
RECURRENCE OF EXTREME OBSERVATIONS*

S. S. WILKS

(rec. 18 June 1958)

1. Introductory Remarks

Suppose a preliminary set of m independent observations are drawn from
a population in which a random variable x has a continuous but unknown
cumulative distribution function F(x). Let y be the largest observation
in this preliminary sample. Now suppose further observations are drawn
one at a time from this population until an observation exceeding y is
obtained. Let n be the number of further drawings required to achieve
this objective. The problem is to determine the distribution function of the
random variable n.. More generally, suppose y is the r-th from the largest
observation in the preliminary sample and let n denote the number of further
trials required in order to obtain k observations which exceed y. What is
the distribution function of w?

The distribution function of n and some of its properties are given in
this paper. Furthermore, the asymptotic distribution of njm for large
values of m will be found to be of an extremely simple form. Certain further
extensions will also be noted. The results presented are distribution-free in
the sense that they do not depend on the functional form of F(x).

2. The Simplest Recurrence Case

First, let us consider the simplest case. We draw a preliminary sample
of m observations from a population having a continuous cumulative
distribution function F(x). Denote the largest observation in this preliminary
sample by y, and let n denote the number of further observations required
to obtain one which exceeds y. We shall show that the probability distribu-
tion on n is given by

m
(1) p{n) = , , w , ^ > n = 1, 2, 3, • • -.

(m -f n)(m + n — 1)
To establish (1) we observe that the random variable F(y) which we may

* This problem arose in some research partially supported by the Office of Naval Research.
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[2] Recurrence of extreme observations 107

denote by F, has the probability element,

(2) mFm~1dF, 0 ^ F ^ 1.

assuming, of course, that the m observations are independent.
For a given value of y, and hence of F(y), the probability of having to

make n additional trials in order to obtain an observation which exceeds
y is

(3) F»-i(l -F), n= 1, 2, 3, • • ..

The joint distribution of F and n is therefore the product of expressions
(1) and (2), namely

(4) mFm+n-2(l — F)dF.

(Note that F has a continuous distribution on the interval (0, 1) and n
has a discrete distribution on the integers 1, 2, 3, • • •). To obtain the prob-
ability distribution function of n, we simply take the marginal distribution
of (4) with respect to n, i.e. we integrate (4) with respect to F over (0, 1).
This yields p(n) as given by (1).

It should be noted that the distribution of n is extremely spread out on
the positive integers: Both its mean and variance are infinite.

The cumulative distribution function of n, say G(n), as defined by
2^=1 fi(i)> *s readily seen to be as follows

(5) G(n) =
m + n

Taking the ratio n/m, we see that

I n \ z 1 2
(6) P (~^z )= ——, z = — . — , - • •

\m I 1 + z m m
and, of course,

( n \ z
— < z = , z > 0.

... , "* / A \ &

The density function of this limiting cumulative distribution is

(8) f(z) - — i — , > 0

The value of n, say n^, for which G(n) = (3 is given by

I v I ft/ o r/v •

v ' ^ 1 - / 5

For instance, if /? = 0.95, we have

w95 = 19m
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108 S. S. Wilks [3]

which means that if we take the largest observation in a preliminary
sample of m observations we would have to be prepared to make up to
19m additional observations from the same population in order to have a
probability of 0.95 of obtaining an x which exceeded the largest one in
the preliminary sample. Similarly, by choosing /? = 0.05 we find n 05 = w/19
which means that one cannot take more than w/19 further observations
without having probability < 0.95 of having all x's less than y.

It should be noted that if y is the smallest x in the preliminary sample
of size m and n is the number of subsequent trials required to find an x less
than y, then the probability function of n is also given by (1).

3. Recurrence of r-th Largest Observation in Sample

In this case let y be the r-th. largest in the preliminary sample of m
observations and let n be the number of additional observations required
to obtain an observation which exceeds y. The probability function of n
is given by

Im — 1— 1\
— 1 / / m \

' \—~ I, n=l, 2, 3,
n — 1\ \m + nl

)

(10) 0 ( n ) = _ \
Im + n — 1\ \m + n
\ )

The argument for (10) is similar to that for (1). For the probability
element of F(y) is

and the probability of having to make n further observations to obtain
one which exceeds y is given by (3). The joint distribution of F and n,
is the product of the expressions in (10) and (3), that is

ml
^ 1 2 > (r - l ) l { m - r ) l "W+" ' *'* ~ ^ '

To find the probability function p(n) we merely integrate (12) with respect
to F from 0 to 1, remembering that for positive integers p and q

xp{l -x)qdx = - t~-j-—-.•
Jo yp -{- q -\- \)\

This gives

m\r\(m -\- n — r — 1)!

which reduces to (10).
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The mean of the distribution (10) is found by multiplying expression
(12) by n, summing with respect to n from 0 to oo, and then integrating
with respect to F from 0 to 1. This gives

Ml

(14) *{n)=- - ,

which, of course, is finite only if r = 2, 3, • • •, m.
The variance of the distribution az{n) can be similarly found by evaluating

£[n{n — 1)] and using the fact that o2{n) = g\n{n — 1)] + &{n) — [<£»]2.
This yields

mr(m — r 4- 1)
(15) aHn) = — - , ' ,v ' v ' {r - l)2{r - 2)

which is finite only if r — 3, 4, • • •, m.
The cumulative distribution function of n, say G(n), defined by ^Ji=1p{i),

is found by summing the expression (12) for n = 1, 2, • • •, n, and in-
tegrating with respect to F from 0 to 1. This gives

m(m — 1) • • • (m — r 4- 1)
(16) G(n) = 1 -^ —

(m -f- n) \m + n — 1) • • • (m -f- w — r + 1)

Considering the ratio w/m, we see that

m(m — ! ) • • • (m — r -\- 1)(17) P (— ^ s) 1 -
+ mz) (w + ^2: — 1) • • • (m + mz — r -\- 1)

from which we obtain

In \ 1
(18) lim P — < 0 --= 1 .

Hence, for large m we have

1

(1 + 2)'

the probability density function of this limiting distribution being

(20) / W = _ J _ , z>0.

From (20) we find

(21)

Suppose yx and y2 are the smallest and largest x in the preliminary sample,
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110 S. S. Wilks [6]

and let n be the number of subsequent trials required to obtain an x outside
the interval [yv y2]. It can be shown by argument similar to that given
above that the probability function of n is given by (10) with r = 2, i.e.

/ x 2m(m — l)

The mean of this distribution as we see from (14) for r = 2, is

(23) S{n) = m

while the variance is infinite.
The cumulative distribution of n in this case is given by (16) with

r = 2, i.e.
, x , mim — 1)
24) G(n) = 1 - ; .

(m + n) (m + n — 1)

The value of n, say nfi, for which

Gin) = fi
is given by solving

\ / n
1

(m + n)(m + n — 1)
which gives

(i) •
For instance, if /9 == 0.95 we have

«95 s (w — |) (V20 — 1) = 3.47 (w — i) .

Thus, if we take the interval formed by the smallest and largest £ in a
preliminary sample of m observations, we must be prepared to make up
to approximately 3.47m further observations in order to obtain an x outside
this interval with probability 0.95.

If /? = 0.05 we have n 05 ^ w/38 which means that one cannot take more
than w/38 further observations without lowering the probability below
0.95 of having all observations fall in [yx, y2],

4. The General Case

As before, suppose y is the r-th largest x in the preliminary sample and
let n be the number of subsequent observations required to obtain k ob-
servations which exceed y. It can be shown by straightforward extension
of the argument in the preceding section that the probability function of •n
is given by
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In — \\lm — 1\
\k-l)\r-l)( m \

(25) p(n) = \ ' —-I — - , n=k, k+1, k + 2,-'.
/m + n — 1\ \tn -f nl
\k+r-l)For the mean of this distribution we have

(26) <£>(„)=_!!?__, f

Writing p(n) in the form

(k-l)\(r-l)\(m-r)\ I

and noting that the expression in { } can be written as

we can write the cumulative distribution function of n as
00

G(n) = 1 — 2 Pi*)
<=n+l

r w! i
(28) = l ~ L ( A - l ) l ( r - l ) l ( m - r ) l J

Jo'o dft^1

, *=? Ik + r — j — 2\ . . . ,_
= i - 2 I r \ <P0» >̂ ̂  » . «)

j=0 \ ' -1 /

where
(m)(m— 1) ••• ( m — r - \ - l ) ( n ) ( n — 1) ••• (w —

(29) <£(/, ic, r, » , ») =
(m-{-n — 2) (m + n — 3) • • • (m-\-n — k — r-\-j)

If we put n = mz we find the following limiting cumulative distribution
function of n/m to be

(30) l imP
in \ 2*"1 *£ Ik + r - t — 2\/I
— < 2 = 1 - - 2 T I

\m- ) (1 + Z)k+r-* ,±o\ ^ ~ 1 J\
For & = 1, we obtain, of course, (18) as a special case of (30). The probability
density function of the limiting distribution given by (30) is

for
z > 0.

https://doi.org/10.1017/S144678870002512X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002512X


112 S. S. Wilks [7]

The mean and variance of z are found to be

and are finite for r > 1 and r > 2, respectively.
If we take any interval of form

s — 0, 1, • • •, r + 1, where xi0) = — oo, #(TO+D = +oo and where
x(1) < ^(2) < • • • < x(m) are the order statistics of the preliminary sample
of size m, and if we draw subsequent observations from the population
until we obtain k observations falling outside the interval (33), it can be
shown by essentially the same argument as that already used that the
cumulative distribution function of n, the number of subsequent observations
required to accomplish this objective, is given by (28). The limiting cumula-
tive distribution function of n/m as m -> oo, is, of course, given by (30),
while the limiting density function is given by (31).
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