RECURRENCE OF EXTREME OBSERVATIONS*

S. S. WILKS

(rec. 18 June 1958)

1. Introductory Remarks

Suppose a preliminary set of m independent observations are drawn from
a population in which a random variable z has a continuous but unknown
cumulative distribution function F(z). Let y be the largest observation
in this preliminary sample. Now suppose further observations are drawn
one at a time from this population until an observation exceeding ¥y is
obtained. Let # be the number of further drawings required to achieve
this objective. The problem is to determine the distribution function of the
random variable #. More generally, suppose y is the »-th from the largest
observation in the preliminary sample and let # denote the number of further
trials required in order to obtain % observations which exceed y. What is
the distribution function of #?

The distribution function of #» and some of its properties are given in
this paper. Furthermore, the asymptotic distribution of #n/m for large
values of m will be found to be of an extremely simple form. Certain further
extensions will also be noted. The results presented are distribution-free in
the sense that they do not depend on the functional form of F(x).

2. The Simplest Recurrence Case

First, let us consider the simplest case. We draw a preliminary sample
of m observations from a population having a continuous cumulative
distribution function F (x). Denote the largest observation in this preliminary
sample by y, and let #» denote the number of further observations required
to obtain one which exceeds y. We shall show that the probability distribu-
tion on # is given by

m
(m—+n)ym-+n—1)’

To establish (1) we observe that the random variable F(y) which we may

n=1, 2, 3,

(1) p(n) =

* This problem arose in some research partially supported by the Office of Naval Research.
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denote by F, has the probability element,
(2) mFm1dF, 0 F < 1.

assuming, of course, that the m observations are independent.

For a given value of y, and hence of F(y), the probability of having to
make » additional trials in order to obtain an observation which exceeds
y is
(3) Fr1(1—F), n=1,2, 3,---.

The joint distribution of F and » is therefore the product of expressions
(1) and (2), namely

(4) mEFm+n=2(1 — F)dF.

(Note that F has a continuous distribution on the interval (0, 1) and #
has a discrete distribution on the integers 1, 2, 3, - - -). To obtain the prob-
ability distribution function of #, we simply take the marginal distribution
of (4) with respect to », 1.e. we integrate (4) with respect to F over (0, 1).
This yields $(n) as given by (1).

It should be noted that the distribution of # is extremely spread out on
the positive integers: Both its mean and variance are infinite.

The cumulative distribution function of #, say G(n), as defined by

1 P(2), is readily seen to be as follows

7
5 G(n) =
® ) ="
Taking the ratio n/m, we see that
1 2
(6) P(_"_gz)_—:_i_., r——, =
m 1+ z m m
and, of course,
(7) hmP(ﬁgz):f—, 2> 0.
Me—>00 m 142
The density function of this limiting cumulative distribution is
1
(8) f(Z) == (T:{‘_—Zﬁ, z> 0.

The value of », say ng,, for which G(n) = g is given by

p
1 —5

(9) Nng == m.

For instance, if # = 0.95, we have

Ng5 == 19m
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which means that if we take the largest observation in a preliminary
sample of m observations we would have to be prepared to make up to
19m additional observations from the same population in order to have a
probability of 0.95 of obtaining an = which exceeded the largest one in
the preliminary sample. Similarly, by choosing f = 0.05 we find # o5 = m/19
which means that one cannot take more than m/19 further observations
without having probability << 0.95 of having all «’s less than y.

It should be noted that if y is the smallest z in the preliminary sample
of size m and # is the number of subsequent trials required to find an « less
than y, then the probability function of » is also given by (1).

3. Recurrence of r-th Largest Observation in Sample

In this case let y be the 7-th largest in the preliminary sample of m
observations and let # be the number of additional observations required
to obtain an observation which exceeds y. The probability function of #

is given by
(m—l
7—1) ( m
(m—l—n—l) m+ n
r

The argument for (10) is similar to that for (1). For the probability
element of F(y) is

(10) p(n) = ) n=1223"

m! ., 1
(11) (r—l)!(m—r)!F (1 — F)"14F,

and the probability of having to make # further observations to obtain
one which exceeds y is given by (3). The joint distribution of F and #,
1s the product of the expressions in (10) and (3), that is

m!
(r — 1) (m — 7)!

(12) Frtn—r-1(1 — F)dF.

To find the probability function p(n) we merely integrate (12) with respect
to F from 0 to 1, remembering that for positive integers  and ¢

1 » . plq!
fox (1 — x)%de = TR

This gives

mlri(m +n —vr —1)!
(r — 1)!m — 7)!(m + n)!’
which reduces to (10).

=1,2,3,---

(13) p(n) =
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The mean of the distribution (10) is found by multiplying expression
(12) by %, summing with respect to # from 0 to oo, and then integrating
with respect to F from 0 to 1. This gives

m

(14) &(n) =

y —1°
which, of course, is finite only if »r = 2, 3,-- -, m.

The variance of the distribution ¢?(#) can be similarly found by evaluating
&[n(n — 1)] and using the fact that 62(n) = &n(n — 1)] + E(n)—[E(n)]2
This yields

mr(m — v -+ 1)

15 2 = ’
which is finite only if »r = 3, 4, - - -, m.

The cumulative distribution function of #, say G(n), defined by 37, 5 (2),
is found by summing the expression (12) for n =1, 2,---, n, and in-
tegrating with respect to F from 0 to 1. This gives

mm — 1)+« (m —7r -+ 1)
(m—+n)ym+n—1)--- (m +n —7r 4 1)
Considering the ratio #/m, we see that

— 1) — 1
(17) p(ﬁgz)zl_ m(m ) (m —r+ 1)
m (m + mz)(m + mz — 1) -+ (m 4 mz —r + 1)

from which we obtain

(16)  Gu) =1 —

1
(18) lim P (ﬁ < z) 1 .
m—co \M (1 + 2)r
Hence, for large m we have
1
(19) P(ﬁgz):w— :
m (1 4 2)"
the probability density function of this limiting distribution being
7
From (20) we find
1
E(e) = —— > 1
(21) T
¥

o2(z) = r > 2.

(r — 1) — 2)’

Suppose ¥, and y, are the smallest and largest z in the preliminary sample,
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and let # be the number of subsequent trials required to obtain an « outside
the interval [y,, y,]. It can be shown by argument similar to that given
above that the probability function of » is given by (10) with » = 2, i.e.

(22) pln) = ol — ,
(m+n)m-+n—1)(m-+n— 2)

The mean of this distribution as we see from (14) for » = 2, is

(23) Em) =m

while the variance is infinite.

The cumulative distribution of #» in this case is given by (16) with
r = 2, i.e.

n=123,---

. m(m — 1)
(24) G(n)—l—(m—}-n)(m—{—n—-l)'

The value of », say n,, for which

G(n) = B

is given by solving
m(m — 1)

1—(m+n)(m+n—l):ﬂ

which gives

1
ez = (=g 1) o)
For instance, if 8 = 0.95 we have
e = (m — 1) (V20 — 1) = 3.47 (m — }).

Thus, if we take the interval formed by the smallest and largest z in a
preliminary sample of m observations, we must be prepared to make up
to approximately 3.47m further observations in order to obtain an x outside
this interval with probability 0.95.

If p = 0.05 we have n y; ~ m/38 which means that one cannot take more
than /38 further observations without lowering the probability below
0.95 of having all observations fall in [y,, ¥,].

4. The General Case

As before, suppose y is the »-th largest = in the preliminary sample and
let » be the number of subsequent observations required to obtain % ob-
servations which exceed y. It can be shown by straightforward extension
of the argument in the preceding section that the probability function of »
is given by
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(25) p(n) = ), n==~Fk kE+1, B+2,---.

For the mean of this distribution we have

mk
= 1.
(26) ey =", r>

Writing #(n) in the form

7) m! l:d"—l t”—l] :P(m +n—k—r4+1)I'(k+7) ,
k—1Dlr—1)1m—r)!L d*1 Jia I'm+n-+41)

and noting that the expression in { } can be written as

1
fo umn—k=r (] g etr—lgy,

we can write the cumulative distribution function of # as

Gy =1— 3 p6)

f=n+1
m!
=1 —
(28) [(k — )!(r — 1)(m — 7) !]
1 7k—1
. dk—1 [ (1 — tu) 1] g u™ (1 — w)* 14y
0
k—1 —_— —
=1_zo(k+:_?l 2)@(?.; k)r)mln)
j=
where

. _ (m)(m—1)---(m—r+1)(n)(n—1) -+ (n—k+7j+2)
(29) 2, «, 7, 1, m) = m+n—2)m—+n—38)--- (m+n—k—r47)

If we put » = mz we find the following limiting cumulative distribution
function of n/m to be

(30) limP(—n—§z)=1—( Z+-1 "“l(k+1’—i—~2)(1—i—z)‘.

m—>00 m 14 z)k+r—1 i=0 r—1 4

For £ = 1, we obtain, of course, (18) as a special case of (30). The probability
density function of the limiting distribution given by (30) is

k—2 k-1 /p —_ 7 — d
(31) "z):(Tfmk—HEo( i 2)(7z—k+7-+1)(1-zl—z)
for

2> 0.
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The mean and variance of z are found to be

| ok oy _ R T—1)
(32) @) =3 0= ey

and are finite for » > 1 and » > 2, respectively.
If we take any interval of form

(33) (x(s)’ x(m—r+s))

§s=0, 1,---,r4+ 1, where =z, = —00, Xy, =+ and where .
Xy < Xgy <+ vt <Xy, are the order statistics of the preliminary sample
of size m, and if we draw subsequent observations from the population
until we obtain £ observations falling outside the interval (33), it can be
shown by essentially the same argument as that already used that the
cumulative distribution function of #, the number of subsequent observations
required to accomplish this objective, is given by (28). The limiting cumula-
tive distribution function of n/m as m — oo, is, of course, given by (30),
while the limiting density function is given by (31).
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