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Classic and Mirabolic
Robinson–Schensted–Knuth
Correspondence for Partial Flags

Daniele Rosso

Abstract. In this paper we first generalize to the case of partial flags a result proved both by Spaltenstein

and by Steinberg that relates the relative position of two complete flags and the irreducible components

of the flag variety in which they lie, using the Robinson–Schensted–Knuth correspondence. Then

we use this result to generalize the mirabolic Robinson–Schensted–Knuth correspondence defined by

Travkin, to the case of two partial flags and a line.

1 Introduction

The Robinson–Schensted–Knuth correspondence (RSK for short) is a very classical

result. It was first discovered by Robinson (see [R]) as a bijection between permuta-

tions of d letters and pairs of standard Young tableaux of the same shape on d boxes,

then independently rediscovered by Schensted (see [Sc]). It was eventually general-

ized by Knuth (see [K]) to the case of two-rowed arrays in lexicographic order (or

equivalently, matrices with nonnegative integer entries) and pairs of semistandard

Young tableaux of the same shape.

This correspondence comes up when considering flag varieties. The Bruhat de-

composition tells us that the relative position of two complete flags in a d-dimen-

sional space V is given by an element of the symmetric group Sd. Also, given a

nilpotent x ∈ End(V ), the irreducible components of the subvariety of flags that

are preserved by x are parametrized by the standard tableaux on the shape λ, which

is the Jordan type of x (see [Sp2, II 5.21], [St]). Then it is a theorem (see [Sp2, II 9.8],

[St]) that, for two general flags, their relative position is given by the permutation

that we get applying the RSK correspondence to the standard tableaux associated to

the irreducible components in which they lie.

We would like to generalize the above to pairs of partial flags.

For a nilpotent transformation x, we consider the following variety of n-step par-

tial flags that are preserved by x:

{F : 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = V | x(Fi) ⊂ Fi−1∀i}.

The irreducible components of this variety can be parametrized by “semistandard”

tableaux (better, by transposes of semistandard tableaux, more on this later) by ap-

plying to our specific case some results of Haines about the fibers of convolution
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morphisms in the affine Grassmanian (see [H]). This parametrization is also essen-

tially the same that Spaltenstein shows in [Sp1].

Notice that Shimomura has also worked on partial flag varieties and in [Sh] has

given a parametrization of the irreducible components of the variety of partial flags

that are invariant under a nilpotent transformation, using Young tableaux, but the

variety he considers is different from ours.

Given two flags F, F ′ (partial or complete) we define the relative position of F and

F ′ to be the matrix of nonnegative integers M(F, F ′) with entries given by:

(1.1) M(F, F ′)i j = dim
( Fi ∩ F ′

j

Fi ∩ F ′
j−1 + Fi−1 ∩ F ′

j

)
.

Then the set of such matrices parametrizes the orbits of the diagonal action of GLd

on the set of pairs of flags, see [BLM, 1.1].

It seems then natural to ask if the theorem generalizes to the case of partial flags.

Given two partial flags, is the matrix of relative position the one that corresponds

through the more general RSK correspondence to the two semistandard tableaux in-

dexing the irreducible components in which the flags lie?

As we prove in Theorem 4.1, the answer is yes, if we modify slightly the usual con-

ventions for the RSK correspondence. We need a variation to account for the fact that

the ‘semistandard’ tableaux mentioned earlier are actually transposes of semistan-

dard tableaux (i.e., the strictness of the inequalities is switched from rows to columns

and vice versa).

The second part of the paper is concerned with generalizing Travkin’s construction

from [T] to the case of partial flags and not just complete flags. We generalize his

algorithm and then, using the results of the first part, we show that the generalization

agrees with the geometry of the varieties involved.

The diagonal action of GL(V ) on the variety of triples of two flags and a line has

orbits that can be parametrized by pairs (M,∆) (see [MWZ]). Here M is the relative

position of the two flags, as in (1.1), and ∆ is some more combinatorial data (which

we will see more precisely in Section 5.1) that tells us where the line lies. In the case

where the flags are complete, the matrix M is just a permutation matrix.

If we only consider complete flags, then the set parametrizing the orbits can be

thought of as the set of colored permutations RB, that is permutation words where

every letter is assigned one of two colors (say red and blue).

In his paper [T], Travkin has introduced the mirabolic Robinson–Schensted–Knuth

correspondence. It is a bijection between RB and the set of all {(λ, θ, λ ′,T,T ′)}, where

T, T ′ are standard Young tableaux of shape λ and λ ′ respectively, and θ is another

partition that satisfies λi ≥ θi ≥ λi−1 and λ ′
i ≥ θi ≥ λ ′

i−1 for all i. This mirabolic

RSK correspondence has a geometric meaning: given a colored permutation indexing

a GL(V )-orbit on the space of two complete flags and a line, it describes the type of a

generic conormal vector to the orbit.

Many arguments in the second part of the paper are just adaptations of Travkin’s

arguments to the case of partial flags.

This paper is part of an ongoing project that studies the convolution algebras of

GL(V )-equivariant functions on varieties of triples of two n-step partial flags and a
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line. We have partial results for the cases n = 2, 3 where we get a direct summand

isomorphic to Mn

(
U(sln)

)
. These involve finding a rather complicated central ele-

ment in the algebra. We believe that the mirabolic RSK correspondence for partial

flags will help us find central elements and hopefully generalize these results to any n.

2 Flag Varieties and Tableaux

Let us fix some notation.

For any set X, we will denote its cardinality by card X.

We denote by Sd the symmetric group on d elements.

We let V be a d-dimensional vector space over the field k, and F be the variety of

complete flags in V .

We let G be the general linear group G = GL(V ) ≃ GLd and we let N be the

set of nilpotent elements in End(V ). If x ∈ N, we let its Jordan type be λ =

(λ1, λ2, . . . , λm). Then λ is a partition of d, which means that it satisfies λ1 ≥ λ2 ≥
· · ·λm, and |λ| = λ1 + λ2 + · · · + λm = d.

We consider the subvariety Fx ⊂ F of flags preserved by x, that is

Fx := {F ∈ F | x(Fi) ⊂ Fi−1}.

Definition 2.1 Now let Tλ be the set of standard Young tableaux of shape λ, we can

define a map

t : Fx → Tλ

in the following way: given F ∈ Fx, consider the Jordan type of the restriction x|Fi
.

This gives us an increasing sequence of Young diagrams each with one box more

than the previous one. Filling the new box with the number i at each step, we get a

standard tableau.

Then (see [Sp2, II 5.21], [St]) for a tableau T ∈ Tλ, if we let Fx,T = t−1(T) ⊂ Fx,

we have that the closure Cx,T = Fx,T is an irreducible component of Fx. All the

irreducible components are parametrized in this way by the set of standard tableaux

of shape λ. In [Sp2], Spaltenstein actually uses a slightly different parametrization,

to see how the two parametrizations are related, see [vL].

Definition 2.2 In this paper, whenever we will refer to a general element in a variety

or subvariety, we will mean any element in a suitable open dense subset.

We can now state the result ([Sp2, II 9.8] and [St, 1.1]) that we wish to generalize

in the first part of this paper.

Theorem 2.3 Let F be the variety of complete flags on a vector space V , and x ∈
End(V ) a nilpotent transformation of Jordan type λ. Let T,T ′ be standard Young

tableaux of shape λ and Cx,T and Cx,T ′ the corresponding irreducible components of Fx.

Then for general flags F ∈ Cx,T and F ′ ∈ Cx,T ′ , the permutation w(F, F ′) that gives the

relative position of the two flags is the same as the permutation w(T,T ′) given by the

RSK correspondence.

Our goal is to extend this result to varieties of partial flags.
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2.1 Partial Flags and Semistandard Tableaux

Let us fix an integer n ≥ 1 and let µ be a composition of d, that is µ = (µ1, . . . , µn)

a sequence of positive integers, such that |µ| = µ1 + µ2 + · · · + µn = d (µ is not

necessarily a partition because we do not require it to be decreasing). We have the

variety of n-step flags of type µ in V

F
µ := {F = (0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = V ) | dim(Fi/Fi−1) = µi}.

Then for x as before, we consider the subvariety of partial flags that are preserved

by x:

F
µ
x := {F ∈ F

µ | x(Fi) ⊂ Fi−1}.

If F ∈ F
µ
x , we can associate to F a tableau in an analogous way to Definition 2.1,

except this time at each step we are adding several boxes, none of which will be in

the same row. The result will be a tableau which is strictly increasing along rows and

weakly increasing down columns. For the purpose of this discussion, we will call this

kind of tableaux semistandard, although by the usual definition this is the transpose

of a semistandard tableau.

Definition 2.4 Given any tableau T with entries in {1, . . . , n}, we say that its con-

tent is the sequence µ = µ(T) = (µ1, . . . , µn) where µi is the number of times the

entry i appears in T.

Definition 2.5 So, if we let T
µ
λ be the set of semistandard tableaux of shape λ and

content µ, we just defined a map

t : Fµ
x −→ T

µ
λ .

Lemma 2.6 The irreducible components of Fµ
x are the closures Cx,T = Fx,T where

T ∈ T
µ
λ and Fx,T = t−1(T).

For a proof, see [Sp1] or [H]. Spaltenstein discusses this very briefly, and uses a

slightly different convention, as was also mentioned earlier. In his result the indexing

set is a subset of the standard tableaux. It can be seen that this subset consists of

what we will define later in this paper to be the standardization of the semistandard

tableaux.

On the other hand Haines, during the proof of Theorem 3.1, proves a more gen-

eral result about irreducible components of fibers of convolution morphisms from

convolution product of G(O)-orbits in the affine Grassmannian. In his result, the

combinatorial data are sequences of dominant weights such that the difference of two

consecutive weights is in the orbit of the Weyl group acting on a dominant minuscule

weight. In our case these correspond to the semistandard tableaux.

2.2 Relative Position, Words and Arrays

Given two flags F, F ′, we have defined in (1.1) their relative position M(F, F ′). Notice

that if F ∈ F
µ and F ′ ∈ F

ν , the row sums of this matrix will be µ = (µ1, . . . , µn) and
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the column sums will be ν = (ν1, . . . , νm). Then, see [BLM, 1.1], the set Mµ,ν(Z≥0)

of all such matrices parametrizes the orbits of the diagonal action of GLd on F
µ×F

ν .

In particular, if F and F ′ are both complete flags in V , M(F, F ′) will be a permu-

tation matrix. This data is equivalent to the word w(F, F ′) = w(1) · · ·w(d) where

w(i) = j if 1 appears in the ( j, i)-entry of the matrix.

Definition 2.7 If F, F ′ are both partial flags, then M(F, F ′) is just a matrix of non-

negative integers. We can record the same data in a two-rowed array

ω =

(
u(1) u(2) · · · u(d)

w(1) w(2) · · · w(d)

)

which is defined as follows.

A pair
(

i
j

)
appears in ω a number of times equal to the ( j, i)-entry of M(F, F ′).

The array ω is then ordered so that it satisfies the following relation:

(2.1) u(1) ≤ u(2) ≤ · · · ≤ u(d) and w(k) ≥ w(k + 1) if u(k) = u(k + 1).

Example 2.8 If M(F, F ′) is the matrix on the left, the corresponding array ω is given

on the right:

M(F, F ′) =

(
1 0 2

3 1 1

)
ω =

(
1 1 1 1 2 3 3 3

2 2 2 1 2 2 1 1

)
.

The set Mµ,ν(Z≥0) is thus identified, with the convention just described, with the

set of two-rowed arrays such that the first row has content ν, the second row has

content µ, and they satisfy the order (2.1).

Depending on what is more convenient at each time, we will use either description

of this set.

Remark 2.9 Another way of looking at the set Mµ,ν(Z≥0) is as the set of double

cosets Sµ \ Sd/Sν . Here Sd is the symmetric group on d letters and Sµ and Sν are the

Young subgroups corresponding to the compositions µ and ν.

Remark 2.10 Our convention is different from what is used in [F] and [S2], where

the arrays are taken to be in lexicographic order, that is with

u(1) ≤ u(2) ≤ · · · ≤ u(d) and w(k) ≤ w(k + 1) if u(k) = u(k + 1).

With the lexicographic convention, the matrix of example 2.8 would correspond to

the array

ω ′
=

(
1 1 1 1 2 3 3 3

1 2 2 2 2 1 1 2

)
.

3 Robinson–Schensted–Knuth Correspondence and Standardization

In this section, we will review quickly some definitions and properties of the RSK

correspondence, following mainly the conventions of [F, I] and [S2, 7.11]. Then we

will see how to adapt the results to the conventions we are using.
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3.1 Review of RSK

Just for this review, we will call a tableau semistandard if it is weakly increasing along

rows and strictly increasing down columns. With this convention, the tableaux we

defined in Section 2.1 are transposes of semistandard tableaux. We will also identify

matrices with arrays using the lexicographic order, as in Remark 2.10.

With increasing generality, the RSK correspondence gives a bijection between per-

mutations and pairs of standard tableaux of same shape, or between two-rowed ar-

rays in lexicographic order and pairs of semistandard tableaux of same shape.

Given a permutation word w or a two-rowed array ω, where

w = w(1) · · ·w(d) ω =

(
u(1) u(2) · · · u(d)

w(1) w(2) · · · w(d)

)
,

the algorithm is given by inserting the entries of the word (or of the second row of

the array) by row bumping in the first tableau. At the same time we record in the

second tableau which box has been added at each step (in the more general case of

the array, the added box at the k-th step will be recorded with u(k) as opposed to k).

The convention for row bumping is that a new entry z bumps the left-most entry in

the row which is strictly larger than z.

If T, T ′ are semistandard tableaux and ω is an array in lexicographic order, we will

denote the correspondence by

M(T,T ′) = ω; or (T,T ′)
RSK
←→ ω.

As can be seen in [S2, 7.11], given a semistandard tableau T we can consider its

standardization T̃. It is a standard tableau of the same shape as T. We construct it in

this way: the µ1 boxes that contain 1 in T will be replaced by the numbers 1, 2, . . . , µ1

increasingly from left to right. Then the boxes that originally contained 2’s will be

replaced by µ1 + 1, . . . , µ1 + µ2 also increasingly from left to right, and so on.

Example 3.1

T =

1 1 2
2
3

T̃ =

1 2 4
3
5

In a similar way, given an array in lexicographic order ω =
(

u(1) u(2) ··· u(d)
w(1) w(2) ··· w(d)

)

we can define the standardization ω̃. It is given by replacing u(i) with i in the first

row, while in the second row we replace the 1’s with 1, 2, . . . , µ1 increasing from

left to right, then the 2’s and so on. The standardization of an array will then be a

permutation.

Example 3.2

ω =

(
1 2 2 3 3

3 1 2 1 2

)
ω̃ =

(
1 2 3 4 5

5 1 3 2 4

)
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Standardization allows us to always reduce the RSK correspondence to the spe-

cial case of permutations and standard tableaux, because standardization and RSK

commute.

Lemma 3.3 The following diagram commutes:

T
µ
λ × T

ν
λ

RSK
//

std × std

��

Mµ,ν(Z≥0)

std

��

Tλ × Tλ

RSK
// Sd

In the diagram, Tλ, T
µ
λ , Tν

λ are respectively the set of standard tableaux and the

sets of semistandard tableaux with content µ and ν, all of shape λ. Also, Mµ,ν(Z≥0)

is the set of two-rowed arrays in lexicographic order with row contents ν and µ and

std is the standardization map.

The lemma is proved in [S2, 7.11.6], but let us illustrate this with an example.

Example 3.4 Let T, ω be as in Examples 3.1 and 3.2 and let

T ′
=

1 2 3
2
3

then we have std(T ′) = T̃ ′ =

1 3 5
2
4

then (T,T ′)
RSK
←→ ω and indeed (T̃, T̃ ′)

RSK
←→ ω̃.

3.2 Variation on RSK

In this paper we will need a slight variation on the RSK correspondence. This will

agree with RSK on permutations, but will give different results in the case of general

two-rowed arrays. It will associate to an array satisfying (2.1), a pair of tableaux

that are strictly increasing along rows and weakly increasing down columns. This is

what we called semistandard in Section 2.1 and we will keep using this terminology

from now on. In the rest of this paper, we will also set the convention of identifying

matrices and arrays using Definition 2.7.

The variation of the correspondence is defined modifying the row-bumping algo-

rithm to the following: a new entry z will bump the left-most entry in the row which

is greater or equal to z. The recording tableau will be constructed in the usual way.

This difference is clearly irrelevant in the case of standard tableaux, but our new

choice of row bumping will produce tableaux that are strictly increasing along rows

and weakly increasing down columns. This is similar to the dual RSK defined in

[S2, 7.14], which however is only defined for matrices of 0’s and 1’s.

Since we will only use this variation on the correspondence (from now on we will

call this one RSK and we will use the same notation as before) there should be no

confusion.
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Lemma 3.5 This procedure gives a bijection between matrices of non-negative integers

and pairs of semistandard (strictly increasing along rows and weakly increasing down

columns) tableaux of same shape.

Proof This is completely analogous to the usual proofs of the RSK correspondence

(see [F], [S2]).

If the array corresponding to the matrix is ω =
(

u(1) ··· u(d)
w(1) ··· w(d)

)
and by the cor-

respondence it gives us the pair of tableaux (P,Q), then it is clear that the insertion

tableau P will be semistandard. To check that the recording tableau Q is also semi-

standard, it is enough to show that if u(i) = u(i + 1), then u(i + 1) will end up in a

row of Q that is strictly below the row of u(i).

Since ω satisfies (2.1), if u(i) = u(i + 1), then w(i) ≥ w(i + 1). This means that

if w(i) bumps an element yi from the first row, then the element yi+1 bumped by

w(i + 1) from the first row must be in the same box where yi was or in a box to the

left of it. In turn, this implies that yi ≥ yi+1 and we can iterate this argument for the

following rows. Now, the bumping route Ri of w(i) must stop before the bumping

route Ri+1 of w(i + 1), which will then continue at least one row below that of Ri ,

which shows what we want.

The fact that the correspondence is a bijection just follows from the fact that we

can do the reverse row-bumping algorithm by taking at each step the box that in the

recording tableau contains the biggest number. In case of equal elements, we will take

the one that is in the lowest row.

Remark 3.6 Basically in this version of RSK we are considering equal entries in a

tableau to be “bigger” if they are in a lower row and, while inserting, sequences of

equal numbers are considered decreasing sequences.

This leads us to a new definition of standardization that will give us an analogous

result to Lemma 3.3. Given a semistandard tableau T, we define its standardization

T̃ by replacing the 1’s with 1, 2, . . . , µ1 starting from the top row and going down, and

then the same for 2’s and so on. For an array ω ordered as in (2.1), we define ω̃ by

replacing the first row with 1, 2, . . . , d and on the second row we replace the 1’s by

1, 2, . . . , µ1 decreasingly from left to right and same for the rest, always decreasing

from left to right.

Example 3.7

T =

1 2
1 2
3

T̃ =

1 3
2 4
5

ω =

(
1 2 2 3 3

1 3 1 2 2

)
ω̃ =

(
1 2 3 4 5

2 5 1 4 3

)

Remark 3.8 From the point of view of Remark 2.9, the standardization of an array

corresponds to choosing the longest representative for the double coset.

With our new conventions for semistandard tableaux, order of arrays, RSK, stan-

dardization and the same notation of Lemma 3.3 we have the following.
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Lemma 3.9 Standardization and RSK commute, as in the following diagram:

T
µ
λ × T

ν
λ

RSK
//

std × std

��

Mµ,ν(Z≥0)

std

��

Tλ × Tλ

RSK
// Sd.

The proof, mutatis mutandis, is the same as the proof of Lemma 3.3 in [S2, 7.11.6].

It is just the observation that the standardization we choose for the arrays is exactly

the one that makes the insertion procedure work the way we want, turning sequences

of equal numbers into decreasing sequences.

Example 3.10 Let T, ω as in example 3.7 and let

T ′
=

1 2
2 3
3

then we have T̃ ′ =

1 2
3 4
5

then (T,T ′)
RSK
←→ ω and (T̃, T̃ ′)

RSK
←→ ω̃.

Remark 3.11 It is clear that if we fix the contents µ and ν, two different arrays

ω1 6= ω2 ∈ Mµ,ν (Z≥0) when standardized will give two different permutations

ω̃1 6= ω̃2. That is we have an injective map

std : Mµ,ν(Z≥0)→ Sd.

We therefore have an inverse

std−1 : std
(

Mµ,ν(Z≥0)
)
→ Mµ,ν(Z≥0)

which is easily described as follows:

(
1 2 · · · ν1 ν1 + 1 · · ·

w(1) w(2) · · · w(ν1) w(ν1 + 1) · · ·

)

7→

(
1 1 · · · 1 2 · · ·

w ′(1) w ′(2) · · · w ′(ν1) w ′(ν1 + 1) · · ·

)
;

the first row is just replaced by ν1 1’s, followed by ν2 2’s and so on, while we have

w ′(k) = j if w(k) ∈ {µ1 + · · · + µ j−1 + 1, . . . , µ1 + · · · + µ j}.
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4 RSK and Partial Flag Varieties

In this section we will use all the conventions of Section 3.2 and the notations of

Section 2.1.

We state and prove the main result of the first part of the paper, which generalizes

Theorem 2.3. The strategy for the proof is to use standardization and Lemma 3.9 to

reduce the problem to the case of complete flags.

Theorem 4.1 Let x ∈ End(V ) be a nilpotent transformation of Jordan type λ, T ∈
T
µ
λ , T ′ ∈ T

ν
λ be semistandard tableaux, and let Cx,T and Cx,T ′ be respectively the irre-

ducible components of Fµ
x and F

ν
x corresponding to the tableaux T and T ′.

Then, for generic F ∈ Cx,T and F ′ ∈ Cx,T ′ , we have that the relative position matrix

M(F, F ′) is the same as the matrix M(T,T ′) given by the RSK correspondence.

Proof For a fixed µ = (µ1, . . . , µn) with |µ| = µ1 + · · · + µn = d, consider the map

pµ : F → F
µ

that forgets some of the spaces, that is

(0 = F0, F1, F2, . . . , Fd−1, Fd = V ) 7→ (0 = F0, Fµ1
, Fµ1+µ2

, . . . , Fµ1+···+µn−1
, Fd = V ).

Clearly, if F is any partial flag in F
µ
x and F̃ ∈ p−1

µ (F), then F̃ ∈ Fx because for all

j there is some i such that

F̃µ1+···+µi
⊂ F̃ j−1 ⊂ F̃ j ⊂ F̃µ1+···+µi+1

and

x(F̃ j) ⊂ x(F̃µ1+···+µi+1
) = x(Fi+1) ⊂ Fi = F̃µ1+···+µi

⊂ F̃ j−1.

Now, let t : Fµ
x → T

µ
λ be the map that associates a semistandard tableau to a partial

flag, as in Definition 2.5.

We fix a semistandard tableau T and we let Fx,T := t−1(T), then Fx,T is a con-

structible dense subset of Cx,T .

Let T̃ be the standardization of T and let Fx,T̃ = t−1(T̃) ⊂ Fx be the dense

subset of Cx,T̃ . The set Cx,T̃ is the irreducible component of the complete flag variety

associated to the standard tableau T̃.

It is clear that if F̃ ∈ Fx,T̃ , then we have F = pµ(F̃) ∈ Fx,T because

x|Fi
= x|F̃µ1+···+µi

also, the map

pµ : Fx,T̃ → Fx,T

is surjective. This is because we can always find appropriate subspaces to complete a

partial flag F to a flag F̃ such that the restriction of x to those subspaces has the Jordan

type we want.
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What we have said so far applies in the same way if we fix another semistandard

tableau T ′ of content ν and we consider the sets Fx,T ′ ⊂ F
ν
x and Fx,T̃ ′ ⊂ Fx.

Now, let us fix two semistandard tableaux T and T ′ as in the statement of the

theorem, and consider their standardizations T̃ and T̃ ′. For general complete flags

F̃ ∈ Cx,T̃ and F̃ ′ ∈ Cx,T̃ ′ , Theorem 2.3 tells us that M(F̃, F̃ ′) = M(T̃, T̃ ′). We let then

XT̃ ⊂ Cx,T̃ , XT̃ ′ ⊂ Cx,T̃ ′ be the open dense subsets such that this is true.

Then XT̃ ∩ Fx,T̃ is constructible dense in Cx,T̃ . Hence it contains an open dense

subset and the image of

pµ : XT̃ ∩ Fx,T̃ → Fx,T

is constructible dense in Fx,T , therefore it is also dense in Cx,T . In the same way,

pν(XT̃ ′ ∩ Fx,T̃ ′) is constructible dense in Fx,T ′ .

Claim 4.2 If F ∈ pµ(XT̃ ∩ Fx,T̃) and F ′ ∈ pν(XT̃ ′ ∩ Fx,T̃ ′) then M(F, F ′) =

M(T,T ′).

Let F̃ ∈ p−1
µ (F) and F̃ ′ ∈ p−1

ν (F ′), then by Lemma 3.9 we have that

ω̃ = std
(

M(T,T ′)
)
= M(T̃, T̃ ′).

Now let ω ′
= M(F, F ′). By the definition of relative position of flags, the array

ω̃ = M(T̃, T̃ ′) = M(F̃, F̃ ′) is such that for all i, j,

card

{(
ũ

w̃

)
∈ ω̃

∣∣∣∣
ũ ∈ {ν1 + · · · + ν j−1 + 1, . . . , ν1 + · · · ν j},
w̃ ∈ {µ1 + · · · + µi−1 + 1, . . . , µ1 + · · · + µi}

}

= dim

(
F̃µ1+···+µi

∩ F̃ ′
ν1+···+ν j

(F̃µ1+···+µi−1
∩ F̃ ′

ν1+···+ν j
) + (F̃µ1+···+µi

∩ F̃ ′
ν1+···+ν j−1

)

)

= dim

(
Fi ∩ F ′

j

Fi ∩ F ′
j−1 + Fi−1 ∩ F ′

j

)

= card

{(
u

w

)
∈ ω ′

∣∣∣∣
(

u

w

)
=

(
i

j

)}

Therefore, by Remark 3.11, ω ′
= std−1(ω̃). It follows that std(ω ′) = ω̃, that is

std
(

M(F, F ′)
)
= std

(
M(T,T ′)

)
.

Again by Remark 3.11, this implies that M(F, F ′) = M(T,T ′). This concludes the

proof of the claim.

Since pµ(XT̃ ∩Fx,T̃) and pν(XT̃ ′ ∩Fx,T̃ ′) are constructible dense in Cx,T and Cx,T ′

respectively, they each contain an open dense subset of the respective irreducible

component, which proves the theorem.

5 Mirabolic Flag Varieties

With this section, we start the second part of this paper, where we generalize the

construction of Travkin (see [T]). We keep the notation of Section 2.
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5.1 GL(V )-orbits in F
µ × F

µ ′

×V

Let µ = (µ1, . . . , µn), µ ′
= (µ ′

1, . . . , µ
′
n ′) be two compositions of d. We consider the

diagonal G-action on the set Fµ × F
µ ′

× V . So, let (F, F ′, v) ∈ F
µ × F

µ ′

× V and

look at the orbit G · (F, F ′, v).

If v = 0, this orbit lies in F
µ × F

µ ′

× {0} ≃ F
µ × F

µ ′

. As in Section 2.2, we

parametrize such orbits by the set Mµ,µ ′

(Z≥0) of matrices with row sums µ and col-

umn sums µ ′ which we can also identify with the set of two-rowed arrays of positive

integers with row contents µ ′ and µ.

If v 6= 0, the orbit G · (F, F ′, v) is the preimage of an orbit in F
µ × F

µ ′

× P(V ).

This is because for all c ∈ k×, (F, F ′, cv) = c Id ·(F, F ′, v) ∈ G · (F, F ′, v).

The G-orbits on F
µ × F

µ ′

× P(V ) have been parametrized in [MWZ, 2.11] (see

also [M, 2.2]) by “decorated matrices”. These are pairs (M,∆), where M is a matrix

in Mµ,µ ′

(Z≥0) and ∆ = {(i1, j1), . . . , (ik, jk)} is a nonempty set that satisfies

1 ≤ i1 < · · · < ik ≤ n, 1 ≤ jk < · · · < j1 ≤ n ′

and such that the entry Mi j > 0 for all (i, j) ∈ ∆.

We can concisely write down a pair (M,∆), in a similar way to what is done

in [M], by parenthesizing the entries of the matrix corresponding to ∆.

Example 5.1

M =




1 0 2

1 1 0

0 3 0


 ; ∆ = {(1, 3), (2, 1)}

(M,∆) =




1 0 (2)

(1) 1 0

0 3 0




Lemma 5.2 There is a 1-1 correspondence between the set of pairs (M,∆) as above

and the set of pairs (ω, β) where ω is a two-rowed array and β ⊂ {1, . . . , d} is a

nonempty subset such that if i ∈ {1, . . . , d} \ β and j ∈ β, either u(i) > u( j) or

w(i) > w( j).

Proof The correspondence between M and ω is just the identification we discussed

in Definition 2.7. Now, consider the map

ϕ : {1, . . . , d} → {1, . . . , n} × {1, . . . , n ′}

l 7→
(

w(l), u(l)
)
.

Then ∆ will be the subset of ϕ(β) defined by

∆ = {(i, j) ∈ ϕ(β) | ∀k ≥ 1 (i + k, j) /∈ ϕ(β) and (i, j + k) /∈ ϕ(β)}.

Given ∆ we can recover β in the following way: let

∆
′
=

{
(i, j) ∈ {1, . . . , n} × {1, . . . , n ′} | ∃(i0, j0) ∈ ∆ s.t. i ≤ i0 or j ≤ j0

}
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then β = ϕ−1(∆ ′).

It is not difficult to see that these definitions give inverse correspondences.

Visually, ϕ(β) identifies a set of positions in the matrix that fits in a Young di-

agram, and such that no other nonzero positions are in the diagram. The set ∆

consists then of the outer corners of that diagram.

Vice versa, given ∆, ∆ ′ is the set of all positions of the matrix weakly northwest

of ∆. Then β = ϕ−1(∆ ′) consists of all the columns of the array corresponding to

the nonzero positions in ∆
′.

Example 5.3 If we take the decorated matrix (M,∆) of Example 5.1, we have that

∆
′
= {(1, 1), (1, 2), (1, 3), (2, 1)}; ω =

(
1 1 2 2 2 2 3 3

2 1 3 3 3 2 1 1

)
.

Then β = {1, 2, 7, 8}.

Definition 5.4 We define the set Dµ,µ ′

of “decorated arrays” to be the set of all pairs

(ω, β), where ω ∈ Mµ,µ ′

(Z≥0) and β ⊂ {1, . . . , d} is a (possibly empty) subset such

that if i ∈ {1, . . . , d} \ β and j ∈ β, then either u(i) > u( j) or w(i) > w( j).

By Lemma 5.2, the set of decorated matrices (if we also allow ∆ = ∅) and dec-

orated arrays are identified, so we might use either description of the set, depending

on what is most convenient at each time.

By the result in [MWZ, 2.11] and Lemma 5.2, we can then parametrize the G-

orbits on F
µ × F

µ ′

× V with the set Dµ,µ ′

. The pairs (ω, β) ∈ Dµ,µ ′

with β 6= ∅

correspond to the G-orbits in F
µ×Fµ ′

×P(V ), and the ones with β = ∅ correspond

to the case of v = 0.

We are going to give a direct proof of this parametrization. In order to do that, we

will use the following result of Travkin [T, Lemma 1].

Lemma 5.5 Let A ⊂ End(V ) be an associative algebra with identity and A× the

multiplicative group of A. Suppose that the A-module V has finitely many submodules.

Then the A×-orbits in V are in 1-1 correspondence with these submodules. Namely,

each A×-orbit has the form

ΩS := S \
⋃

S ′(S

S ′

where S is an A×-submodule of V and the union is taken over all proper submodules

of S.

Proposition 5.6 There is a 1-1 correspondence between G-orbits in F
µ × F

µ ′

× V

and the set Dµ,µ ′

.

Proof For each ω =
(

u(1) u(2) ··· u(d)
w(1) w(2) ··· w(d)

)
in Mµ,µ ′

(Z≥0), let Ωω be the corresponding

G-orbit in F
µ × F

µ ′

.

In particular, (F, F ′) ∈ Ωω if and only if there exists a basis {ei | i = 1, . . . , d}
of V such that

Fi = 〈er | w(r) ≤ i〉

F ′
j = 〈es | u(s) ≤ j〉 .
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For a fixed ω, consider a point (F, F ′) ∈ Ωω and let H be its stabilizer in G. Then the

H-orbits in V are in 1-1 correspondence with the G-orbits of Fµ×Fµ ′

×V consisting

of points (D,D ′, v) with (D,D ′) ∈ Ωω .

Let AF,AF ′ ⊂ End(V ) respectively be the subalgebras that leave the partial flags

F, F ′ invariant, i.e.,

AF := {a ∈ End(V ) | a(Fi) ⊂ (Fi) ∀i}

AF ′ := {a ∈ End(V ) | a(F ′
i ) ⊂ (F ′

i ) ∀i}.

Let A = AF ∩AF ′ , then H = A×. So pick a basis {ei} of V satisfying (5.1), and let Ei j

be the linear operator such that

Ei jer = δ jrei .

Then

A =
⊕

u(i)≤u( j)
w(i)≤w( j)

kEi j .

From this it follows that all the A-submodules of V have the form S(β) :=
⊕

i∈β kei ,

where β is like in Definition 5.4. In particular, they are finite, so we can apply

Lemma 5.5 to conclude the proof.

Definition 5.7 We will denote by Ωω,β the G-orbit in F
µ×F

µ ′

×V corresponding

to (ω, β).

Remark 5.8 The orbit Ωω,β consists exactly of the triples (F, F ′, v) such that there

exists a basis {ei | i = 1, . . . , d} of V that satisfies (5.1) and with

v =

∑

i∈β

ei .

5.2 Conormal Bundles and Mirabolic RSK

We consider the variety Xµ,µ ′

:= F
µ×F

µ ′

×V , and its cotangent bundle T∗(Xµ,µ ′

).

We know that, see [CG, 4.1.2],

T∗(Fµ) = {(F, x) ∈ F
µ ×N | x(Fi) ⊂ Fi−1 ∀i}.

Therefore

T∗(Xµ,µ ′

) = {(F, F ′, v, x, x ′, v∗) ∈ Xµ,µ ′

×N ×N ×V ∗ | F ∈ F
µ
x ; F ′ ∈ F

µ ′

x ′ }.

We have the moment map

T∗(Xµ,µ ′

)→ gl(V )∗ ≃ gl(V )

(F, F ′, v, x, x ′, v∗) 7→ x + x ′ + v∗ ⊗ v.
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We let Y µ,µ ′

be the preimage of 0 under the moment map, then Y µ,µ ′

is the union of

the conormal bundles of the G-orbits in Xµ,µ ′

:

Y µ,µ ′

:= {(F, F ′, v, x, x ′, v∗) ∈ T∗(Xµ,µ ′

) | x + x ′ + v∗ ⊗ v = 0} =
⊔
ω,β

N∗
Ωω,β .

Hence, all the irreducible components of Y µ,µ ′

are the closures N∗Ωω,β .

Now, consider the variety Z of quadruples

Z := {(x, x ′, v, v∗) ∈ N ×N ×V ×V ∗ | x + x ′ + v∗ ⊗ v = 0}.

We then have a projection

π : Y µ,µ ′

→ Z

(F, F ′, v, x, x ′, v∗) 7→ (x, x ′, v, v∗).

We let P be the set of pairs of partitions (λ, θ) such that |λ| = d and λi ≥ θi ≥ λi+1

for all i.

Remark 5.9 The set P parametrizes G-orbits on N×V , as is proved independently

in both [T, Theorem 1] and [AH, Proposition 2.3]. In particular, (x, v) is in the orbit

corresponding to (λ, θ) if the Jordan type of x is λ and the Jordan type of x|V/k[x]v

is θ.

Define the set of triples T := {(λ, θ, λ ′) | (λ, θ) ∈ P; (λ ′, θ) ∈ P}.

For any t = (λ, θ, λ ′) ∈ T, we write Zt for the subset of quadruples (x, x ′, v, v∗) ∈
Z such that the Jordan types of x, x ′ and x|V/k[x]v are respectively λ, λ ′ and θ.

Remark 5.10 Notice that in the previous statement we did not break any symmetry

by choosing x instead of x ′, because if x + x ′ + v∗ ⊗ v = 0, then k[x]v = k[x ′]v and

x|V/k[x]v = −x ′|V/k[x ′]v.

Now if ω̃ = (ω, β) ∈ Dµ,µ ′

, we can consider a point y = (F, F ′, v, x, x ′, v∗) in the

variety Yω̃ := N∗(Ωω̃). In particular we can take y ∈ N∗(Ωω̃).

Then π(y) ∈ Zt for some t = (λ, θ, λ ′) ∈ T. Now, Zt is irreducible, as is shown

in the proof of Proposition 1 in [T]. Hence this t = t(y) will be the same for all y in

an open dense subset of Yω̃ . With this choice of y, we can then denote t = t(ω̃) to

emphasize that it depends only on ω̃. Let T = T(ω̃) ∈ T
µ
λ and T ′

= T ′(ω̃) ∈ T
µ ′

λ ′

such that F = F(y) ∈ Fx,T and F ′
= F ′(y) ∈ Fx ′,T ′ .

Proposition 5.11 The assignment ω̃ 7→
(

t(ω̃),T(ω̃),T ′(ω̃)
)

, that we just described,

gives a one-to-one correspondence

Dµ,µ ′

←→
{(

(λ, θ, λ ′),T,T ′
) ∣∣ (λ, θ, λ ′) ∈ T,T ∈ T

µ
λ ,T ′ ∈ T

µ ′

λ ′

}
.
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Proof Consider the set Y t,T,T ′

⊂ Y µ,µ ′

defined by

Y t,T,T ′

= {y ∈ Y µ,µ ′

| π(y) ∈ Zt, F(y) ∈ Fx,T , F ′(y) ∈ Fx ′,T ′}.

Then for all (t,T,T ′), Y t,T,T ′

is a locally closed subset of Y µ,µ ′

and

Y µ,µ ′

=
⊔

t,T,T ′

Y t,T,T ′

.

Claim 5.12 These locally closed subsets are irreducible and dim Y t,T,T ′

= dim Y µ,µ ′

for all t,T,T ′.

We look at the projection π|Y t,T,T ′ : Y t,T,T ′

→ Zt. All the fibers of this map are of

the form

π−1(x, x ′, v, v∗) = {y ∈ Y t,T,T ′

| F(y) ∈ Fx,T , F ′(y) ∈ Fx ′,T ′} ≃ Fx,T × Fx ′,T ′ .

It follows that they are irreducible and they have the same dimension. The set Zt is

also irreducible, hence the sets Y t,T,T ′

are irreducible.

From now on in the paper we will use the notation (ad1 , bd2 , . . . ) for the sequence

(a, . . . , a, b, . . . , b, . . . ) where a appears d1 times, b appears d2 times and so on.

From Travkin’s proof of Proposition 1 in [T], it follows that the statement about

dimensions is true when we consider the case of complete flags. That is, when µ =

µ ′
= (1d), we let Y := Y (1d),(1d) and we have dim Y = dim Y t,T,T ′

where T,T ′ are

standard tableaux. That implies that if t = (λ, θ, λ ′), then

dim Zt
= dim Y t,T,T ′

− dim(Fx,T × Fx ′,T ′)

= dim Y − (dimFx + dimFx ′)

= d2 − nλ − nλ ′

where nλ =
∑

i(i − 1)λi .

In the case of partial flags, we know that

dim Y µ,µ ′

= dim Xµ,µ ′

= d2 + d −
1

2

∑

i

µ2
i −

1

2

∑

j

µ ′2
j .
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Further, for t = (λ, θ, λ ′),

dim Y t,T,T ′

= dim Zt + dim(Fx,T × Fx ′,T ′)

= dim Zt + dimF
µ
x + dimF

µ ′

x ′

= d2 − nλ − nλ ′ +
(

nλ −
1

2

(
−d +

∑

i

µ2
i

))

+
(

nλ ′ −
1

2

(
−d +

∑

j

µ ′2
j

))

= d2 + d−
1

2

∑

i

µ2
i −

1

2

∑

j

µ ′2
j

= dim Y µ,µ ′

.

This concludes the proof of the claim. Now, the claim implies that the irreducible

components of Y µ,µ ′

are exactly the closures of the sets Y t,T,T ′

. This is enough to

prove the proposition because the set Dµ,µ ′

also parametrizes the same irreducible

components.

Definition 5.13 The map ω̃ 7→
(

t(ω̃),T(ω̃),T ′(ω̃)
)

of Proposition 5.11 is called

the mirabolic Robinson–Schensted–Knuth correspondence.

6 Combinatorial Description of the Mirabolic RSK Correspondence

In this section we will describe an algorithm that takes as input a decorated array

ω̃ = (ω, β) ∈ Dµ,µ ′

and gives as output a triple (t,T,T ′), with t = (λ, θ, λ ′) ∈ T,

T ∈ T
µ
λ , T ′ ∈ T

µ ′

λ ′ . We will then prove that this is the same as the mirabolic RSK

correspondence defined geometrically in the previous section.

6.1 The Algorithm

In the algorithm we describe, the row-bumping convention is that a new entry z will

bump the left-most entry in the row which is greater or equal to z, as in Section 3.2.

Algorithm 6.1 As an input, we have ω̃ = (ω, β) where

ω =

(
u(1) u(2) · · · u(d)

w(1) w(2) · · · w(d)

)
, β ⊂ {1, . . . , d}.

• At the beginning, set T0 = T ′
0 = ∅ and let R be a single row consisting of the

numbers d + 1, . . . , 2d

R = d +1 d +2 · · · 2d
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• For i = 1, 2, . . . , d

– If i ∈ β, let Ti be the tableau obtained by inserting w(i) into the tableau Ti−1

via row bumping.

– If i /∈ β, insert w(i) into R by replacing the least element z ∈ R that is greater

or equal to w(i). Then let Ti be the tableau obtained by inserting z into Ti−1

via row bumping.

– Construct T ′
i by the usual recording procedure. That is add a new box to T ′

i−1

in the same place where the row bumping for Ti terminated, and put u(i) in

the new box.

• At this point we have Td,T ′
d two semistandard tableaux with d boxes, and the

single row R. We let T ′ := T ′
d and λ ′ will be its shape (which is also the same

shape of Td).

• Insert, via row bumping, R into Td, starting from the left. Call T2d the resulting

tableau.

• Let ν = (ν1, ν2, . . . ) be the shape of T2d, then we have θ = (θ1, θ2, . . . ) :=

(ν2, ν3, . . . ). That is we define θ to be the partition obtained from ν by removing

the first part.

• We let T := T(d)
2d , that is T is the tableau obtained from T2d by removing all the

boxes with numbers strictly bigger than d. We then have λ be the shape of T.

• The output is
(

(λ, θ, λ ′),T,T ′
)

.

Theorem 6.2 For all ω̃ ∈ Dµ,µ ′

, the triple
(

t(ω̃),T(ω̃),T ′(ω̃)
)

of Definition 5.13 is

the same as the triple obtained by applying Algorithm 6.1 to ω̃.

The last section of this paper is a proof of this theorem. In Appendix A we give an

example that illustrates the result and the algorithm.

For simplicity of notation, throughout the following proof we will drop the zeros

in the compositions. For example we will write (1d, µ, 1d) instead of (1d, µ, 0d−n, 1d).

What this means is that we are implicitly using the appropriate canonical isomor-

phisms of partial flag varieties and of sets of arrays; e.g., F(1d,µ,0d−n,1d) ≃ F
(1d,µ,1d) and

M(µ,0d−n,1d),(µ ′,0d−n ′ ,1d)(Z≥0) ≃ M(µ,1d),(µ ′,1d)(Z≥0).

6.2 Proof of Theorem 6.2

Let ω̃ = (ω, β) ∈ Dµ,µ ′

with ω =
(

u(1) ··· u(d)
w(1) ··· w(d)

)
, β ⊂ {1, . . . , d}. We want to

show that the triple
(

t(ω̃),T(ω̃),T ′(ω̃)
)

of Definition 5.13 is the same as what we

get applying Algorithm 6.1.

Consider ω̃+ = (ω+, β+) ∈ D(1d,µ,1d),(1d,µ ′,1d) defined by

ω+ =

(
u+(1) u+(2) · · · u+(3d)

w+(1) w+(2) · · · w+(3d)

)
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where

u+(i) =

{
i if i ≤ d or if 2d + 1 ≤ i ≤ 3d

u(i − d) + d if d + 1 ≤ i ≤ 2d

w+(i) =





i + 2d if i ≤ d

w(i − d) + d if d + 1 ≤ i ≤ 2d

i − 2d if 2d + 1 ≤ i ≤ 3d

β+ = {i + d | i ∈ β}.

If we look at ω+ as a matrix, we can visualize it as a block matrix:

ω+ =




0 0 Id

0 ω 0

Id 0 0




where 0 is a block of zeros and Id is the identity d× d matrix.

Or, as an array,

ω+ =

(
1 · · · d u(1) + d · · · u(d) + d 2d + 1 · · · 3d

2d + 1 · · · 3d w(1) + d · · · w(d) + d 1 · · · 3d

)
.

Then we have a corresponding variety Yω̃+
which is the closure of N∗

Ωω̃+
. Since Yω̃+

is irreducible, all the discrete combinatorial data associated to a point y ∈ Yω̃+
will

agree on an open dense subset. So we let y = (F, F ′, v, x, x ′, v∗) be such a general

point, where F and F ′ are partial flags in a 3d-dimensional vector space V+, v ∈ V+

and x + x ′ + v∗ ⊗ v = 0.

Choose a basis {e1, e2, . . . , e3d} of V+ that satisfies

(6.1)

Fi = 〈er | w+(r) ≤ i〉

F ′
j = 〈es | u+(s) ≤ j〉

v =

∑

i∈β+

ei

and let {e∗i } be the dual basis of V ∗
+ .

Definition 6.3 For m ≥ 1, we define inductively two sequences {γm}, {δm} of

subsets of {1, . . . , 3d}.

γ1 := {1, . . . , 3d} \ β+

δm := {i ∈ γm | ∀ j ∈ γm, u+( j) ≥ u+(i) or w+( j) ≥ w+(i)}

γm+1 := γm \ δm

https://doi.org/10.4153/CJM-2011-071-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-071-7


Classic and Mirabolic RSK Correspondence for Partial Flags 1109

It is easy to see that for all m = 1, . . . , d, the set δm consists of the elements m,

2d + m plus some subset of {d + 1, . . . , 2d}. Also, δm = γm = ∅ for all m > d.

Lemma 6.4 For a general conormal vector (x, x ′, v∗) at the point (F, F ′, v), we have

for 1 ≤ m ≤ d− 1

(x∗)mv∗ =

∑

i∈γm+1

αm,ie
∗
i

with αm,m+1, αm,m+2d+1 both nonzero.

Proof Since x preserves the flag F, we have that e∗i
(

x(e j)
)

= 0 if w(i) ≥ w( j).

Analogously e∗i
(

x ′(e j)
)

= 0 if u(i) ≥ u( j). Also, we have that Im(v∗ ⊗ v) ⊂
〈ed+1, . . . , e2d〉. Therefore the condition that x + x ′ + v∗ ⊗ v = 0 implies that in

the basis {e1, . . . , e3d} the three operators have the following block matrix form:

(6.2) v∗ ⊗ v =




0 0 0

∗ ∗ ∗
0 0 0


 x =




A 0 0

0 B ∗
0 0 C


 x ′

=




A ′ 0 0

∗ B ′ 0

0 0 C ′




where A,B,C,A ′,B ′,C ′ are strictly upper triangular d × d matrices and the ∗’s are

some possibly nonzero matrices depending on β+. They satisfy A ′
= −A and C ′

=

−C . Now, let

(6.3) A =




0 a1,2 · · · a1,d

0
. . .

...
. . . ad−1,d

0 0




C =




0 c1,2 · · · c1,d

0
. . .

...
. . . cd−1,d

0 0




.

Then, since F ∈ F
(1d,µ,1d), the set of conormal vectors such that rank A = d − 1 =

rank C (or equivalently such that a1,2, . . . , ad−1,d, c1,2, . . . , cd−1,d are all nonzero) is

open dense in N∗
Ωω̃+
|(F,F ′,v).

Also, the set of conormal vectors (x, x ′, v∗) such that v∗(e1), v∗(e2d+1) are both

nonzero is open dense.

Let J be the intersection of these two sets, then J ⊂ N∗
Ωω̃+
|(F,F ′,v) is open dense.

From now on we assume that (x, x ′, v∗) ∈ J and we are going to prove that the

conclusion of the lemma is true.

For i ∈ β+, we have

e∗i
(

x(ei)
)
= e∗i

(
x ′(ei)

)
= 0

therefore

0 = e∗i
(

x(ei)
)

+ e∗i
(

x ′(ei)
)

= e∗i
(

(−v∗ ⊗ v)(ei)
)

= −e∗i

(
v∗(ei)

∑

k∈β+

ek

)

= −v∗(ei).
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So the elements of the basis {ei | i ∈ β+} are such that v∗ vanishes on them, hence

v∗ =

∑

i /∈β+

α0,ie
∗
i =

∑

i∈γ1

α0,ie
∗
i

for some coefficients {α0,i} with α0,1 = v∗(e1) 6= 0 and α0,2d+1 = v∗(e2d+1) 6= 0

because (x, x ′, v∗) ∈ J.

Now, inductively, let us assume that

(x∗)m−1v∗ =

∑

i∈γm

αm−1,ie
∗
i with αm−1,m 6= 0 6= αm−1,m+2d

then

(x∗)mv∗(e j) = (x∗)m−1v∗(xe j)

=

∑

i∈γm

αm−1,ie
∗
i (xe j)

now if i ∈ γm, in particular i /∈ β+, hence

0 = e∗i (x + x ′ + v∗ ⊗ v)e j

= e∗i
(

x(e j) + x ′(e j) + v∗(e j)v
)

= e∗i
(

x(e j)
)

+ e∗i
(

x ′(e j)
)

therefore

(6.4) e∗i
(

x(e j)
)
= −e∗i

(
x ′(e j)

)
.

The left-hand side of (6.4) is nonzero if and only if w+(i) < w+( j), while the right-

hand side is nonzero if and only if u+(i) < u+( j).

This shows that (x∗)mv∗(e j) = 0 if for all i ∈ γm−1, we have u+(i) ≥ u+( j) or

w+(i) ≥ w+( j). This is equivalent to

(x∗)mv∗ =

∑

i∈γm+1

αm,ie
∗
i

for some αm,i . Moreover,

αm,m+1 = (x∗)mv∗(em+1)

= (x∗)m−1v∗(xem+1)

= (x∗)m−1v∗
( m∑

j=1

a j,m+1e j

)

=

∑

i∈γm

αm−1,ie
∗
i

( m∑

j=1

a j,m+1e j

)

= αm−1,mam,m+1 6= 0
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because j /∈ γm for j < m and (x, x ′, v∗) ∈ J.

Analogously,

αm,m+2d+1 = (x∗)mv∗(em+2d+1)

= (x∗)m−1v∗(xem+2d+1)

= (x∗)m−1v∗
(

(−x ′ − v∗ ⊗ v)em+2d+1

)

= −(x∗)m−1v∗
( m∑

j=1

(−c j,m+1)e j+2d + v∗(em+2d+1)v
)

=

∑

i∈γm

αm−1,ie
∗
i

( m∑

j=1

c j,m+1e j+2d

)
+ 0

= αm−1,mcm,m+1 6= 0

because j /∈ γm for 2d < j < m + 2d and (x, x ′, v∗) ∈ J.

We let S := (k[x∗]v∗)⊥ ⊂ V+, that is S is the annihilator of the span of

{v∗, x∗v∗, (x∗)2v∗, . . . } ⊂ V ∗
+ . We want to describe the relative position of the partial

flags F ∩ S and F ′ ∩ S.

Definition 6.5 We define a new array ω ′ ∈ M(µ,1d),(µ ′,1d)(Z≥0) by

ω ′
=

(
u ′(d + 1) · · · u ′(3d)

w ′(d + 1) · · · w ′(3d)

)

where

u ′(i) = u+(i)

w ′(i) =

{
w+(i) if i ∈ β+

w+( j), where j = max{l ∈ δm | l < i} if i ∈ δm for some m.

Notice that this is well defined because β+ ⊔
⊔
m

δm = {1, 2, . . . , 3d}.

Lemma 6.6 The relative position of the flags F ∩ S and F ′ ∩ S is ω ′.

Proof Remark that S =
⋂d−1

m=0 ker
(

(x∗)mv∗
)

, therefore Fd∩S = 0 = F ′
d∩S. This fol-

lows from Lemma 6.4, since (x∗)mv∗(em+1) and (x∗)mv∗(em+2d+1) are both nonzero.

This implies that the types of the partial flags F ∩ S and F ′ ∩ S are respectively

(µ, 1d) and (µ ′, 1d). In particular we have (F ∩ S)µ1+···+µi
= Fd+µ1+···+µi

∩ S and

analogously for F ′ ∩ S.

If we let

ri j(ω
′) = card

{
l ∈ {d + 1, . . . , 3d}

∣∣ w ′(l) ≤ i and u ′(l) ≤ j
}
,
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to prove the lemma we just need to show that

dim(Fi ∩ F ′
j ∩ S) = ri j(ω

′) ∀i, j.

We define the set

Ri j(ω+) :=
{

l ∈ {1, . . . , 3d}
∣∣ w+(l) ≤ i and u+(l) ≤ j

}

then if we let ri j(ω+) = card Ri j(ω+), we have that ri j(ω+) = dim(Fi ∩ F ′
j ). More

precisely, the vectors {el | l ∈ Ri j(ω+)} form a basis for Fi ∩ F ′
j .

Remark that if m ′ ≤ m and δm ∩ Ri j(ω+) 6= ∅, then δm ′ ∩ Ri j(ω+) 6= ∅. Hence

there exist integers ki j ≥ 0 defined by the property that δm ∩ Ri j(ω+) 6= ∅ if and

only if m ≤ ki j . Furthermore, since γm = δm ⊔ δm+1 ⊔ · · · ⊔ δd, we have that

γm ∩ Ri j(ω+) 6= ∅ if and only if m ≤ ki j .

This implies that (x∗)m−1v∗|Fi∩F ′

j
6= 0 if and only if m ≤ ki j . Actually, by

Lemma 6.4 these linear functionals on Fi ∩ F ′
j are linearly independent for m =

1, . . . , ki j . Therefore

dim(Fi ∩ F ′
j ∩ S) = dim

( ki j⋂
m=1

ker(x∗)m−1v∗|Fi∩F ′

j

)

= dim(Fi ∩ F ′
j )− ki j

= ri j(ω+)− ki j .

To conclude the proof of the lemma now we need to show that ri j(ω+)−ki j = ri j(ω
′).

If we now define, in analogy to Ri j(ω+), Ri j(ω
′) to be the set such that ri j(ω

′) =

card Ri j(ω
′), we have that

Ri j(ω+) =
(

Ri j(ω+) ∩ β+

)
⊔
( d⊔

m=1

Ri j(ω+) ∩ δm

)

Ri j(ω
′) =

(
Ri j(ω

′) ∩ β+

)
⊔
( d⊔

m=1

Ri j(ω
′) ∩ δm

)
.

By definition of ω ′, we have Ri j(ω
′) ∩ β+ = Ri j(ω+) ∩ β+.

If m > ki j , then Ri j(ω
′) ∩ δm = Ri j(ω+) = ∅.

If m ≤ ki j , then Ri j(ω
′) ∩ δm = Ri j(ω+) ∩ δm \ {sm}, where sm is the minimal

element of Ri j(ω+) ∩ δm.

Therefore Ri j(ω
′) = Ri j(ω+) \ {s1, . . . , ski j

} which implies

ri j(ω
′) = ri j(ω+)− ki j .

Lemma 6.7 The subspace S of V+ has dimension 2d and it is invariant under both x

and x ′.
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Proof The dimension claim just follows from the fact that S =
⋂d−1

m=0 ker
(

(x∗)mv∗
)

and that those functionals are linearly independent by Lemma 6.4. Therefore

dim S = 3d− d = 2d. If z ∈ S, then (x∗)mv∗(z) = 0 for all m, therefore

(x∗)mv∗(xz) = (x∗)m+1v∗(z) = 0, for all m

and xz ∈ S. In a similar way, for all m,

(x∗)mv∗(x ′z) = (x∗)mv∗
(

(−x − v∗ ⊗ v)z
)

= −(x∗)m+1v∗(z)− v∗(z)(x∗)mv∗(v)

= 0.

Definition 6.8 Let x̄ = x|S = −x ′|S. We then have a map

g : Yω̃+
→ Fx̄ × Fx̄

(F, F ′, v, x, x ′, v∗) 7→ (F ∩ S, F ′ ∩ S).

Since Yω̃+
is irreducible, Im g lies in an irreducible component of Fx̄ × Fx̄.

So there exist two semistandard tableaux T̄, T̄ ′ such that, for all y ∈ Yω̃+
,

(F ∩ S, F ′ ∩ S) ∈ C x̄,T̄ ×C x̄,T̄ ′ .

In particular, by what we remarked at the beginning of the proof of Lemma 6.6,

we have that T̄ has content (µ, 1d) and T̄ ′ has content(µ ′, 1d).

Lemma 6.9 The map

g : Yω̃+
→ C x̄,T̄ ×C x̄,T̄ ′

is surjective.

Proof Let y = (F, F ′, v, x, x ′, v∗) ∈ Yω̃+
, so that g(y) = (F ∩ S, F ′ ∩ S). Given

(F̄, F̄ ′) ∈ C x̄,T̄ ×C x̄,T̄ ′ , define two flags F̂, F̂ ′ in V+ as follows

F̂i =

{
Fi if i ≤ d

F̄i−d + Fd if i > d

and F̂ ′ is defined in the same way, replacing F ′ and F̄ ′ where necessary.

Clearly, x preserves the flag F̂ and the same is true for x ′ and F̂ ′. We can then

consider the point ŷ = (F̂, F̂ ′, v, x, x ′, v∗) ∈ Y (1d,µ,1d),(1d,µ ′,1d). By construction, ŷ is

such that F̂ ∩ S = F̄ and F̂ ′ ∩ S = F̄ ′. Consider the maps

(F̄, F̄ ′) 7→ (F̂, F̂ ′) 7→ ŷ.

Let f be the composition of those, then

f : C x̄,T̄ ×C x̄,T̄ ′ → Y (1d,µ,1d),(1d,µ ′,1d).

Since C x̄,T̄ × C x̄,T̄ ′ is irreducible, the image of f lies in an irreducible component

of Y (1d,µ,1d),(1d,µ ′,1d). Notice that f (F ∩ S, F ′ ∩ S) = y ∈ Yω̃+
, hence Im f ⊂ Yω̃+

.

Therefore ŷ ∈ Yω̃+
and g( ŷ) = (F̄, F̄ ′), thus the lemma is proved.
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Remark 6.10 For (F, F ′, v, x, x ′, v∗) in an open dense subset of Yω̃+
, we know by

Lemma 6.6 that ω ′ is the relative position of the partial flags F ∩ S and F ′ ∩ S. Also,

by Lemma 6.9, the preimage of the open dense subset of C x̄,T̄ ×C x̄,T̄ ′ for which The-

orem 4.1 applies, contains an open dense subset of Yω̃+
. Therefore we have

(T̄, T̄ ′)
RSK
←→ ω ′.

Now, consider the spaces Fd+n, F ′
d+n ′ where n, n ′ are the number of parts of µ

and µ ′ respectively, i.e., µ = (µ1, . . . , µn), µ ′
= (µ ′

1, . . . , µ
′
n ′). By (6.2), they are

invariant under both operators x and x ′, therefore the same is true for V := Fd+n ∩
F ′

d+n ′ . Notice that in the basis of (6.1), we have that V = 〈ed+1, . . . , e2d〉.
Consider the flags F ∩ V and F ′ ∩ V . It is clear that the relative position M(F ∩

V, F ′ ∩V ) = ω, and that ȳ = (F ∩V, F ′ ∩V, v, x|V , x ′|V , v∗|V ) ∈ Yω̃ .

Applying the mirabolic RSK correspondence of Definition 5.13 to Yω̃ we get

(6.5)
(

t(ω̃),T(ω̃),T ′(ω̃)
)
, with t(ω̃) =

(
λ(ω̃), θ(ω̃), λ ′(ω̃)

)
.

Thus we have F ∩V ∈ Cx|V ,T(ω̃), F ′ ∩V ∈ Cx ′|V ,T ′(ω̃) and θ(ω̃) is the Jordan type

of x|V/k[x]v.

Lemma 6.11 The semistandard tableau T(ω̃) (resp. T ′(ω̃)) is obtained from the

tableau T̄ (resp. T̄ ′) of Definition 6.8 by removing all boxes with numbers n+1, . . . , n+d

(resp. n ′ + 1, . . . , n ′ + d).

Proof By symmetry, it is enough to prove the case of T(ω̃). The tableau T̄ is defined

by the condition that F∩S ∈ Cx|V ,T̄ . If we let T(n) be the tableau obtained by removing

from T̄ all numbers greater than n, we have

F ∩ S ∩ Fd+n ∈ Cx|S∩Fd+n
,T(n) .

By the remark at the beginning of the proof of Lemma 6.6 and by the definition

of V , the spaces V and S ∩ Fd+n are both complementary to Fd inside Fd+n. So they

can both be identified with the image of the map

(6.6) Fd+n ։ Fd+n/Fd.

Notice that under this map

F ∩V 7→ (F ∩ Fd+n)/Fd

F ∩ S ∩ Fd+n 7→ (F ∩ Fd+n)/Fd

and both operators x|V and x|S∩Fd+n
get identified via (6.6) with x|Fd+n/Fd

. Therefore it

follows that

(F ∩ Fd+n)/Fd ∈ Cx|Fd+n/Fd
,T(ω̃)

(F ∩ Fd+n)/Fd ∈ Cx|Fd+n/Fd
,T(n) .
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By Lemma 6.9 the set of all F ∩ Fd+n, for varying y ∈ Yω̃+
, covers all points in these

irreducible components. Therefore they must be equal, i.e.,

Cx|Fd+n/Fd
,T(ω̃) = Cx|Fd+n/Fd

,T(n)

which implies that T(ω̃) = T(n).

Suppose that applying Algorithm 6.1 to ω̃ we obtain
(
λc, θc, (λ ′)c,Tc, (T ′)c

)
. We

want to show that this coincides with the quintuple
(
λ(ω̃), θ(ω̃), λ ′(ω̃),T(ω̃),T ′(ω̃)

)

of (6.5).

Remark that i + d ∈ δm if and only if at the i-th step of the algorithm, the number

w(i) is being inserted in the m-th position of the row R. In this case, w ′(i) is the

number bumped from R and inserted in Ti .

Therefore, if we apply the RSK correspondence from Section 3.2 to ω ′ we get a

pair of tableaux
(

T(ω ′),T ′(ω ′)
)

that satisfy the following:

• the tableau T2d from the algorithm is the same as T(ω ′);
• the tableau T ′

d is obtained from T ′(ω ′) by removing all numbers strictly greater

than n ′.

We also know that ω ′ RSK
←→ (T̄, T̄ ′), therefore T̄ = T(ω ′) and T̄ ′

= T ′(ω ′).

By Lemma 6.11, this implies that both Tc and T(ω̃) are obtained from T̄ =

T(ω ′) = T2d by removing the last d numbers, so Tc
= T(ω̃).

Again by Lemma 6.11, (T ′)c
= T ′

d and T ′(ω̃) are both obtained from T̄ ′
= T ′(ω ′)

by removing all numbers greater than n ′, so (T ′)c
= T ′(ω̃).

It also follows immediately that λc
= λ(ω̃) and (λ ′)c

= λ ′(ω̃) since those are

respectively the shape of T(ω̃) and of T ′(ω̃).

The only thing left to prove is that θc
= θ(ω̃), which will follow from the next

lemma.

Lemma 6.12 If we let ν be the shape of the tableau T̄, then θ := θ(ω̃) is obtained from

ν by removing the first part of the partition. That is θ = (θ1, θ2, . . . ) = (ν2, ν3, . . . ).

Proof of Lemma From Definition 6.8, the shape of T̄ is the Jordan type of x̄ = x|S.

On the other hand, θ is the type of x|V/k[x]v.

Consider the space D := (Fd + F ′
d) ∩ S + k[x]v. Since v ∈ S by Lemma 6.4 and

since S is x-invariant, we have k[x]v ⊂ S. Therefore D = (Fd + F ′
d + k[x]v) ∩ S. Now,

Fd is x-invariant by (6.2), and if z ∈ F ′
d, then x(z) = −x ′(z) − v∗(z)v ∈ F ′

d + k[x]v.

So F ′
d + k[x]v is also x-invariant. It follows that D is invariant under x.

Claim 6.13 In Jordan normal form, the nilpotent operator x|D has a single block.

Proof of Claim We can assume that the matrices A and C of (6.3) have rank n − 1.

Therefore x|Fd
, which is represented by the matrix A, has a single Jordan block. In the

same way,−C represents x ′|F ′

d
which also has a single Jordan block.

Now, given the basis {ei | i = 1, . . . , 3d} of V+ defined in (6.1), we have that

Fd + F ′
d = 〈e1, . . . , ed, e2d+1, . . . , e3d〉
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hence, by Lemma 6.4 for m = 0, . . . , d − 1, the linear functionals

(x∗)mv∗ =

∑

i∈γm+1

αm,ie
∗
i

are linearly independent on Fd + F ′
d. It follows that

dim(Fd + F ′
d) ∩ S = 2d − d

= d

dim D = dim(Fd + F ′
d) ∩ S + k[x]v

= d + dim k[x]v

since (Fd + F ′
d) ∩ S ∩ k[x]v = 0. (This is because k[x]v ⊂ 〈ed+1, . . . , e2d〉 by (6.2).)

Now, let z =
∑d

i=1 ziei ∈ Fd, with zd 6= 0, and let z ′ =
∑3d

i=2d+1 ziei ∈ F ′
d, with

z3d 6= 0. We want to show that we can choose the z ′i s in such a way that z + z ′ ∈ S.

Consider the equation

0 = (x∗)d−1v∗(z + z ′)

=

(∑

i∈γd

αd−1,ie
∗
i

)( ∑

j=1,...,d
2d+1,...,3d

z je j

)

= αd−1,dzd + αd−1,3dz3d

Since, by Lemma 6.4, αd−1,d andαd−1,3d are both nonzero, we can find nonzero zd, z3d

such that the equation holds. We find

0 = (x∗)d−2v∗(z + z ′)

=

( ∑

i∈γd−1

αd−2,ie
∗
i

)( ∑

j=1,...,d
2d+1,...,3d

z je j

)

= αd−2,d−1zd−1 + αd−2,dzd + αd−2,3d−1z3d−1 + αd−2,3dz3d.

Since αd−2,d−1 and αd−2,3d−1 are both nonzero, we can choose zd−1, z3d−1 so that the

equation holds. Iterating this procedure, we find z, z ′ such that (x∗)mv∗(z + z ′) = 0

for all 0 ≤ m ≤ d − 1, hence z + z ′ ∈ (Fd + F ′
d) ∩ S.

We are now going to prove that z + z ′ is a cyclic vector for x on D.
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We have

x(z + z ′) = x(z) + x(z ′)

= x(z)− x ′(z ′)− v∗(z ′)v

x2(z + z ′) = x(x(z)− x ′(z ′)− v∗(z ′)v)

= x2(z)− v∗(z ′)x(v) + (−x ′ − v∗ ⊗ v)
(
−x ′(z ′)

)

= x2(z) + (x ′)2(z ′) + v∗(x ′z ′)v − v∗(z ′)x(v)

...

xd(z + z ′) = xd(z) + (x ′)d(z ′) + (−1)dv∗
(

(x ′)d−1z ′
)

v + · · · − v∗(z ′)xd−1v.

(6.7)

Remark that, since zd 6= 0, and since x acts as the matrix A from (6.3) on Fd,

Fd =
〈

z, . . . , xd−1z
〉

. In the same way, we have F ′
d =

〈
z ′, . . . , (x ′)d−1z ′

〉
. Also,

notice that

v∗
(

(x ′)d−1z ′
)
= v∗

(
(−1)d−1c1,2 · · · cd−1,de2d+1

)

= (−1)d−1c1,2 · · · cd−1,dα0,2d+1 6= 0.

Since xd(z) = (x ′)d(z ′) = 0, we have xd(z + z ′) ∈ k[x]v and has a nonzero coefficient

in v. Therefore, it follows from the computation (6.7) that xm(z + z ′) are linearly

independent for m = 0, . . . , d.

Moreover, the elements

xm(z + z ′) with d ≤ m ≤ d + (dim k[x]v − 1),

span k[x]v. In conclusion, the set {xm(z + z ′) | m = 0, . . . , d + (dim k[x]v − 1)}
spans D = (Fd + F ′

d) ∩ S + k[x]v. This means that z + z ′ is a cyclic vector, hence x|D
has a single block in Jordan normal form.

Now, the identification of (6.6) gives us an isomorphism of x-modules

α : V
≃
−→ S ∩ Fd+n.

Remark that D ∩V = k[x]v, and that D + (S ∩ Fd+n) = S. Also

D ∩ α(V ) = D ∩ (Fd+n ∩ S)

= (Fd + F ′
d + k[x]v) ∩ Fd+n ∩ S

= (Fd + k[x]v) ∩ S

= Fd ∩ S + k[x]v

= k[x]v.
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We have then isomorphisms of x-modules

V/k[x]v = V/(V ∩ D)

≃ (D + V )/D

≃
(

D + α(V )
)
/D

= S/D.

Hence, x|V/k[x]v = x|S/D. So θ is also the Jordan type of x|S/D.

We know that dim D ≥ d, dim S = 2d and x|D is a single Jordan block. It follows

that θ, which is the Jordan type of x|S/D, is obtained from the one of x|S by remov-

ing the maximal part of the partition. This concludes the proof of the lemma and

consequently of the theorem.

A Example of the Mirabolic RSK Correspondence

Let V ≃ k7, and let a basis of V be {u1, u2, . . . , u7}. We consider the nilpotents x, x ′,

expressed as matrices in the basis {ui}.

x =




0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0




; x ′
=




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 0 0




.

Then we have that the Jordan type of x is λ = (4, 2, 1) and the type of x ′ is λ ′
=

(3, 2, 1, 1). If we let v = u2, v∗ = −u∗
3 , we have indeed

x + x ′ + v∗ ⊗ v = 0.

Now, x(v) = 0, therefore k[x]v = 〈v〉 and V/k[x]v ≃ 〈ui | i 6= 2〉. We then have that

the type of x|V/k[x]v is θ = (3, 2, 1).

Let us define the flag F by

F1 = 〈u2, u6〉

F2 = 〈u2, u6, u3, u1 + u7〉

F3 = 〈u2, u6, u3, u1 + u7, u4〉

F4 = V.

Then F ∈ F
µ
x for µ = (2, 2, 1, 2). We also define F ′ ∈ F

µ ′

x ′ , with µ ′
= (2, 2, 3), by

F ′
1 = 〈u1, u3〉

F ′
2 = 〈u1, u3, u4, u6〉

F ′
3 = V.
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The semistandard tableaux associated to F and F ′ are respectively

T =

1 2 3 4
1 2
4

T ′
=

1 2 3
1 3
2
3

.

In which GL7-orbit does the point (F, F ′, v) lie? The relative position of F and F ′ is

ω ∈ M(2,2,1,2),(2,2,3)(Z≥0) which we can see as a matrix or as an array

ω =




0 1 1

1 0 1

0 1 0

1 0 1


 =

(
1 1 2 2 3 3 3

4 2 3 1 4 2 1

)

and since v ∈ F1 \ (F1 ∩ F ′
2), we have that β = {4, 7}. So for ω̃ = (ω, β), we have

y = (F, F ′, v, x, x ′, v∗) ∈ N∗
Ωω,β . Now, by the mirabolic RSK correspondence of

Definition 5.13, we have

(ω, β)→ (λ, θ, λ ′,T,T ′).

Let us verify that this is indeed the result we obtain when we apply Algorithm 6.1.

Our input is

(ω, β) =

((
1 1 2 2 3 3 3

4 2 3 1 4 2 1

)
, {4, 7}

)
.

To start, we set T0 = T ′
0 = ∅, R = 8 9 10 11 12 13 14

• 1 /∈ β

R = 4 9 10 11 12 13 14 T1 = 8 T ′
1 = 1 .

• 2 /∈ β

R = 2 9 10 11 12 13 14 T2 =
4
8

T ′
2 =

1
1
.

• 3 /∈ β

R = 2 3 10 11 12 13 14 T3 =
4 9
8

T ′
3 =

1 2
1

.

• 4 ∈ β

R = 2 3 10 11 12 13 14 T4 =

1 9
4
8

T ′
4 =

1 2
1
2

.

• 5 /∈ β

R = 2 3 4 11 12 13 14 T5 =

1 9 10
4
8

T ′
5 =

1 2 3
1
2

.
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• 6 /∈ β

R = 2 3 4 11 12 13 14 T6 =

1 2 10
4 9
8

T ′
6 =

1 2 3
1 3
2

.

• 7 ∈ β

R = 2 3 4 11 12 13 14 T7 =

1 2 10
1 9
4
8

T ′
7 =

1 2 3
1 3
2
3

.

• T ′
= T ′

7 =

1 2 3
1 3
2
3

which agrees with what we had before.

• Insert R into T7, get

T14 =

1 2 3 4 11 12 13 14
1 2 10
4 9
8

.

• The shape of T14 is ν = (8, 3, 2, 1), so θ = (3, 2, 1) as we wanted.
• Removing all numbers greater than 7 from T14 we get

T = T(7)
14 =

1 2 3 4
1 2
4

.
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