The following diagram is commu-

tative:
Hom(X ′′,Gm) −−−→ Ban

φ

y
yh

Hom(Y ′′,Gm) −−−→ (B∗)an

Since h : B → B∗ is a polarization, we have:

(1) 〈φ(y), z〉 = 〈φ(z), y〉 for any y, z ∈ Y ′′.

(2) For each s ∈ San, the induced symmetric bilinear form

(R⊗ Y ′′)× (R⊗ Y ′′) −→ R ; (y, z) 7−→ − log(|〈φ(y), z〉(s)|) (y, z ∈ Y ′′)

is positive definite.

Now a homomorphism φ : Y ′ → X ′ is defined (by the definitions of X ′

and Y ′ as fiber products in (9) and (10) in 11.2) by h : Y → X, h : B → B∗,

https://doi.org/10.1017/S002776300000951X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000951X


128 T. KAJIWARA, K. KATO AND C. NAKAYAMA

and Hom(X ′′,Gm)→ Hom(Y ′′,Gm) (by φ : Y ′′ → X ′′). The diagram

0 −−−→ Y ′′ −−−→ Y ′ −−−→ Y −−−→ 0
yφ

yφ
yh

0 −−−→ X ′′ −−−→ X ′ −−−→ X −−−→ 0

is commutative.

To prove that φ : Y ′ → X ′ gives a polarization of Aan in the sense of [6]

(cf. 4.11), it is sufficient to prove that the following conditions (i)–(iii) are

satisfied (cf. 4.11.3, [6] 1.2.7).

(i) φ : Y ′ → X ′ is injective and the cokernel of φ is finite.

(ii) 〈φ(y), z〉 = 〈φ(z), y〉 for any y, z ∈ Y ′.

(iii) For any y ∈ Y ′, 〈φ(y), y〉 ∈ MS in Mgp
S . For any y ∈ Y ′ \ {0},

the map α : MS → OS sends 〈φ(y), y〉 to a function on S whose values are

always of absolute value < 1.

The condition (i) is satisfied as is seen from the above commutative

diagram and from the injectivity and the finiteness of the cokernel of the

homomorphisms φ : Y ′′ → X ′′ and h : Y → X. The condition (iii) is sat-

isfied as is seen from the above property (2) of φ : Y ′′ → X ′′ and from

the property (c) of h : Y → X in Definition 2.8. It remains to prove that

the condition (ii) is satisfied. That is, it is sufficient to prove that the

composition Y ′ → Hom(X ′,Gm,log)0
φ
→ Hom(Y ′,Gm,log)0 coincides with

the composition Y ′ φ
→ X ′ → Hom(Y ′,Gm,log)0. Since Hom(Y ′,Gm,log)0 ⊂

(G∗
log)

an × Hom(Y ′′,Gm), this is reduced to the commutativity of the two

diagrams

Y ′ −−−→ Y −−−→ Glogy
y

y

X ′ −−−→ X −−−→ G∗
log,

Y ′ −−−→ Hom(X ′′,Gm)
y

y

X ′ −−−→ Hom(Y ′′,Gm).

(the commutativity of the right diagram is evident by the definition of Y ′ →

X ′).

This completes the proof of Proposition 11.1.

11.4. In the proof of Theorem 4.10, we will use the following lemmas

11.4.1 and 11.4.3.
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Lemma 11.4.1. Let S be an fs log scheme whose underlying scheme is

of finite type over a field k of characteristic 0. Then there is a finite sequence

of fs log schemes Sn
fn
−→ Sn−1

fn−1
−→ · · ·

f1
−→ S0 = S satisfying the following

conditions (i) and (ii).

(i) Each fi (1 ≤ i ≤ n) is either proper surjective or strict étale surjec-

tive. (Here “fi is proper” means that the underlying morphism of schemes

of fi is proper, and “fi is strict” means that the log structure of Si coincides

with the pull back of the log structure of Si−1 via fi).

(ii) Let P be any connected component of Sn. Then the underlying

scheme of P is smooth over k, and there is a divisor D on the underlying

scheme of P with normal crossings such that the log structure of P coincides

with

MP,D,r = Nr × {f ∈ OP | f is invertible outside D} ⊂ Nr ×OP

for some r ≥ 0 with α : MP,D,r → OP which sends (m, f) to f if m = 0 and

to 0 otherwise.

Proof. We may assume that there are an fs monoid N such that N× =

{1} and a chart N → MS . Take a regular subdivision of Hom(N,N) and

the proper log étale scheme S ′ over S corresponding to it ([8] Proposition

(9.9); in fact, its statement should be modified slightly, which can be easily

done by considering the fs or integrality condition). Replacing S by S ′ and

working locally, we may assume that the log structure of S is associated to a

homomorphism h : Nn → OS for some n ≥ 0. By replacing S by the disjoint

union of irreducible components of S endowed with the reduced scheme

structures, we may assume that the underlying scheme of S is integral.

Then changing the order of the canonical base of Nn if necessary, we have

r such that 0 ≤ r ≤ n and such that for m ∈ Nn, h(m) 6= 0 if and only if

mi = 0 for all 1 ≤ i ≤ r. Let m be the element of Nn such that mi = 0 for

1 ≤ i ≤ r and such that mi = 1 for r < i ≤ n. By the desingularization

of Hironaka, there is a proper birational morphism of schemes S ′ → S such

that S′ is smooth over k and such that the closed subscheme of S ′ defined by

h(m) is a normal crossing divisor D on S ′. We can replace S by S ′ endowed

with the log structure MS′,D,r.

Remark 11.4.2. In Lemma 11.4.1, we can always take r = 1. In-

deed, for any r ≥ 0, we have a morphism of fs log schemes (P,MP,D,1) →

(P,MP,D,r) associated to the homomorphism Nr → N ; (mi) 7→
∑

imi.
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Lemma 11.4.3. Let f : P → Q be a continuous map of topological

spaces, let R be a ring, and let F be a sheaf of R-modules on Q all of

whose stalks are of finite presentation as R-modules. Assume that f−1(F )

is locally constant and assume that f is a surjective closed map. Then F is

locally constant.

Proof. Let s ∈ Q. Since Fs is of finite presentation, there is a homo-

morphism h : Fs → F |U for some open neighborhood U of s such that the

composition Fs → F (U)→ Fs is the identity map. We prove that h induces

an isomorphism Fs
∼=
→ F |U ′ for some open neighborhood U ′ ⊂ U of s. Since

f−1(F ) is locally constant, there is an open neighborhood V of f−1(s) in

f−1(U) such that h induces an isomorphism Fs
∼=
→ f−1(F )|V . Let C be the

complement of V in P , and let C ′ be the image of C in Q. Since C is closed

and f is a closed map, C ′ is closed. Let U ′ = Q\C ′. Then, since U ′ ⊂ f(V )

by the surjectivity of f , the map Fs → F |U ′ is an isomorphism.

11.5. Proof of Theorem 4.10. We prove that if the underlying scheme

of S is locally of finite type over C and A is a log abelian variety over S,

then Aan is a log abelian variety over San in the sense of [6] (cf. 4.11.6).

By Proposition 11.1 (2), it is sufficient to prove that Aan is a log complex

torus.

We may assume that we have an admissible pairing X ×Y →M gp
S /O×

S

in 4.1.2 globally on S.

Let G be the semi-abelian part of A (4.4), and consider the exact se-

quence

0 −→ Gan −→ Aan −→ L/Y −→ 0, where L = Hom(X,Gm,log/Gm)(Y ),

and let

(1) 0 −→ Gan −→ Ãan −→ L −→ 0

be the pull back of it by L→ L/Y . Let ξ ∈ X⊗H1(G
an,Z)(−1) be the ele-

ment corresponding to the extension (1) via the isomorphism Ext(L,Gan) ∼=
X ⊗H1(G

an,Z)(−1) in Theorem 10.3. At each s ∈ San, if T/s denotes the

torus part of G×Ss, the stalk ξs of ξ at s belongs to Xs⊗H1((T/s)
an,Z)(−1)

and induces an isomorphism H1((T/s)
an,Z) ∼= Hom(Xs,Z)(1).

Next we prove
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11.5.1. Let W be an fs log analytic space over San such that MW /O
×
W

is locally constant. Then the pull back of H1(G
an,Z) to (fsan/W ) is locally

constant.

Proof. As is easily seen, locally on W , there are an fs log scheme S ′

over S such that MS′/O×
S′ is constant and a morphism W → (S ′)an of fs

log analytic spaces over San. By Theorem 4.6 (2), the pull back of A to

S′ is a log abelian variety with constant degeneration. Hence G ×S S
′ is

an extension of an abelian scheme by a torus, and hence the pull back of

H1(G
an,Z) to (fsan/(S ′)an) is locally constant.

11.5.2. Locally on San, there is a locally constant subgroup sheaf (X ′)∗

of H1(G
an,Z) satisfying the following conditions (i)–(iii).

(i) The composition

Ga ⊗Z (X ′)∗ −→ Ga ⊗Z H1(G
an,Z) −→ Lie(Gan)

is an isomorphism.

(ii) For each s ∈ San, the subgroup H1((T/s)
an,Z) of H1((G×S s)

an,Z)

is contained in the stalk of (X ′)∗ at s.

(iii) H1(G
an,Z)/(X ′)∗ is torsion free.

Proof. For each s ∈ San, we can find such (X ′)∗ for the pull back of

A to (fsan/s). (The subgroup (X ′)∗ of H1(G
an,Z) in 11.2 (13) is fine.) For

each s, (X ′)∗ → H1(G
an,Z)s extends to (X ′)∗ → H1(G

an,Z) on an open

neighborhood U of s in San. We show that the above (i)–(iii) are satisfied

on an open neighborhood V of s in U .

The composition OU ⊗Z (X ′)∗ → OU ⊗Z H1(G
an,Z) → Lie(Gan)|U is

a homomorphism of OU -modules which are locally free of finite rank and

whose pull back to s is an isomorphism. Hence it is an isomorphism on

some open neighborhood of s in U . We replace U by this neighborhood.

Since (X ′)∗ → OU ⊗Z (X ′)∗ ∼= Lie(Gan)|U is injective and it factors

through (X ′)∗ →H1(G
an,Z), the last map is injective.

We show that for some open neighborhood V of s in U , (X ′)∗t contains

H1((T/t)
an,Z) for any t ∈ V . The stalk ξs ∈ Xs ⊗H1((G ×S s)

an,Z) of ξ

belongs to Xs⊗H1((T/s)
an,Z)(−1) ⊂ Xs⊗ (X ′)∗s(−1). Hence ξ belongs to

X ⊗ (X ′)∗(−1) on some open neighborhood V of s in U and hence induces
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a homomorphism Hom(X t,Z)(1) → (X ′)∗t for each t ∈ V . For each t ∈ V ,

the diagram
Hom(X t,Z)(1) −−−→ (X ′)∗ty

y

H1((T/t)
an,Z) −−−→ H1((G×S t)

an,Z)

is commutative. Here the right vertical arrow and the lower horizontal arrow

are inclusion maps and the other two arrows are induced by ξt. Since the

left vertical arrow is an isomorphism, we have H1((T/t)
an,Z) ⊂ (X ′)∗t .

Finally we prove that H1(G
an,Z)/(X ′)∗ is torsion free on some open

neighborhood of s in U . By 11.5.1, if W is a locally closed analytic sub-

space of U such that MW/O
×
W is locally constant, then the restriction of

H1(G
an,Z)/(X ′)∗ to W is locally constant. Hence if we replace U by a

sufficiently small open neighborhood of s in U , then the torsion part of

H1(G
an,Z)/(X ′)∗ is contained in the n-torsion part for some n ≥ 1. The

inclusion map (X ′)∗ → H1(G
an,Z) induces a surjective homomorphism

f : Hom(X ′,Gm)→ Gan. We have an exact sequence

0 −→ H1(G
an,Z)/(X ′)∗ −→ Hom(X ′,Gm)

f
−→ Gan −→ 0.

Hence if we denote the n-torsion part of H1(G
an,Z)/(X ′)∗ by F , we have

the induced exact sequence

0 −→ F −→ Hom(X ′, µn)
f
−→ Gan,

where µn = {z ∈ C× | zn = 1}. For each non-trivial homomorphism

ψ : X ′ → µn, since G is separated, the equalizer C(ψ) of f(ψ) : U → Gan

and the unit section U → Gan is a closed analytic subspace of U . Since

Fs = 0, we have s /∈ C(ψ). Let V = U \
⋃
ψ C(ψ). Then V is an open

neighborhood of s in U , and F |V = {0}.

Working locally on San, let

X ′ = Hom((X ′)∗,Z)(1).

The section ξ ∈ X ⊗ (X ′)∗(−1) defines a homomorphism X ′ → X,

which we still denote by ξ. At each s ∈ San, the stalk ξs : X
′
s → Xs is the

Hom( ,Z(1))-dual of the inclusion map H1((T/s)
an,Z) → (X ′)∗s. Hence

ξ : X ′ → X is surjective.
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From the pairing X ′ × Y → X × Y → Gm,log/Gm for which we have

Hom(X ′,Gm,log/Gm)(Y ) = Hom(X,Gm,log/Gm)(Y ) = L, we obtain an exact

sequence on (fsan/San)

(2) 0 −→ Hom(X ′,Gm) −→ Hom(X ′,Gm,log)
(Y ) −→ L −→ 0.

Via the isomorphism Ext(L,Hom(X ′,Gm)) ∼= X ⊗ (X ′)∗(−1) = Hom(X ′,

X), this extension also corresponds to ξ. This fact with the commutative

diagram
Ext(L,Hom(X ′,Gm)) ∼= X ⊗ (X ′)∗(−1)

yf
y∩

Ext(L,Gan) ∼= X ⊗H1(G
an,Z)(−1),

shows that the push forward of the exact sequence (2) by f : Hom(X ′,Gm)

→ Gan coincides with the exact sequence (1). Hence we have a commutative

diagram with exact rows

0 −−−→ Hom(X ′,Gm) −−−→ Hom(X ′,Gm,log)
(Y ) −−−→ L −−−→ 0

y
y

y

0 −−−→ Gan −−−→ Aan −−−→ L/Y −−−→ 0.

Let Y ′ be the kernel of the surjection Hom(X ′,Gm,log)
(Y ) → Aan. The last

commutative diagram gives the exact sequence of the kernels of the vertical

arrows

(3) 0 −→ H1(G
an,Z)/Hom(X ′,Z(1)) −→ Y ′ −→ Y −→ 0.

We have

Aan = Hom(X ′,Gm,log)
(Y )/Y ′.

Hence Theorem 4.10 is proved if we prove

11.5.3. Y ′ is a locally constant sheaf.

We first prove

11.5.4. Let W be an fs log analytic space over San such that MW /O
×
W

is locally constant. Then the pull back of Y ′ to (fsan/W ) is locally constant.

This is proved in the same way as 11.5.1. As there, we are reduced

to the case MS/O
×
S is constant. Then A is with constant degeneration,

and hence H1(G
an,Z)/Hom(X ′,Z(1)) and Y are locally constant sheaves.

Hence the exact sequence (3) shows that Y ′ is also locally constant.

From the exact sequence (3), we obtain also the following 11.5.5.
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11.5.5. Let V be an fs log analytic space over San, let v ∈ V , and let

s ∈ San be the image of v. Then the map between the stalks Y ′
s → Y ′

v is

bijective.

11.5.6. The stalks of Y ′ are finitely generated free Z-modules. The

Z-rank of a stalk is a locally constant function on San and is equal to the

dimension of A.

Proof. Let s ∈ San. By the exact sequence (3), we have

rankZ(Y ′
s ) = rankZ(Y s) + rankZ(H1(G

an,Z)s)− rankZ((X ′)∗s).

We have rankZ(Y s) = dim(T/s). Let B/s be the quotient abelian variety

(G×S s)/(T/s). Then

rankZ(H1(G
an,Z)s) = rankZ(H1((T/s)

an,Z)) + rankZ(H1((B/s)
an,Z))

= dim(T/s) + 2 dim(B/s).

We have rankZ((X ′)∗s) = dim(G ×S s). These show that rankZ(Y ′
s ) =

2 dim(T/s) + 2 dim(B/s)− dim(G×S s) = dim(G×S s).

11.5.7. Q⊗ Y ′ is locally constant.

Proof. By 11.4.1, 11.4.3 and 11.5.5, we may assume that the underlying

scheme of S is smooth over C and the log structure of S is MS,D,r (11.4.1)

for some divisor D on S with normal crossings and for some r ≥ 0.

Let ∆ be the open unit disc {z ∈ C | |z| < 1}. Let s ∈ San. Then for

some open neighborhood U of s in San, there is a homomorphism h : Y ′
s →

Y ′|U such that the composition Y ′
s → Y ′(U)→ Y ′

s is the identity map. We

can take U such that there is an isomorphism U ∼= ∆a+b (a, b ≥ 0) which

sends s to the origin of ∆a+b and which sends U ∩ D onto the subset of

∆a+b consisting of all elements (zi) such that zi = 0 for some 1 ≤ i ≤ a.

It is sufficient to show that the restriction of Q ⊗ Y ′ to U is constant.

It is sufficient to prove that for any t ∈ U , h induces an isomorphism

Q ⊗ Y ′
s

'
→ Q ⊗ Y ′

t . Since rankZ(Y ′
s) = rankZ(Y ′

t ) by 11.5.6, it is sufficient

to prove that Y ′
s → Y ′

t is injective. Let R be the sheaf of meromorphic

functions on San. Since Y ′ ⊂ Hom(X ′,Gm,log) and the restriction of Gm,log

to the topological space San is a subsheaf of Nr × R×, and since the map

R(U) → Rt is injective, the map Y ′(U) → Y ′
t is injective. As Y ′

s → Y ′(U)

is clearly injective, we have the injectivity of Y ′
s → Y ′

t .

To proceed from Q⊗ Y ′ to Y ′, we use the following 11.5.8 and 11.5.9.
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11.5.8. Let n ≥ 1 and let nA = Ker(n : A→ A). Let nAs be the stalk

of the sheaf on the small étale site of S defined by nA, and let nA
an
s be the

stalk at s of the sheaf on San defined by nA
an. Then the canonical map

nAs → nA
an
s is an isomorphism.

(Note that nAs is not nA(s). If we denote by OhS,s the henselization of

OS,s, then nAs = nA(OhS,s).)

Proof. We have a commutative diagram with exact rows

0 −−−→ nGs −−−→ nAs −−−→ (L/Y )s −−−→ 0
y

y
∥∥∥

0 −−−→ nG
an
s −−−→ nA

an
s −−−→ (L/Y )s −−−→ 0,

where L = Hom(X,Gm,log/Gm)(Y ) (the algebraic version of this and the

analytic one have the same stalks, as well as Y ) and the canonical map

nGs → nG
an
s is an isomorphism.

11.5.9. Let U and U ∼= ∆a+b be as in the proof of 11.5.7. Let t ∈ U ,

and let U(t) be the locally closed analytic subspace of U defined to be the

set of all t′ ∈ U such that if (ti) (resp. (t′i)) denotes the image of t (resp. t′)

in ∆a+b, then the sets {i | 1 ≤ i ≤ a, ti = 0} and {i | 1 ≤ i ≤ a, t′i = 0}

are the same. Endow U(t) with the inverse image of the log structure of S.

Then the restriction of Y ′ to U(t) is locally constant.

Proof. Since MU(t)/O
×
U(t) is locally constant, this follows from 11.5.4.

Now we prove that Y ′ is locally constant. It is sufficient to prove that

for U , s, t as above, the injection h : Y ′
s → Y ′

t is in fact an isomorphism.

Note that to prove this, we may replace S by any étale neighborhood S ′ of

s→ S, U by an open neighborhood U ′ of s in (S′)an contained in the inverse

image of U satisfying the same condition as U , and replace the point t by

any point t′ of U ′ whose image in U is contained in U(t) (11.5.9).

Let y ∈ Y ′
t . We prove that y belongs to the image of Y ′

s → Y ′
t . There

are n ≥ 1 and z ∈ Y ′
s such that ny is the image of z.

We may assume that the following condition (∗) is satisfied.

(∗) The image of the homomorphism X ′ → Mgp
U,s induced by z is con-

tained in the image of the n-th power map n : M gp
U,s →Mgp

U,s.
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In fact, as we have mentioned above, we can replace S by an étale

neighborhood of s → S on which the irreducible components of D are

defined by functions fi (1 ≤ i ≤ a). By 11.5.5, we can replace S by the

Kummer covering S ′ of S defined by n-th roots of fi (1 ≤ i ≤ a) which

we endow with the log structure replacing Nr by ((1/n)N)r and replacing

D by the inverse image of D in S ′ which is still a normal crossing divisor,

and replace s by a point of S ′ lying over s. After these replacements, the

condition (∗) is satisfied.

Assuming (∗), take a homomorphism ϕ : X ′ →Mgp
U,s such that nϕ = z.

(We denote here the group law of Hom(X ′,Gm,log) additively). We may

assume that ϕ comes from a homomorphism X ′ → Mgp
U which we denote

also by ϕ. We may further assume that the image of nϕ in Hom(X ′,Mgp
U,t)

coincides with ny and hence the difference y−ϕ at t gives a homomorphism

ψ : X ′ → µn, where µn = {z ∈ C× | zn = 1}. Replacing ϕ by ϕ + ψ,

we obtain a homomorphism ϕ : X ′ → Mgp
U whose image in Hom(X ′,Mgp

U,t)

coincides with y. Let

w = (ϕ mod Y ′) ∈ (Hom(X ′,Gm,log)
(Y )/Y ′)(U) = Aan(U).

As nϕ ∈ Y ′, w belongs to nA
an(U). We denote the image of w under

nA
an
s

∼=
→ nAs (11.5.8) also by w. Replace S by an étale neighborhood S ′ of

s→ S on which w comes from an element of nA(S′) which we still denote by

w. Let E(w, 0) be the equalizer of w : S → A and the unit section 0: S → A.

Since the stalk of ϕ at t belongs to Y ′
t and since Y ′|U(t) is locally constant

(11.5.9), the restriction of ϕ on U(t) belongs to Y ′|U(t) and hence w vanishes

on U(t). Hence the image of E(w, 0)an → San contains U(t). Since E(w, 0)

is finite over S, the image of E(w, 0)an → San is closed. Since s is contained

in the closure of U(t), the image of E(w, 0)an → San contains s. Take

v ∈ E(w, 0)an whose image in San is s. Then ϕ ∈ Y ′
v in Q ⊗ Y ′

v . Since

Y ′
s = Y ′

v (11.5.5), we have ϕ ∈ Y ′
s in Q⊗ Y ′

s . Since the image of ϕ in Y ′
t is

y, y belongs to the image of Y ′
s → Y ′

t .

This completes the proof of 11.5.3 and hence also the proof of Theo-

rem 4.10.

11.6. We show that if we drop the condition 4.1.3 in the definition of

log abelian variety, then we would have a pathological object.

We consider an analytic object first. Let n ≥ 2 and consider the exact

sequence

0 −→ Z/nZ −→ G
(q)
m,log/q

nZ −→ G
(q)
m,log/q

Z −→ 0
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on (fsan/∆), where ∆ is the open unit disc endowed with the log structure

associated to {0} ⊂ ∆, and q denotes the coordinate function of ∆. Note

that G
(q)
m,log/q

mZ for m ≥ 1 are log abelian varieties over ∆ in the sense of

[6] (cf. 4.11.6). Define

A = (G
(q)
m,log/q

nZ)/j!(Z/nZ),

where j is the inclusion map ∆ \ {0} → ∆. Then the pull back of A to

∆ \ {0} coincides with that of G
(q)
m,log/q

Z, and the pull back of A to 0 ∈ ∆

coincides with that of G
(q)
m,log/q

nZ. This A is not a log abelian variety over

∆ in the sense of [6].

The above exact sequence comes from an exact sequence 0→ Z/nZ→

A1 → A2 → 0 on a smooth curve S over C with an fs log structure, where

A1, A2 are log abelian varieties over S, via a morphism ∆→ San. Let s ∈ S

be the image of 0 ∈ ∆ and let j : S \ {s} → S be the inclusion map. Then

A3 := A1/j!(Z/nZ) satisfies the conditions 4.1.1 and 4.1.2 in the definition

of log abelian variety, but not the condition 4.1.3. The pull back of A3 to

∆ is the above A. (The second condition is satisfied since if we denote by

Gi (i = 1, 2) the semi-abelian part of Ai, then we have an exact sequence

0→ G2 → A3 → A1/G1 → 0.)

In the proof of Theorem 4.10, Y ′ for this object A is not locally constant:

The stalk of Y ′ at 0 ∈ ∆ is qnZ, but the stalks of Y ′ at points of ∆ \ {0}

are qZ.
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