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Abstract

Following work in an earlier paper, the theory of finite deformation of elastic mem-
branes is applied to the problem of two initially-circular semi-infinite cylindrical
membranes of the same radius but of different material, joined longitudinally at
a cross-section. The body is inflated by constant interior pressure and is also ex-
tended longitudinally. The exact solution found for an arbitrary material is now
specialised to the orthotropic case, and the results are interpreted for forms of the
strain-energy function introduced by Vaishnav and by How and Clarke in con-
nection with the study of arteries. Also considered in this context is the similar
problem where two semi-infinite cylindrical membranes of the same material are
separated by a cuff of different material. Numerical solutions are obtained for
various pressures and longitudinal extensions. It is shown that discontinuities in
the circumferential stress at the joint can be reduced by suitable choice of certain
coefficients in the expression defining the strain-energy function. The results ob-
tained here thus solve the problem of static internal pressure loading in extended
dissimilar thin orthotropic tubes, and may also be useful in the preliminary study
of surgical implants in arteries.

1. Introduction

Since the theory of large elastic deformations of membranes was formulated
by Adkins and Rivlin [1], who also gave solutions to some problems in which
the deformation was axially symmetric, it has been applied to the solution of
additional problems of this type. Kydoniefs and Spencer [7] gave the exact
solution to the differential equations governing the axisymmetric deforma-
tions of a cylindrical Mooney membrane. Pipkin [9] gave the integration
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of one of the equilibrium equations governing axisymmetric deformation of
a cylindrical membrane composed of general homogeneous incompressible
elastic material. Subsequently, Kydoniefs [6] derived exact solutions to two
mixed boundary-value problems, in which a cylindrical membrane encloses
a rigid body and is axisymmetrically deformed by internal pressure and axial
force.

In the authors’ previous paper [3], using Pipkin’s [9] results, the axisym-
metric deformations were studied of two initially-circular cylindrical mem-
branes, composed of different isotropic elastic materials joined together at a
cross section and extended longitudinally under constant internal pressure.
The solutions are exact in the sense that the equilibrium equations are inte-
grated analytically, numerical methods being used only for the determination
of one of the variables describing the deformed configuration. The exact so-
lutions are valid for general homogeneous isotropic incompressible elastic
materials and the examples were calculated for Mooney material.

In this paper, we formulate these problems for general homogeneous elas-
tic material rather than for a particular class (isotropic) of materials. Both
isotropic and orthotropic materials are involved in our examples. While the
solutions found here are valid for the mechanical problem posed of dissimilar
elastic cylinders of any orthotropic type, under tension and constant internal
pressure, we have chosen the material constants in our examples from pre-
vious experimental work on natural arteries and artificial grafts. Thus the
results found can be regarded also as supplying preliminary information on
the subject of an implant of an artificial graft into an artery—albeit under
static rather than dynamic loading conditions.

In Section 2, we summarise first the field equations governing the defor-
mation of an initially circular cylindrical membrane of homogeneous incom-
pressible elastic material, subjected to an axial tensile force and internal pres-
sure. Then we outline the scheme of solving a specific boundary-value prob-
lem. These equations and the proposed scheme are applicable to general
materials.

In Section 3, we set up the conditions when two cylindrical membranes
of different elastic materials are joined together. As examples, in Section
4 we discuss the situation in which two semi-infinite membranes are joined
together. In Section 5, we consider the link of two semi-infinite membranes
with the same material by a cuff composed of different material.

2. Axisymmetrical deformations of initially-cylindrical membranes

Axisymmetrical deformations of initially-cylindrical membranes are con-
sidered. The membranes are composed of homogeneous incompressible elas-
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FIGURE 1. Axial sections of the deformed membrane (with 25 =0).

tic material and have uniform thickness 2h, . The authors’ notation in their
previous paper will be used in the following.

We assume that the deformation is caused by internal pressure P, mea-
sured per unit area of the deformed membrane, and axial force F, at the
ends. The pressure P, may vary longitudinally, but not circumferentially so
that it can produce an axisymmetrical deformation. The deformations are
referred to cylindrical polar coordinates; (p, ©, 1), p = constant, are the
coordinates of a particle in the undeformed configuration which has coordi-
nates (r, 8, z), after the deformation, given by

r=r(n), 6=, z=z(n). (2.1)

Therefore the deformed membrane could be generated by rotating a con-
tinuous curve C about the z-axis. It is assumed that the tangent to C is
nowhere parallel or perpendicular to the z-axis, except perhaps at end points
of C;otherwise C may be divided into segments for which this condition
does hold. The deformed configuration is, therefore, one of those illustrated
in Figure 1. The arc length of C is denoted by ¢ and the angle between the
tangent to C and the z-axis by w, where 0 < w < /2.

Since the deformation is axially symmetric, the principal directions of
strain coincide with the meridian, the lines of latitude and the normal to
the deformed surface. The principal extension ratios corresponding to these
directions are denoted by 4, Ay, A4, respectively, and are given by

Ay=d&ldn, Ay=r/p, Ay=QA4) " =h/h,, (2.2)
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where 24 is the variable thickness of the deformed membrane and the incom-
pressibility condition 4,4,4, = 1 has been used. The general strain-energy
function for an incompressible elastic membrane can be expressed by

W=W(@,,i,). (2.3)

If T, and T, denote the stress resultants in the deformed membrane,
in the directions of the tangents to the meridian curves and the curves of
latitude respectively, then we have

ow -10W
Tl = 2}1}.[8—}'l = 2h02.2 a—/{l ) (2 4)
ow -10W )
T2 = 2h'126_j.2 = 2h0A’1 6—2’2 .

Two quantities which must be used to study deformations of membrane
are the principal curvatures, x, and k,, of the surface of the membrane, k,
being the curvature of the meridian curve. A principal curvature is positive
when the corresponding centre of the curvature is on the same side of the
surface as the inward pointing normal. Then

kK, =d(cosw)/dr, Kk,=cosw/r. (2.5)
The equations of equilibrium can be written in the form
d(rT))/dr=T,, x,T,+k,T,=P,. (2.6)

The equations (2.1)-(2.6) govern the axisymmetrical deformation of an
initially cylindrical membrane of homogeneous incompressible elastic mate-
rial. The angle w and the arc length ¢ can be expressed in terms of r and
z. Then the equations in (2.6) are the coupled ordinary differential equa-
tions for r and z if 7 is chosen as the independent variable. Alternatively,
we can choose 4,, or r(= pi,) from (2.2),, as the independent variable,
and the equations in (2.6) may be used to determine the extension ratio 4,
through (2.4) and the angle «. Then from (2.2) and the geometry in Figure
1 we can determine z, € and 7. The latter procedure will be followed in
this paper.

Substituting (2.4) into the first of (2.6) and making use of (2.2), we have

d (oW 27! oW

ar; (a1,) =491

It has been shown that when the initial shape is a circular cylinder (see Pipkin
[9]), this can be integrated to give

ow

W—}.l—a—il_=

A, (2.7)
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where A4 is an integration constant. From the last equation, 4, can be de-
termined in terms of 4, and the constant 4 when the strain-energy function
W(A,, 4,) is specified. Substituting (2.4), (2.5) into the second of (2.6) and
using (2.2) and the first of (2.6) gives rise to

d (oW -
d}. ( cosw) = pP.A,(2h,) l,

which determines w as follows:

cosw={ /P/l dl} {2h°6/1 } (2.8)

If the pressure is the same everywhere, P, = Py(constant), the case in

which we are interested in this paper, then this becomes

cosw = {pP,i2/2 + B}/ {2hogTW} , (2.9)
1
where B is another integration constant.

The constants 4 and B can be determined in terms of the extension ratios
at one of the end sections when both strain-energy function and the external
loading are specified. For example, if the extension ratios and the resultant
of the axial force at the top end section are A, A, and F, then, since
(2.7) holds along the meridian,

A=(W 16W>

57 (2.10)

(A7 Azr)

The balance of the axial components of the loading applied on the part of
the membrane between the top end section and any arbitrary section with
circumferential extension ratio 4, yields

2

21pA, T, cosw = F, — p’ Py(Adyr — A2),

or

cosw = {Fy/(np) - pPy ZT—AZ)}/{MOZEV} 2.11)

The expression (2.9) also holds at any section. Then, equating (2.9) with
(2.11), we have
B = Fr/(2p) - (pPyAy) /2,
and
cosw = {np’ Py(A3 — ALy) + Fp}[{4nphy(OW[04,)} . (2.12)

Therefore, (2.7) and (2.12) determine the extension ratio 4, and the angle
w interms of 4,, A, and A,,.
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From the expression (2.12), at the top end section, we have a relation
between the angle w = Q. and the extension ratios A, and A,
cosQ, = T/{47tph0(c’)W/6,11)}|(A

1T ’AZT) )

Thus we can specify any two of the three quantities Q,, A, and A, to
complete the determination of 4,, w and the tensions 7, and T, through
(2.4) in terms of 4, .

After 4, and w are determined, the deformed and undeformed configu-
rations can be found. From Figure 1 and (2.2), we have

A
(z—2zy)/p= :l:/zcotwdzlz,

2

}'2
E/p= i/A di,/sinw, (2.13)

A
n/p= :l:/ " dA,/(4, sinw).
AZ

In (2.13) the positive or negative sign is dependent upon whether 4, is an
increasing or decreasing function of ¢ and it has been assumed that 4, = A,
and § = n = 0 at some section z = z; (in Figure 1 we choose z, = 0).
The quantity A, could be chosen as A, ., but we prefer to use it as another
parameter.

If the total original length between the top end section and the section
z =z, is given as L, then the third of (2.13) gives a relation between A, .,
A,y and A,

Lip=+ / —A,MdA, /(A sin ). (2.14)

So if A, is given by some independent condition, then only one of three
quantities A, A,; and Q, at the top end section is independent. One
point should be mentioned here. According to the assumption made on the
curve C at the beginning of this section, 4, is a monotonic function of &.
If the section z = z;, is not the top end i.e. L # 0, then A, # A, . Butif it
is found from the independent condition that A, = A, in magnitude (i.e.
the radii are equal), then (2.14) would give the unreasonable result L =0,
which implies that the integrand in (2.14) is singular at least at one interior
section. Since 4, is finite, the only possibility for the integrand to be singular
is that the angle @ is zero at one or more sections. Thus we have to divide
this part into at least two sub-parts and then study each of them. To find
the original length of the whole part, the integral in (2.14) must be broken
into at least two parts, each with a singularity at the end of the interval. The
approximate method to carry out these singular integrals is the same as that
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which will be used in Section 5. We use the condition w = 0 to determine
the circumferential extension ratio at the singular section.

The balance of the axial components of the forces applied on the mem-
brane between the top end section and the section z = z, yields the expres-
sion for the axial force acting at the section z = z,

2 2
F, =F - np  Py(Asr — A). (2.15)

V4

Since A, #A,, on # F.

3. Joining of two membranes of different materials

The formulae derived in the preceding section hold in one material. Now
we consider the join of two initially circular cylindrical membranes composed
of different homogeneous incompressible elastic materials. We assume that
the membranes are joined together at section z = z,. We subscript 7' and
B to the quantities in the top part (z > z;) and the bottom part (z < z,),
respectively, of the joined membrane to simplify the explanation.

At the joining section z = z,, we have the continuity conditions

Ay = Ay = Ay, (3.1)

W =w,=Q,. (3.2)

The condition (3.1) results from the requirement that the membranes should

have the same radii at the joining section z = z,, and (3.2) signifies continu-

ity of the slope of the meridian curve, as required by the membrane theory.

Then (3.2) implies the continuity of the longitudinal tension: T, = T\,
and, in turn, we deduce that

, (3.3)

(3WT) _ (6W8>
04z (Airy s Ay)) 94,5 (Mgsshyy)

where W, = W,.(,,, A,r) and Wy = Wy(4,p, 4,5) are strain-energy func-
tions for the top and bottom parts respectively. In (3.3), A, and A, g,
are the values of 4, and 4, p at the joining section, and can be determined

from
W, OW.
(h-ie22)| = (-2, 2) L e
1T (AITJ ’AZJ) 1T (AIT ’AZT)
W, W,
(Wa—xw%—ﬂ) = (WB—AIBZTE) . (3.5)
1B (AIBJ ’AZJ) 1B (AIB ’AZB)

in terms of the extension ratios A, ; at the joining section, A ., A,, at the
top end section of the top part and A ;, A, at the bottom end section of
the bottom part.

1B >
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Balancing the axial components of the loading acting on the whole joined
membrane, we have the relation between the axial forces F. at the top end
section of the top part and F at the bottom end section of the bottom part

Fy=F,—np Py(A) - AL)). (3.6)

With (3.3) and (3.6), it can easily be proved that the axial component of the
longitudinal tension 7 cosw continuously crosses the joining section. But
the longitudinal extension ratio 4, and the circumferential tension resultant
T, may be discontinuous at the joining section.

The equation (3.3) determines A,; at the joint. Then we can specify any
two of A, A, and Q, at the top end section of the top part and any
two of Az, A,p and €, at the bottom end section of the bottom part
if the original lengths of the two parts are not given (one may be asked to
determine the lengths). If we are supplied with the lengths then the number
of the independent variables is reduced by one at each end section. Thus
we need more conditions to determine the reduced variables. If the lengths
are finite, then the conditions are of the form of (2.14). If the lengths are
infinite, then we will have other conditions. In the following sections we will
discuss various situations in which the lengths are given.

After the extension ratios at the joining and end sections are determined,
we can determine the longitudinal extension ratio 4,, the tension resultants
T, and T,, and the angle @ in terms of the circumferential extension ratio
4, in the two different parts, and then carry out the integrations in (2.13)
with the corresponding parameters to give the deformation.

4. Join of two semi-infinite cylindrical elastic membranes

As an example, we discuss in this section the situation in which both mem-
branes are semi-infinite. We assume that the joining section is located at
z=12,=0. Then A, A, , Az and A,, are the values of the exten-
sion ratios as z tends to positive or negative infinity respectively. We expect
the join to have no effect on the deformation at large |z|. Consequently, at
a large distance from the joining section, the membranes will be deformed
under the action of the axial force and constant internal pressure and the
deformed membranes tend to the circularly cylindrical, i.e. Q; = Qg = 0.
So F, and F, are balanced with 7|, and 7, at z — oo respectively,
Fy and P, with T,, and T,, at z — —oo respectively, where F, should
satisfy (3.6).
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It follows from the above observation that for z — oo we have
2rpA, Ty = Fp, T,r = BypA,q. (4.1)

Expressing the tension resultants in terms of the strain-energy function W,
as in (2.4), we obtain

oW, aw,

= T _
ox, 7, PA AL, (4.2)
in which we have put
F = F/(4nphy), P = pP,/(2h,). (4.3)
Similarly, at the other end where z — —~co, we have, by (3.6)
ow, W,
B_F_ PN, — A2, 28 _pAA,,. (4.4)
0, Olyp

After A, and A,, are either determined from (4.2) for given F and
P, or specified (one or both of them) to determine the external loading from
(4.2), A,z and A,; can be found from (4.4). Then (3.3)-(3.5) are the gov-
erning equations for the extension ratios A,;,, A,; and A, at the joining
section. In this situation, the equations for A , and A,, are separated from
those for A;,;, A,; and A ;.

So far the strain-energy functions take the general form (2.3). To find
the numerical values of the extension ratios as well as the tension resultants,
we need specific forms of these functions. As indicated in the Introduction,
we are interested in the implant of an artificial graft into a natural artery.
If both the natural and artificial arteries are sufficiently long that (4.2) and
(4.4) hold with very good accuracy, then they can be treated as semi-infinite
membranes. Therefore we will treat the top part as natural artery and use
the strain-energy function given and tested experimentally by Vaishnav {11]

W, = ClaZT + Cya by + C3b; + C4a; + CsaibT + C6aTb; + C,b; , (4.5)
where R )
ar= Ay~ 1)/2, by =(A]p—1)/2 (4.6)
are Green-St. Venant strains in the circumferential and longitudinal direc-
tions and the material coefficients are shown on the first row of Table 1.

TABLE 1. The values of the material coefficients of Vaishnav and
How-Clarke membranes in the expressions (4.5) and (4.7).

i 1 2 3 4 5 6 7
Ci(IOSN/mz) 0.3230 0.0340 0.2470 0.0250 0.0680 0.8620 —-0.0410
Dy( 105N/m2) 3.0231 2.9227 4.1104 -—1.6959 -1.8700 -2.8331 -1.9322
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The bottom part is an artificial implant. We first employ an orthotropic
graft used in surgery, the experiments on whose material properties were
carried out by How and Clarke [4]. The strain-energy function is of the same
form as (4.5), i.e.

Wg = DlaIZB + Dyaghy + D3bz + D4a; + Dsasz + D6aBb123 + D7b133 » (47)

where

ag=(ag—-1)/2, by=@R1,—1)/2 (4.8)
are again Green-St. Venant strains in the circumferential and longi-
tudinal directions and the material coefficients are shown on the second row
of Table 1.

As previously mentioned, the resultant tension 7, in the circumferential
direction may have a discontinuity or jump at the joining section. This jump
does exist in the situation when two isotropic cylindrical membranes are
joined together (see Hart and Shi [3]). From the results found here the jump
also occurs when a How-Clarke artificial graft is joined to a natural artery
with the strain-energy function of the form (4.5). Now the question can be
asked, how large is the jump if the artificial graft is composed of isotropic
elastic material, such as a rubber-like material? So we then use, instead of
(4.7), the strain-energy function describing a Mooney material:

Wy =C y(Aip+Aop+Aiphoy —3)+ Cop(Aighag +4s + 455 —3)  (4.9)
and carry out some calculations. The material constants we used are C,, =
2.0 x 105N/m2 and C,;, = 0.4 x 105N/m2 . These values were used by
Kydoniefs [6] and are close to those measured for a certain type of vulcanised
rubber by Rivlin and Saunders [10]. It is found that the jump for the isotropic
graft is larger than that for a How-Clarke orthotropic graft under the same
conditions at the top end section of the natural artery.

From the mechanical point of view, a large jump in the resultant tension at
the joint may be one of the factors which cause failure in surgery. Therefore
it is highly desirable to manufacture a graft which can produce a smaller jump
at the joining section. So we vary the coefficients in (4.7) and seek those which
give smaller jumps than the How-Clarke material. The following examples
are constructed with a number of different kinds of material for the bottom
part, namely Mooney and How-Clarke materials with varied coefficients.

For the equations in (4.2) with the strain-energy function given in (4.5), we
can assume that F and P are known, then we can solve for A, and A,,..
But we prefer to specify A, and P, then solve for A, and the axial force
F . The reason for this is that there are some observations on the contraction
of arteries which were excised from animals as well as human bodies (see
Bergel [2] and Pedley [8]). The contraction varies from 15% to 42%. So we
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specify A, = 1.4. The internal pressure is specified as F, = 0.10, 0.15

and 0.20(x 10° N/mz) which are in the range where the experiments were
carried out. These values of pressure are also in the physiological range.
The original thickness and radii of the cylindrical membranes are given as
2hy=5.0x 10~*m and p=25x 103 m . These are also in the experimental
range. With these values given, we solve for A,, and F from (4.2) with
(4.5). Then substituting into (4.4) and (3.3)-(3.5) with one of the strain-
energy functions mentioned above, we can determine A, A,p, Ar;,
A,; and A,p,. Since these equations are highly nonlinear, we used NAG
Library subroutine ¢cOSNBF to find numerical solutions on a Pyramid 9810
superminicomputer.

Now we can evaluate 4 = W — 4,(0W/04,) at z — o0 and z — —oo0,
and then determine A, at an arbitrary point in terms of A, from (2.7).
For the strain-energy function with the form of (4.9), 4, can be expressed
analytically in terms of A, . But for those with the form of (4.5) or (4.7), this
is not the case and we used the Newton method in the determination of 4, in
terms of A4,. The tension resultants and the deformed configurations can be
found from (2.4) and the first of (2.13) respectively. Another two quantities
we are interested in are the original lengths L of the parts of the membranes
between the joining section and the section beyond which the angle w is so
small that the integration in (2.13) tends to be singular under the specified
accuracy. These provide some information on the lengths of the artery and
artificial graft for which the semi-infinite assumption can be used, and give
a guide to the next section on the original length of the cuff.

Some of the numerical results obtained are shown in Tables 2-3. Table 2
follows from using (4.5) for the top part and (4.7) for the bottom part with
the coefficients shown in Table 1 when A, = 1.4 at the top end section. The
strain-energy function (4.9) for the bottom part and A, = 1.4 are used in
Table 3. In the tables L/p is the ratio of the original length, from the joining
section to the section beyond which the angle w is zero, to the original radius
of the membrane.

From Tables 2-3, we can see that the jumps in 7, at the joining sec-
tion are larger in the orthotropic-isotropic cases than in the orthotropic-
orthotropic cases. So the How-Clarke orthotropic graft is better than the
Mooney isotropic one from this point of view. To reduce the jump in T,
around the joining section, we tried to change the material coeflicients in
(4.7) for the graft. From the calculations, we found that reduction in D,
by 0.37 or D, by 0.43 makes the jump drop significantly when A, = 1.4
and P, = 0.20 x 105N/m2 , but reductions in D, by 1.2 or D, by 4.0 make
the jump drop only slightly. This is mainly because 4, > 4, at the joining
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TABLE 2. Values of extension ratios, axial force F(N) at z — oo,

resultant tensions 7, and T,(x 10 N/m) at joining
and L/p of joined Vaishnav and How-Clarke

semi-infinite membranes under pressure Fy(x lOsN/mz) when A, =14.

Fo Arr Ay Ay Ay Ap Asp
0.10 1.5093 1.6027 1.1658 1.0553 1.0762 1.0579
0.15 1.7643 1.5829 1.3151 1.0621 1.0794 1.1081
0.20 1.9727 1.5412 1.4780 1.0848 1.0632 1.1673

Py Fr Ty, Tors Ty Lrip Lglp
0.10 0.8650 0.3870 0.2530 0.5750 4.0681 1.4237
0.15 1.3140 04800 0.3310 1.0010 3.4890 2.2035
0.20 1.7550 0.5360 0.4290 1.2510 3.7699 2.2102

TaABLE 3. Values of extension ratios, axial force F(N) at z — co, resultant tensions
T, and T,(x 10 N/m) at joining and L/p of joined Vaishnav and Mooney
(Cip=20x 105N/m2 , Cyp =0.4x lOsN/mz) semi-infinite membranes under pressure
Py(x10°N/m?) when A, = 1.4.

i) Aor Airs Ay Aips Aip Asp
0.10 1.5093 1.7067 1.0810 1.0084 1.0390 1.0092
0.15 1.7643 1.7006 1.1821 0.9830 1.0374 1.0256
0.20 19727 1.6644 1.2877 0.9571  1.0221  1.0496

o Fr Ty, Tors Yy Ly/p  Lglp
0.10 0.8650 0.3970 0.2810 0.7220  3.8362  1.1522
0.15 1.3140 04970 0.3340 1.3490  3.4400 1.4417
0.20 1.7550 0.5570 0.3740 1.9200 4.2333  1.3857

section and D, and D, are directly involved in the expression for 7, while
D, and D, are involved only through the determination of 4, and 1, .
The coefficients D, and D, are associated with the material property in
the circumferential direction and D; and D, in the longitudinal direction.
Reduction in D, and D, implies softening the material of the graft in the
circumferential direction, and thatin D; and D, implies softening the mate-
rial in the longitudinal direction. From this point of view, it may be desirable
to make the graft softer in the circumferential direction than the How-Clarke
material. This softening procedure would result in a better match in cir-
cumferential compliance of the graft with the natural artery in which it is
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interposed. The effects of circumferential compliance on the failure at the
Jjoint were noted by Kidson and Abbott [5]. In an actual manufacturing pro-
cess a material produced with say D, and D, changed in accordance with
the indications given here may also have the other coefficients changed. Ex-
periment and calculation would be then needed to determine the effect on
the jump.

In Figures 2-4, we illustrate the deformed shapes and the variations in T,
and 7, when Vaishnav and How-Clarke semi-infinite membranes are joined
together at the horizontal axis under the pressure PO(XIOSN/mz) = 0.10
(solid), 0.15 (dotted) and 0.20 (dashed) with A . = 1.4. We can see that the
longitudinal resultant tension 7, takes a maximum value at the joining and
local minima in both the top and bottom parts when the pressure is relatively
low (P, = 0.10 and 0.15x 10°N/m’). When P, =0.20x 10°N/m>, T, has
a local maximum at the joining and a local minimum in the top part. The
jump in the circumferential resultant tension 7, increases.as the pressure
increases.

Since a membrane cannot withstand compression along its surface, the
stress resultants 7, and 7, must be positive for any deformation. So is
the strain-energy function. This places some restrictions on the coefficients
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FiGURE 2. Deformed shape of joined Vaishnav (top) and How-Clarke (bottom) semi-infinite

membranes under pressure PO(XIOSN/mZ) = 0.10 (solid), 0.15 (dotted) and 0.20 (dashed)
when A, = 1.4. The horizontal axis is the joining section in each case.
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FIGURE 3. Variation of longitudinal resultant tension T|(><103N/m) in joined Vaishnav

(right) and How-Clarke (left) semi-infinite membranes under pressure Pp(x 10°N / m* ) =0.10
(solid), 0.15 (dotted) and 0.20 (dashed) when A, =1.4.
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FiGURE 4. Variation of circumferential resultant tension T,(x 10°N /m) in joined Vaishnav

(right) and How-Clarke (left) semi-infinite membranes under pressure Fy(x lOsN/m2 ) =0.10
(solid), 0.15 (dotted) and 0.20 (dashed) when A, = 1.4.
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in the polynomial expressions in (4.5) and (4.7). By considering two special
deformations in which 4, =1 or A, = 1, we find that the first three must be
positive (this is a necessary condition, not sufficient), and the last four could
be negative. If one, or more, of the last four are negative, then the deforma-
tions must be within some limits. From Table 1, we see that the first three
coefficients are indeed positive in both (4.5) and (4.7), the seventh in (4.5) is
negative but all of the last four in (4.7) are negative. So the deformations we
consider here cannot exceed some limits. Instead of determining the limits,
it is sufficient to check the signs for 7,, 7, and W during our calculations
so that the results are valid. When we changed the coefficients D; in (4.7)
to reduce the jump in T, , we did the same.

5. Two semi-infinite cylindrical membranes linked by a cuff

The assumption in the previous section that the membranes are of infinite
length is ideal because any membrane has a finite length. So we really need
to deal with membranes with finite length. If we are interested in the implant
of an artificial graft (cuff) with finite length L. into a natural artery we may
model the natural arteries separated by the cuff as semi-infinite membranes.
If we assume that the conditions at the infinite end sections of the natural
arteries are the same and the internal pressure is constant, then the deforma-
tion is symmetric about the middle section of the cuff. Thus this problem can
be treated as a join of a finitely long membrane (with half the length of the
cuff) with a semi-infinite membrane. To simplify the following discussions,
we refer to one of the semi-infinite membranes as the top part and the hailf
cuff joining it as the bottom part. The extension ratios at the top end of the
semi-infinite membrane and the joining are denoted as those in the previous
section. The extension ratios at the symmetric section of the cuff are denoted
as A;; and A,;. Then the equations in (4.2) are still valid. Besides those
equations in (3.3)-(3.5), we have two additional conditions from the bottom
part: the one corresponding to (2.14) giving the original length of the half
cuff and

Q=0 at i,,=A,,, (5.1)
the condition of symmetry at the middle section of the cuff. By making use
of the equation corresponding to (2.12) for the bottom part and (3.6) with

(4.3), this condition becomes
2 2
=F + P(A5p — Ayp)/2. (5.2)

(a WB)
0415/ \(ry 000

Because of the symmetry condition (5.1), the integrals corresponding to
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(2.13) and (2.14) for the bottom part are singular at A,,. To avoid this
singularity, we proceed as follows. Following Kydoniefs and Spencer {7] and
expanding cos W, in a series of (4,; — A,;) we find

0swy =1+ g (Ap — Ayp) + Oy — Ayp), (5.3)
where
’
g = (d(coswy)/dayp)l; _y - (5.4)
Then we have, in the neighbourhood of A,,
. 3
sinwy = {28'(Ayg — Ayp)} " + O(Ayy — Ayp)7, (5.5)

and the condition giving the original length of the cuff may be written as

1/2

A, ! 1 !
Lc/(2p) = i/A H(lyp)dAys F (28 (Mg — M) /(A p8), (5.6)

where

H(Ayp) = (A psinwg) ™" — ATp[28 (Ayp — Arp)1 1. (5.7)
The integrand (5.7) takes the value zero at 4,;, = A,,. The integrals corre-
sponding to (2.13) for the bottom part can be written in a similar way.

Thus two kinds of problems can be considered:

(1) Given the radius after the deformation (equivalent to A, = r/p) of the
cuff at the symmetric section, one is required to determine the original length
of the cuff, the radius at the joining and the associated quantities such as the
discontinuity in the circumferential tension at the joining section.

(2) Given the original length of the cuff, we are asked to determine the
radii, which are equivalent to the circumferential extension ratios, of the cuff
at the symmetry and at the joint; also the other quantities. In these problems,
since [coswy| <1, 8'(Ap—Ayp) <O.If Ayp > Ay, (O Ay < A,p), which
can be seen from the results for the semi-infinite membranes in the previous
section, then only those values of A, and A,, which produce negative
(positive) g’ can be used. To ensure |cosw gl < 1 near the symmetric
section during the numerical calculation, we also need cosQ, = 1. So we first
find A,; numerically from (5.2) for given A,, or vice versa. Then (3.3)-
(3.5) and (5.6) serve as the governing equations for A, ,,, A,;, A gz,, Ayp -

For problems of the first kind A, is given, we determine A, numerically
from (5.2) and then A, , A,;, A, from (3.3)-(3.5). Finally the original
length of the cuff is calculated from (5.6) and the other quantities follow. The
problems of the second kind are more difficult than the first ones, since we
need to solve the coupled highly nonlinear equations (3.3)—(3.5), (5.2) and
(5.6) which involves an integration. The following numerical results are for
these problems.
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The values of L/p in the previous section provide some information about
the original length of the cuff within the specified accuracy and whether or
not it can be treated as a semi-infinite membrane. If L./(2p) is greater than
L,/p of the previous section, then the cuff can be treated as a semi-infinite
cylindrical membrane and the results of the previous section can be used. If
L./(2p) is smaller than L;/p, then the formulation outlined in this section
can be employed. But the formulation in this section may still be used to
carry out results when L./(2p) is slightly greater than Lg/p of the previous
section.

In the numerical calculations, we used the Vaishnav strain-energy function
(4.5) for the top semi-infinite membrane, and the How-Clarke function (4.7),
the Mooney function (4.9) as well as modified How-Clarke functions with
different material coefficients for the cuff. The numerical results shown in
Table 4 are obtained by using How-Clarke material for the cuff with the length
L./(2p) = 1.0 while Table 5 is produced by using both How-Clarke (A) and
modified How-Clarke ((B) with D, = 2.6531, (C) with D, = -2.1259, (D)
with D, = 2.8531 and D, = —1.8959) materials for the cuff with the length
L./(2p) = 2.0 under the pressure P, = 0.20(x10°N/m’). In both Tables
4 and 5, the longitudinal extension ratios at z — oo of the top Vaishnav
semi-infinite membrane is A, = 1.4.

In Figures 5-7, we illustrate the deformed shapes and the variations in
T, and T, in the cases corresponding to the results shown in Table 5:
(A) How-Clarke cuff-solid; (B) How-Clarke cuff with D, = 2.6531-dotted,;
(C) How-Clarke cuff with D, = —2.1259-dashed; (D) How-Clarke cuff with
D, =2.8531 and D, = —1.8959-dot-dashed. We can see that the How-Clarke
cuff (A) produces a larger local maximum in 7, at the joining section than (C)

TAsLE 4. Values of extension ratios, axial force Fr(N) at z — oo, resultant tensions T
and T,(x 102 N/m) at joining and L/p of joined Vaishnav semi-infinite membrane with
How-Clarke cuff (L/(2p) = 1.0) under pressure P0(><105N/m2) when A, =14.

Po Ay Ay Ay Aey A Azp
0.10 1.5093 1.6019 1.1666 1.0551 1.0725  1.0739
0.15 1.7643  1.5807 1.3183 1.0617 1.0719  1.1495
0.20 1.9727 15367 1.4870 1.0857 1.0532 1.2467

P Fr Ty, ry Ty Lplp
0.10 0.8650 0.3870 0.2520 0.5770  4.0854
0.15 13140 0.4790 03320 1.0090 3.3272
0.20 1.7550 0.5350 0.4340 1.2550 3.7589
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TaBLE 5. Values of extension ratios, axial force F(N) at z — oo, resultant tensions T

and T,(x 10 N/m) at joining and Ly /p of joined Vaishnav semi-infinite membrane with
various cuffs (L./(2p) = 2.0) : How-Clarke (A) and modified How-Clarke ((B) with
D, =2.6531, (C) with D, = —2.1259, (D) with D, = 2.8531 and D, = —1.8959)

under pressure Fy = 0.20(x105N/m2) when A, = 1.4.

D; Aor Ary Ay Aps Ap A
A 1.9727 1.5412 1.4779 1.0848 1.0622 1.1744
B 1.9727 1.4759 1.6361 1.1391 1.0543 1.2366
C 1.9727  1.4891 1.5989 1.1155 1.0589 1.1989
D 1.9727 1.4972 1.5777 1.1062 1.0577 1.2086
D, Fr Ty; T)ry Thyp, Ly/p

A 1.7550 0.5360 0.4290 1.2510 3.7691

B 1.7550  0.5310 0.5440 0.5590 3.5179

C 1.7550 0.5310 0.5110 0.5750  3.5844

D 1.7550  0.5310 0.4950 0.0767 3.6266

TABLE 6. Jumps in T,(x 102N/ m) and A, at the joining under the various pressures

Py(x 105N/m2) and A,; = 1.4 when Vaishnav and How-Clarke (A) or modified
How-Clarke ((B) with D, = 2.6531, (C) with D, = —2.1259, (D) with D, = 2.8531 and

D, = —1.8959) semi-infinite membranes are joined together.
7, Ay
P, 0.10 0.15 0.19 0.20 0.10 0.15 0.19 0.20

0.3220 0.6700 0.8240 0.8220 0.5474 0.5208 0.4736 0.4564
0.2930 0.5540 0.4540 0.0950 0.5342  0.4999 0.4244 0.3517
0.3090 0.5850 0.4760 0.0950 0.5448 0.5116 0.4411 0.3782
0.3030 0.5780 0.5060 0.2780 0.5403 0.5072 0.4379 0.3920

O O w

and (D), and (B) does not produce a local maximum at all. It can also be seen
that the jumps in 7, produced by the modified How-Clarke cuffs, especially
by (B), are very small. It is also noted that the modified How-Clarke cuffs
have larger radii so that the fluid (blood) can pass through more easily than
through the How-Clarke one. The symmetric sections of the cuffs are located
at the horizontal axis and the joining sections are at z = z,. It can be seen
that the joining sections are very close to each other.
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r/9
FIGURE 5. Deformed shape of joined Vaishnav semi-infinite membrane (z 2 z,) with vari-
ous cuffs (0 < z <z, with L./(2p) = 2.0): How-Clarke (A)-solid and modified How-Clarke
((B) with D; = 2.6531-dotted, (C) with D, = —2.1259-dashed, (D) with D; = 2.8531 and
D, = -1.8959-dot-dashed) under pressure Py = 0.20(><105N/m2) when A, = 1.4. The

horizontal axis is the symmetric sections of the cuffs. The joining sections are at z = zqy, very
close in each case.
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FIGURE 6. Variation of longitudinal resultant tension T;(x 10° N/m) in joined Vaishnav
semi-infinite membrane (right) with various cuffs (left with L./(2p) = 2.0) : How-Clarke (A)-
solid and modified How-Clarke ((B) with D, = 2.6531-dotted, (C) with D, = —2.1259-dashed,
(D) with D, =2.8531 and D, = —1.8959-dot-dashed) under pressure P, = 0.20(x 105N/m2)
when A, =14.
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FIGURE 7. Variation of circumferential resultant tension 7,(x 10° N/m) in joined Vaishnav
semi-infinite membrane (right) with various cuffs (left with L./(2p = 2.0): How-Clarke (A)-
solid and modified How-Clarke ((B) with D, = 2.6531-dotted, (C) with D, = —2.1259-dashed,

(D) with D, = 2.8531 and D, = —1.8959-dot-dashed) under pressure P, = 0.20(x10°N/m”)
when A, =14.

6. Discussion

When we consider the results for two semi-infinite membranes joined to-
gether we note, as shown in Table 6, that for a given material, as the pressure
increases, the jump in the longitudinal extension ratio 4, decreases while that
in the circumferential tension T, first increases then decreases. For T, ina
How-Clarke graft the biggest jump takes place when P, = 0.19 x 105N/m2 ,
but in the modified How-Clarke grafts the maximum jump occurs at P, =

0.15 x lOSN/m2 . But for any pressure in the range considered the modified
How-Clarke grafts have smaller jumps in both T, and A, than the How-
Clarke one. Therefore from this point of view, the modified How-Clarke
grafts are better than the How-Clarke one. These results are almost iden-
tical with those found for the cuff joined to the semi-infinite membrane as
illustrated in Figures 5 to 7 P, = 0.20 x 10°N/m”.

Extensive numerical results were obtained for the deformation of the mem-
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branes with and without a cuff interposed, and some of them are given in
tabular and graphical form. In particular these results display the disconti-
nuity in the circumferential stress at the joint, and, as described above, we
note that this discontinuity can be significantly reduced by varying certain
elastic coefficients in an expression for the orthotropic strain-energy function
used by How and Clarke [4]. This may have some implication for the design
of artificial implants since leaking at the joint is an outstanding problem.
But the influence of dynamic rather than static pressure would need to be
addressed in this context. It is not claimed that the solutions found here are
unique, but they are consistent with observation of cylinders deformed under
the relevant conditions.

Since by (2.2) the half deformed thickness 4 = ho(/ll,lz)'l , it 1s also dis-
continuous at the joining section. The relative discontinuity in h/h, , which

is (A7, — Ap ) Ay A A g J)_l , 1s generally smaller than the relative
change in 7, , with exception of the cases of modified How-Clarke materials.
The modified How-Clarke materials also produce smaller discontinuities in
the deformed thickness than the other materials. The effects of the discon-
tinuity in the deformed thickness may need to be considered in more detail
when one studies the flow of blood in the vessels.
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