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Abstract

Data exchange, the problem of transferring data from a source schema to a target schema, has
been studied for several years. The semantics of answering positive queries over the target schema
has been defined in early work, but little attention has been paid to more general queries. A few
proposals of semantics for more general queries exist but they either do not properly extend the
standard semantics under positive queries, giving rise to counterintuitive answers, or they make
query answering undecidable even for the most important data exchange settings, for example,
with weakly-acyclic dependencies.

The goal of this paper is to provide a new semantics for data exchange that is able to deal
with general queries. At the same time, we want our semantics to coincide with the classical one
when focusing on positive queries, and to not trade-off too much in terms of complexity of query
answering. We show that query answering is undecidable in general under the new semantics,
but it is coNP-complete when the dependencies are weakly-acyclic. Moreover, in the latter case,
we show that exact answers under our semantics can be computed by means of logic programs
with choice, thus exploiting existing efficient systems. For more efficient computations, we also
show that our semantics allows for the construction of a representative target instance, similar
in spirit to a universal solution, that can be exploited for computing approximate answers in
polynomial time.

KEYWORDS: data exchange, semantics, closed word assumption, approximations

1 Introduction

Data exchange is the problem of transferring data from a source schema to a target

schema, where the transfer process is usually described via so-called schema mappings: a

set of logical assertions specifying how the data should be moved and restructured. Fur-

thermore, the target schema may have its own constraints to be satisfied. Schema map-

pings and target constraints are usually encoded via standard database dependencies:

tuple-generating dependencies (TGDs) and equality-generating dependencies (EGDs).

Thus, given an instance I over the source schema S, the goal is to materialize an in-

stance J over the target schema T, called solution, in such a way that I and J together

satisfy the dependencies.
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Since multiple solutions might exist, a precise semantics for answering queries is needed.

By now, the certain answers semantics is the most accepted one. The certain answers

to a query is the set of all tuples that are answers to the query in every solution of the

data exchange setting (Fagin et al . 2005). Although it has been formally shown that for

positive queries (e.g., conjunctive queries) the notion of solution of (Fagin et al . 2005)

is the right one to use, for more general queries such solutions become inappropriate, as

they easily lead to counterintuitive results.

Example 1

Consider a data exchange setting denoted by S = 〈S,T,Σst,Σt〉, where S is the source

schema, storing product orders in a binary relation Ord, with the first argument being

the id of an order, and the second argument specifying whether the order has been

paid. Moreover, T is the target schema having unary relations AllOrd and Paid, storing

all orders and the paid orders, respectively. The schema mapping is described by the

following source-to-target TGDs Σst:

ρ1 = ∀x, y Ord(x, y) → AllOrd(x), ρ2 = ∀x Ord(x, yes) → Paid(x).

In this example, we assume that the set of target dependencies Σt is empty. The above

schema mapping states that all orders in the source schema must be copied to the AllOrd

relation, and all the paid orders must be copied to the Paid relation. Assume the source

instance is as follows:

I = {Ord(1, yes),Ord(2, no)},
and assume we want to pose the query Q over the target schema asking for all the unpaid

orders. This can be written as the following first-order (FO) query:

Q(x) = AllOrd(x) ∧ ¬Paid(x).
One would expect the answer to be {2}, since the schema mapping above is simply copying

I to the target schema, and hence J = {AllOrd(1),AllOrd(2),Paid(1)} should be the only

candidate solution. However, under the classical notion of solution of (Fagin et al . 2005),

also the instance J ′ = {AllOrd(1),AllOrd(2),Paid(1),Paid(2)} is a solution (since I ∪ J ′

satisfies the TGDs), and every order in J ′ is paid. Hence, the certain answers to Q, which

are computed as the intersection of the answers over all solutions, are empty.

The issue above arises because the classical notion of solution is too permissive, in that

it allows the existence of facts in a solution that have no support from the source (e.g.,

Paid(2) in the solution J ′ of Example 1 above).

Some efforts exist in the literature that provide alternative notions of solutions for

which certain answers to general queries become more meaningful. Prime examples are

the works of (Hernich et al . 2011) and (Hernich 2011). In both approaches, the certain

answers in the example above are {2}. However, the works above have their own draw-

backs too. In (Hernich et al . 2011), so-called CWA-solutions are introduced, which are

a subset of the classical solutions with some restrictions. However, these restrictions are

so severe that certain answers over such solutions fail to capture certain answers over

classical solutions, when focusing on positive queries. Moreover, even when focusing on

more general queries, answers can still be counterintuitive, as shown in the following

example.
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Example 2

Consider the data exchange setting S = 〈S,T,Σst,Σt〉, where S stores employees of a

company in the unary relation Emp. For some employees, the city they live in is known,

and it is stored in the binary relation KnownC. The target schema T contains the binary

relation EmpC, storing employees and the cities they live in, and the binary relation

SameC, storing pairs of employees living in the same city. The sets Σst = {ρ1, ρ2} and

Σt = {ρ3, η} are as follows (for simplicity, we omit the universal quantifiers):

ρ1 = Emp(x) → ∃z EmpC(x, z),

ρ2 = KnownC(x, y) → EmpC(x, y),

ρ3 = EmpC(x, y), EmpC(x′, y) → SameC(x, x′),
η = EmpC(x, y), EmpC(x, z) → y = z.

The above setting copies employees from the source to the target. The TGD ρ1 states

that every copied employee x must have some city z associated, whereas ρ2 states that

when the city y of an employee x is known, this should be copied as well. Moreover,

the target schema requires that employees living in the same city should be stored in

relation SameC (ρ3), and each employee must live in only one city (η). Assume the source

instance is

I = {Emp(john),Emp(mary),KnownC(john,miami)},
and consider the query Q that asks for all pairs of employees living in different cities.

This can be written as:

Q(x, x′) = ∃y∃y′ EmpC(x, y) ∧ EmpC(x′, y′) ∧ ¬SameC(x, x′).

One would expect that the set of certain answers to Q is empty, since it is not certain

that john and mary live in different cities. However, no CWA-solution admits mary and

john to live in the same city, and thus (john,mary) is a certain answer under the CWA-

solution-based semantics.

The approach of (Hernich 2011), where the notion of GCWA∗-solution is presented,

seems to be the most promising one. For positive queries, certain answers w.r.t. GCWA∗-
solutions coincide with certain answers w.r.t. classical solutions. Moreover, GCWA∗-
solutions solve some other limitations of CWA-solutions, like the one discussed in

Example 2. However, the practical applicability of this semantics is somehow limited,

since the (rather involved) construction of GCWA∗-solutions easily makes certain query

answering undecidable, even for very simple settings with only two source-to-target

TGDs, and no target dependencies.

Other semantics have been proposed in (Libkin and Sirangelo 2011), but they are

only defined for data exchange settings without target dependencies. Hence, one needs

to assume that the target schema has no dependencies at all.

As a final remark, in a data exchange setting, it might be the case that the source

is not always available, and thus the materialization of a single solution, over which

certain answers can be computed, is a desirable requirement. This is especially true when

using weakly-acyclic dependencies, which form the standard language for data exchange

(Fagin et al . 2005). However, none of the semantics above allow for the materialization

of such a special solution, for weakly-acyclic settings.
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In this paper, we propose a new notion of data exchange solution, dubbed supported

solution, which allows us to deal with general queries, but at the same time is suitable for

practical applications. That is, we show that certain answers under supported solutions

naturally generalize certain answers under classical solutions, when focusing on positive

queries. Moreover, such solutions do not make any assumption on how values associated

to existential variables compare to other values, hence solving issues like the ones of

Example 2.

As expected, there is a price to pay to get meaningful answers over general queries:

we show that certain answering is undecidable for general settings, but it becomes

coNP-complete when we focus on weakly-acyclic dependencies.

Moreover, we show that exact answers under supported solutions for general queries in

weakly-acyclic settings can be computed via an encoding into logic programming with the

well-known choice construct, allowing one to use efficient off-the-shelf reasoning systems.

Finally, we also show that if one is not willing to incur the high complexity of exact cer-

tain answers for weakly-acyclic settings, then it is possible to construct a target instance

in polynomial time, which is similar in spirit to a universal solution of (Fagin et al . 2005),

that can be exploited for computing exact answers, for positive queries, and approximate

answers, for general FO queries, in polynomial time. The latter is achieved by adapting

existing approximation algorithms originally defined for querying incomplete databases.

2 Preliminaries

Basics. We consider pairwise disjoint countably infinite sets Const, Var, and Null of

constants, variables, and labeled nulls, respectively. Nulls are denoted by the symbol ⊥,

possibly subscripted. A term is a constant, a variable, or a null. We additionally assume

the existence of a countably infinite set Rel of relations, disjoint from the previous ones.

A relation R has an arity, denoted ar(R), which is a non-negative integer. We also use

R/n to say that R is a relation of arity n. A schema is a set of relations. A position is

an expression of the form R[i], where R is a relation and i ∈ {1, . . . , ar(R)}.
An atom α (over a schema S) is of the form R(t), where R is an n-ary relation (of S) and

t is a tuple of terms of length n. We use t[i] to denote the i-th term in t, for i ∈ {1, . . . , n}.
An atom without variables is a fact. An instance I (over a schema S) is a finite set of

facts (over S). A database D is an instance without nulls. For a set of atoms A, dom(A)

is the set of all terms in A, whereas var(A) is the set dom(A) ∩ Var. A homomorphism

from a set of atoms A to a set of atoms B is a function h : dom(A) → dom(B) that is

the identity on Const, and such that for each atom R(t) = R(t1, . . . , tn) ∈ A, R(h(t)) =

R(h(t1), . . . , h(tn)) ∈ B.

Dependencies. A TGD ρ (over a schema S) is a FO formula of the form ∀x,yϕ(x,y) →
∃zψ(y, z), where x,y, z are disjoint tuples of variables, and ϕ and ψ are conjunctions

of atoms (over S) without nulls, and over the variables in x,y and y, z, respectively.

The body of ρ, denoted body(ρ), is ϕ(x,y), whereas the head of ρ, denoted head(ρ), is

ψ(y, z). We use exvar(ρ) to denote the tuple z and fr(ρ) to denote the tuple y, also

called the frontier of ρ. An EGD η (over a schema S) is a FO formula of the form

∀xϕ(x) → x = y, where x is a tuple of variables, ϕ a conjunction of atoms (over S)

without nulls, and over x, and x, y ∈ x. The body of η, denoted body(η), is ϕ(x), and the
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head of η, denoted head(η), is the equality x = y. For clarity, we will omit the universal

quantifiers in front of dependencies and replace the conjunction symbol ∧ with a comma.

Moreover, with a slight abuse of notation, we sometimes treat a conjunction of atoms

as the set of its atoms. Consider an instance I. We say that I satisfies a TGD ρ if for

every homomorphism h from body(ρ) to I, there is an extension h′ of h such that h′ is a
homomorphism from head(ρ) to I. We say that I satisfies an EGD η = ϕ(x) → x = y,

if for every homomorphism h from body(η) to I, h(x) = h(y). I satisfies a set of TGDs

and EGDs Σ if I satisfies every TGD and EGD in Σ.

Queries. A query Q(x), with free variables x, is a FO formula ϕ(x) with free variables x.

The arity of Q(x), denoted ar(Q), is the number |x|. The output of Q(x) over an instance

I, denoted Q(I), is the set {t ∈ dom(I)|x| | I |= ϕ(t)}, where |= is FO entailment.1 A

query is Boolean if it has arity 0, in which case its output over an instance is either

the empty set or the empty tuple 〈〉. A conjunctive query (CQ) is a query of the form

Q(x) = ∃yϕ(x,y), where ϕ(x,y) is a conjunction of atoms over x and y. A union of

conjunctive queries (UCQs) is a query of the form Q(x) =
∨n

i=1Qi(x), where each Qi(x)

is a CQ. We refer to UCQs also as positive queries.

Data Exchange Settings. A data exchange setting (or simply setting) is a tuple of

the form S = 〈S,T,Σst,Σt〉, where S,T are disjoint schemas, called source and target

schema, respectively; Σst is a finite set of TGDs, called the source-to-target TGDs of S,
such that for each TGD ρ ∈ Σst, body(ρ) is over S and head(ρ) is over T; Σt is a finite set

of TGDs and EGDs over T, called the target dependencies of S. We say S is TGD-only

if Σt contains only TGDs.

A source (resp., target) instance of S is an instance I over S (resp., T). We assume

that source instances are databases, that is, they do not contain nulls. Given a source

instance I of S, a solution of I w.r.t. S is a target instance J of S such that I ∪ J

satisfies Σst and J satisfies Σt (Fagin et al . 2005). We use sol(I,S) to denote the set of

all solutions of I w.r.t. S.
Given a data exchange setting S = 〈S,T,Σst,Σt〉, a source instance I of S and a

query Q over T, the certain answers to Q over I w.r.t. S is the set certS(I,Q) =⋂
J∈sol(I,S)Q(J).

To distinguish between the notion of solution (resp., certain answers) above and the

one defined in Section 3, we will refer to the former as classical.

A universal solution of I w.r.t. S is a solution J ∈ sol(I,S) such that, for every

J ′ ∈ sol(I,S), there is a homomorphism from J to J ′ (Fagin et al . 2005). Letting Q(J)↓ =

Q(J)∩Const|x|, for any instance J and query Q(x), the following result from (Fagin et al .

2005) is well-known:

Theorem 1

Consider a data exchange setting S, a source instance I of S, and a positive query Q. If

J is a universal solution of I w.r.t. S, then certS(I,Q) = Q(J)↓.

3 Semantics for general queries

The goal of this section is to introduce a new notion of solution for data exchange

that we call supported. As already discussed, the main issue we want to solve w.r.t.

1 We assume active domain semantics, that is, quantifiers range over the terms in the given instance.
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classical solutions is that such solutions are too permissive, that is, they allow for the

presence of facts that are not a certain consequence of the source instance and the

dependencies. Consider again Example 1. The (classical) solution J ′ in Example 1 is

not supported, since from the source instance I and the dependencies, we cannot con-

clude that the fact Paid(2) should occur in the target. On the other hand, the solution

J = {AllOrd(1),AllOrd(2),Paid(1)} is supported: it contains precisely the facts supported

by I and the dependencies, and no more than that. Similarly, considering Example 2,

the instance J = {EmpC(john,miami), EmpC(mary, chicago), SameC(john,mary)} is a so-

lution, but it is not supported, since from the source and the dependencies we cannot

certainly conclude that john and mary live in the same city. We now formalize the above

intuitions.

Consider a TGD ρ and a mapping h from the variables of ρ to Const. We say that a

TGD ρ′ is a ground version of ρ (via h) if ρ′ = h(body(ρ)) → h(head(ρ)).

Definition 1 (ex-choice)

An ex-choice is a function γ, that given as input a TGD ρ = ϕ(x,y) → ∃zψ(y, z) and a

tuple t ∈ Const|y|, returns a set γ(ρ, t) of pairs of the form (z, c), one for each existential

variable z ∈ exvar(ρ), where c is a constant of Const.

Note that if ρ does not contain existential variables, γ(ρ, t) is the empty set.

Intuitively, given a TGD, an ex-choice specifies a valuation for the existential variables

of the TGD which depends on a given valuation of its frontier variables.

We now define when a ground version of a TGD indeed assigns existential variables

according to an ex-choice .

Definition 2 (Coherence)

Consider a TGD ρ = ϕ(x,y) → ∃zψ(y, z), an ex-choice γ and a ground version ρ′ of
ρ via some mapping h. We say that ρ′ is coherent with γ if for each existential variable

z ∈ exvar(ρ), (z, h(z)) ∈ γ(ρ, h(y)).

For a set Σ of TGDs and EGDs, and an ex-choice γ, Σγ denotes the set of dependencies

obtained from Σ by replacing each TGD ρ in Σ with all ground versions of ρ that are

coherent with γ. Note that the set Σγ can be infinite. We are now ready to present our

notion of solution.

Definition 3 (Supported Solution)

Consider a setting S = 〈S,T,Σst,Σt〉 and a source instance I of S. A target instance J

of S is a supported solution of I w.r.t. S if there exists an ex-choice γ such that I ∪ J
satisfies Σγ

st and J satisfies Σγ
t , and there is no other target instance J ′ � J of S such

that I ∪ J ′ satisfies Σγ
st and J

′ satisfies Σγ
t .

Note that a supported solution contains no nulls. We use ssol(I,S) to denote the set

of all supported solutions of I w.r.t. S.
Example 3

Consider the data exchange setting S and the source instance I of Example 2. The

target instance J = {EmpC(john,miami),EmpC(mary, chicago)} is a supported solution

of I w.r.t. S. Indeed, consider the ex-choice γ such that γ(ρ1, john) = {(z,miami)}, and
γ(ρ1,mary) = {(z, chicago)}. Then, Σγ

st is
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{KnownC(α, β) → EmpC(α, β) | α, β ∈ Const}∪
{Emp(α) → EmpC(α, β) | α ∈ Const ∧ (z, β) ∈ γ(ρ1, α)},

whereas Σγ
t is the set containing the EGD η of Example 2, and the set of TGDs

{EmpC(α, β),EmpC(α′, β) → SameC(α, α′) | α, α′, β ∈ Const}.
Clearly, I ∪ J satisfies Σγ

st, and J satisfies Σγ
t , and any other strict subset J ′ of J is

such that I ∪J ′ does not satisfy Σγ
st. Another supported solution is {EmpC(john,miami),

EmpC(mary,miami), SameC(john,mary)}.
With the notion of supported solution in place, it is now straightforward to define the

supported certain answers.

Definition 4 (Supported Certain Answers)

Consider a data exchange setting S, a source instance I of S, and a query Q over T.

The supported certain answers to Q over I w.r.t. S is the set of tuples scertS(I,Q) =⋂
J∈ssol(I,S)Q(J).

Example 4

Consider the data exchange setting S, the source instance I, and the query Q of Ex-

ample 1. It is not difficult to see that the only supported solution of I w.r.t. S is the

instance

J = {AllOrd(1),AllOrd(2),Paid(1)}.
Thus, the supported certain answers to Q over I w.r.t. S are scertS(I,Q) = Q(J) = {2}.
Consider now the data exchange setting S, the source instance I, and the query Q of

Example 2. Then, one can verify that scertS(I,Q) = ∅.
We now start establishing some important results regarding supported solutions and

supported certain answers. The following theorem states that supported solutions are a

refined subset of the classical ones, but whether a supported solution exists is still tightly

related to the existence of a classical one.

Theorem 2

Consider a data exchange setting S. For every source instance I of S, it holds that:
1. ssol(I,S) ⊆ sol(I,S), and
2. ssol(I,S) = ∅ iff sol(I,S) = ∅.

Proof

Item 1 follows by definition. For proving Item 2, it suffices to show that sol(I,S) �= ∅
implies ssol(I,S) �= ∅. Let S = 〈S,T,Σst,Σt〉 and consider a solution J ∈ sol(I,S). We

construct from J a supported solution Ĵ in ssol(I,S). Let J ′ be one of the minimal subsets

of J such that J ′ is still a solution of sol(I,S). Moreover, let Ĵ be the instance obtained

from J ′, where each null ⊥ in J ′ is replaced with a new constant c⊥ not occurring

in Σst ∪ Σt and J ′. Since Ĵ and J ′ are the same instance, up to null renaming, we

conclude that Ĵ is also a solution in sol(I,S). To see that Ĵ is a supported solution,

consider the following ex-choice γ. For every TGD ρ ∈ Σst ∪ Σt, and every tuple t of

constants such that there exists a homomorphism h from body(ρ) to Ĵ , and t = h(fr(ρ)),

let γ(ρ, t) = {(z, h(z)) | z ∈ exvar(ρ)}. By construction of γ, I ∪ Ĵ satisfies Σγ
st, and Ĵ
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satisfies Σγ
t . Since Ĵ is minimal, that is, for every J ′′ � Ĵ , J ′′ �∈ sol(I,S), from Item 1

of this claim, every J ′′ � J is such that J ′′ �∈ ssol(I,S), that is, either I ∪ J ′′ does not

satisfy Σγ
st or J

′′ does not satisfy Σγ
t . Thus, Ĵ is a supported solution of ssol(I,S), and

the claim follows.

Regarding certain answers, we show that supported solutions indeed enjoy an impor-

tant property: supported certain answers and classical certain answers coincide, when

focusing on positive queries. Note that this does not necessarily follow from Theorem 2.

Theorem 3

Consider a setting S = 〈S,T,Σst,Σt〉 and a positive query Q over T. For every source

instance I of S, scertS(I,Q) = certS(I,Q).

Proof

The fact that certS(I,Q) ⊆ scertS(I,Q), follows from Item 1 of Theorem 2. To prove

that scertS(I,Q) ⊆ certS(I,Q), assume t �∈ certS(I,Q), which means that there exists a

solution J of I w.r.t. S such that t �∈ Q(J). Since Q is positive, and hence monotone,

t �∈ Q(J) iff t �∈ Q(J ′), where J ′ is one of the minimal subsets of J such that J ′ is still

a solution of I w.r.t. S. Let Ĵ be the instance obtained from J ′, where each null ⊥ in

J ′ is replaced with a new constant c⊥ not occurring in t, Q, Σst ∪ Σt, and J
′. With a

similar discussion to the one given in the proof of Theorem 2, we conclude that Ĵ is a

supported solution of I w.r.t. S. Since Q is positive, and since t and Q do not contain

any of the constants introduced in J ′, we conclude that t �∈ Q(Ĵ), which implies that

t �∈ scertS(I,Q), and the claim follows.

From the above, we conclude that for positive queries, certain query answering can be

performed as done in the classical setting, and thus all important results from that

setting, like query answering via universal solutions, carry over.

Corollary 1

Consider a setting S = 〈S,T,Σst,Σt〉 and a positive query Q over T. If J is a (classical)

universal solution of I w.r.t. S, then scertS(I,Q) = Q(J)↓.

Proof

It follows from Theorems 1 and 3.

We now move to the complexity analysis of the two most important data exchange

tasks: deciding whether a supported solution exists, and computing the supported certain

answers to a query.

4 Complexity

In data exchange, it is usually assumed that a setting S does not change over time, and

a given query Q is much smaller than a given source instance. Thus, for understanding

the complexity of a data exchange problem, it is customary to assume that S and Q

are fixed, and only I is considered in the complexity analysis, that is, we consider the

data complexity of the problem. Hence, the problems we are going to discuss will always

be parametrized via a setting S, and a query Q (for query answering tasks). The first
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problem we consider is deciding whether a supported solution exists; S is a fixed data

exchange setting.

PROBLEM : EXISTS-SSOL(S)
INPUT : A source instance I of S.
QUESTION : Is ssol(I,S) �= ∅?

The above problem is very important in data exchange, as one of the main goals is to

actually construct a target instance that can be exploited for query answering purposes.

Hence, knowing in advance whether at least a supported solution exists is of paramount

importance.

Thanks to Item 2 of Theorem 2, all the complexity results for checking the existence

of a classical solution can be directly transferred to our problem.

Theorem 4

There exists a data exchange setting S such that EXISTS-SSOL(S) is undecidable.

Proof

It follows from Theorem 2 and from the fact that there exists a data exchange setting

S such that checking whether a classical solution exists is undecidable (Kolaitis et al .

2006).

Despite the negative result above, we also inherit positive results from the literature,

when focusing on some of the most important data exchange scenarios, known as weakly-

acyclic. Such settings only allow target TGDs to belong to the language of weakly-acyclic

TGDs, which have been first introduced in the seminal paper (Fagin et al . 2005), and is

now well-established as the main language for data exchange purposes.

We start by introducing the notion of weak-acyclicity. We recall that for a schema S,

pos(S) denotes the set of all positions R[i], where R/n ∈ S and i ∈ {1, . . . , n}, and for a

TGD ρ = ϕ(x,y) → ∃zψ(y, z), fr(ρ) denotes the tuple y.

Definition 5 (Dependency Graph (Fagin et al. 2005))

Consider a set Σ of TGDs over a schema S. The dependency graph of Σ is a directed

graph dg(Σ) = (N,E), where N = pos(S) and E contains only the following edges. For

each ρ ∈ Σ, for each x ∈ fr(ρ), and for each position π in body(ρ) where x occurs:

• there is a normal edge (π, π′) ∈ E, for each position π′ in head(ρ) where x occurs, and

• there is a special edge (π, π′) ∈ E, for each position π′ in head(ρ) where an existentially

quantified variable z ∈ exvar(ρ) occurs.

Definition 6

A set of TGDs Σ is weakly-acyclic if no cycle in dg(Σ) contains a special edge. A data

exchange setting 〈S,T,Σst,Σt〉 is weakly-acyclic if the set of TGDs in Σt is weakly-acyclic.

Example 5

The settings of Examples 1 and 2 are weakly-acyclic, whereas the data exchange setting

S = 〈S,T,Σst,Σt〉, where S = {S/2}, T = {T/2}, Σst = {S(x, y) → T (x, y)}, and
Σt = {T (x, y) → ∃z T (y, z)} is not, since (T [2], T [2]) is a special edge in dg(Σt).

The following result follows.
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Theorem 5

For every weakly-acyclic data exchange setting S, EXISTS-SSOL(S) is in PTIME.

Proof

It follows from Theorem 2 and (Fagin et al . 2005, Corollary 3.10).

We now move to the second crucial task: computing supported certain answers. Since

this problem outputs a set, it is standard to focus on its decision version. For a fixed data

exchange setting S and a fixed query Q, we consider the following decision problem:

PROBLEM : SCERT(S, Q)

INPUT : A source instance I of S and a tuple t ∈ Constar(Q).

QUESTION : Is t ∈ scertS(I,Q)?

One can easily show that the above problem is logspace equivalent to the one of

computing the supported certain answers.

We start by studying the problem in its full generality, and show that there is a price

to pay for query answering with general queries.

Theorem 6

There exists a data exchange setting S = 〈S,T,Σst,Σt〉, with Σt having only TGDs, and

a query Q over T, such that SCERT(S, Q) is undecidable.

Proof

We provide a polynomial-time reduction from the Embedding Problem for Finite Semi-

groups EMB (Kolaitis et al. 2006). The reduction is an adaptation of the one used for

proving Proposition 6.1 in (Hernich et al . 2011). Inputs of EMB are pairs of the form A, f ,

where A is a finite set, and f is a partial function of the form f : A×A→ A. The question

is whether there exists a finite set B ⊇ A, and a total function g : B×B → B, such that

g is associative,2 and g extends f , that is, whenever f(a, b) is defined, g(a, b) = f(a, b).

Let us first introduce some notation. Consider a finite set A and a partial function

f : A×A→ A. We define the instance:

IA,f = {F(a, b, c) | a, b, c ∈ A and f(a, b) = c}.
Consider now the data exchange setting S = 〈S,T,Σst,Σt〉, where S = {F/3} and

T = {G/3}. Intuitively, the relation F collects all the triples a, b, c such that f(a, b) = c,

whereas the relation G collects all the triples of the extended associative function g. The

sets Σst and Σt are defined as Σst = {F(x, y, z) → G(x, y, z)} and Σt = {G(x, y, z) →
∃x′, y′, z′ G(x′, y′, z′) ∧ Aux(x, y, z)}. Roughly Σst is in charge of forcing the function

stored in G to be an extension of the function stored in F, whereas Σt is in charge of

adding additional entries to G.

The difference with the construction of (Hernich et al . 2011) is in the set Σt. Here, the

head of the only TGD in Σt has an additional auxiliary atom Aux(x, y, z). Intuitively,

since the set Σt is in charge of extending the function defined by the relation F by intro-

ducing additional terms, in order for these terms to be actually introduced in a supported

2 A total function g : B ×B → B is associative if for every a, b, c ∈ B, g(g(a, b), c) = g(a, g(b, c)).
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solution, we require that every body variable is also a frontier variable. Regarding our

query Q, it is the same as the one in (Hernich et al . 2011). Hence, instead of giving the

precise expression of Q, we only describe its properties. The query Q over T = {G/3} is a

Boolean query which is true (i.e., the empty tuple is its only output) if either G does not

encode a function, that is, it maps the same pair (a, b) to different terms, or G does not

encode an associative function, or G does not encode a total function. In other words, Q

checks whether G does not encode a solution for EMB.

We are now ready to present the reduction. Let A be a finite set and f : A × A → A

be a partial function. The reduction constructs the source instance IA,f and the empty

tuple t = (). Clearly, IA,f can be constructed in polynomial time w.r.t. |I|. It remains to

show that A, f is a “yes”-instance of EMB iff t �∈ scertS(IA,f , Q).

(Only if direction) Assume t �∈ scertS(IA,f , Q). Then, there exists a supported solution

J ∈ ssol(IA,f ,S) of IA,f w.r.t. S such that t �∈ Q(J). By definition of supported solution,

J is finite and it only contains atoms with relation G. Thus, by definition of S, t �∈ Q(J)

implies that J necessarily encodes an extension of f , which is also total and associative.

(If direction) Assume A, f is a “yes”-instance of EMB, and let B ⊇ A be a finite set,

and g : B × B → B be the total associative function that extends f . Then, consider

the instance J over T defined as J = {G(a, b, c) | a, b, c ∈ B and g(a, b) = c}. It is not

difficult to verify that J is a supported solution of IA,f w.r.t. S. Finally, by construction

of J , t �∈ Q(J) as needed.

Although the complexity result above tells us that computing supported certain an-

swers might be infeasible in some settings, we can show that for weakly-acyclic settings,

the complexity is more manageable. In particular, we prove that in this case, the prob-

lem is in coNP and that this complexity bound is tight (i.e., there exist weakly-acyclic

settings and queries for which the problem is coNP-hard). We first focus on the upper

bound.

Theorem 7

For every weakly-acyclic setting S and every query Q, SCERT(S, Q) is in coNP.

Proof

We provide a non-deterministic polynomial-time procedure for solving the complement

of the problem SCERT(S, Q), when S is a weakly-acyclic data exchange setting. That

is, given a source instance I of S and a tuple t ∈ Constar(Q), the procedure non-

deterministically constructs a supported solution J∗ of I w.r.t. S (if one exists), and

checks whether t �∈ Q(J∗). Let S = 〈S,T,Σst,Σt〉, and consider a source instance I of S,
a query Q over T, and a tuple t ∈ Constar(Q).

The procedure is defined in two parts. The first part is in charge of non-

deterministically constructing a supported solution J∗. If the procedure was not able

to construct a supported solution (i.e., no such solution exists, or it followed a wrong

computation path), the procedure sets J∗ = ⊥. The second part simply verifies whether

either J∗ = ⊥, in which case it rejects, or it checks whether t �∈ Q(J∗), in which case

accepts, otherwise rejects. The second part can be easily implemented by a deterministic

polynomial-time procedure; we now show the first procedure constructing J∗.
This procedure implements a variation of the so-called semi-oblivious chase algorithm;

we refer the reader to (Marnette 2009) for more details. In the following, for each TGD

ρ ∈ Σst ∪ Σt, let Chosenρ be a fresh relation, not occurring in S ∪ T, of arity |fr(ρ)|.
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1. Let J0 = I, and let the current step be i = 0.

2. If Ji does not satisfy the EGDs in Σt, then let J∗ = ⊥ and halt;

3. If Ji satisfies the EGDs in Σt, and no TGD ρ ∈ Σst ∪ Σt and homomorphism h from

body(ρ) to Ji exist such that Chosenρ(h(fr(ρ))) �∈ Ji, then let J∗ be Ji after removing

all atoms over S and the atoms using the Chosen predicates, and halt.

4. Otherwise, guess a TGD ρi ∈ Σst ∪ Σt and a homomorphism hi from body(ρi) to Ji
such that Chosenρi

(hi(fr(ρi))) �∈ Ji, and guess an extension h′i of hi such that, for each

z ∈ exvar(ρi), h
′
i(z) = ciz, where either ciz is a constant occurring in one of S, I, Q,

or a fresh new constant. Finally, let Ji+1 = Ji ∪ h′i(head(ρi)) ∪ {Chosenρi
(hi(fr(ρi)))}.

Let i := i+ 1 and goto 2.

To show that the procedure above terminates after a polynomial number of steps, we

can use a similar argument to the one given for proving Theorem 3.9 in (Fagin et al .

2005). We now show that, for every target instance J of S, a run of the above procedure

halting with J∗ = J exists iff J is a supported solution of I w.r.t. S, and the claim will

follow. We focus on one of the two directions, as the other direction can be proved in a

similar way.

Assume there is a run of n steps of the procedure above with J∗ = J , for some target

instance J of S, and let ρi, hi, and c
i
z, for z ∈ exvar(ρi) be the TGD, homomorphism,

and constants guessed at step i in the run. Let γ be the ex-choice such that, for each

i ∈ {1, . . . , n}, γ(ρi, hi(fr(ρi))) = {(z, ciz) | z ∈ exvar(ρi)}. The fact that γ is indeed an ex-

choice follows from the fact that at each step i ∈ {1, . . . , n}, a constant ciz is introduced

only if Chosenρi
(hi(fr(ρi))) �∈ Ji, which in turn implies that no constant has been chosen

at some step j < i, where hj(fr(ρj)) = hi(fr(ρi)). By definition of the procedure, J is

the instance obtained from Jn where all the atoms with relations in S or of the form

Chosenρ are removed. Hence, by construction, I ∪ J satisfies Σγ
st and J satisfies all the

TGDs in Σγ
t . Since J �= ⊥, J also satisfies the EGDs in Σγ

t . Moreover, no J ′ � J is such

that I ∪ J ′ satisfies Σγ
st and J ′ satisfies Σγ

t . If this is the case, let α ∈ J \ J ′, and let

i ∈ {1, . . . , n} be the step in the above run where α is added in Ji+1. Then, the TGD

ρ′ = hi(ρi) → h′i(head(ρi)) is in Σγ
st ∪ Σγ

t , by construction of γ. However J ′ does not

satisfy ρ′. The latter, together with the previous discussion implies that J is a supported

solution of I w.r.t. S.
We point out that the above result is in contrast with all the data exchange semantics

discussed in the introduction, for which computing certain answers is undecidable, even

for weakly-acyclic settings (Hernich et al . 2011; Hernich 2011).

We now move to the lower bound and show that the coNP upper bound is tight.

Theorem 8

There exists a weakly-acyclic setting S that is TGD-only and a query Q such that

SCERT(S, Q) is coNP-hard.

Proof

The coNP-hardness is proved via a reduction from 3-colorability to the complement of

our problem. We encode the input graph G = (V,E) as the instance

IG = {V(u) | u ∈ V } ∪ {Es(u, v) | (u, v) ∈ E}∪
{Col(c) | c ∈ {r, g, b}}.
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Colorings are constructed in the setting S = 〈S,T,Σst,Σt〉, via the source-to-target TGDs

(Σt is empty):

ρ1 = Col(x) → Colt(x),

ρ2 = Es(x, y) → Et(x, y),

ρ3 = V(x) → ∃zHasC(x, z),
where Colt collects all colors, Et contains the edges of the graph in the target schema,

and HasC assigns a term to each node of the graph.

The Boolean query Q = Q1 ∨Q2 is true over an instance of the target schema iff the

instance does not encode a valid 3-coloring. In particular, Q1 checks whether the “color”

used for some node differs from r, g, b:

Q1 = ∃x, yHasC(x, y) ∧ ¬Colt(y),
whereas Q2 checks whether the nodes of an edge have the same color:

Q2 = ∃x, y, z Et(x, y) ∧ HasC(x, z) ∧ HasC(y, z).

We prove that G admits a 3-coloring iff t = () �∈ scertS(IG, Q).

(Only if direction) Assume G admits a 3-coloring μ and consider the instance

J = {HasC(v, μ(v)) | v ∈ V } ∪ {Et(u, v) | (u, v) ∈ E} ∪ {Colt(c) | c ∈ {r, g, b}}.
It is not difficult to see that J is a supported solution of IG w.r.t. S. Clearly, t �∈ Q(J)

and the claim follows.

(If direction) Assume that G does not admit a 3-coloring, and consider an arbitrary

supported solution J of IG w.r.t. S. Note that for every edge (u, v) ∈ E, we have that

Et(u, v) ∈ J and HasC(u, c1),HasC(v, c2) ∈ J , for some constants c1, c2. We distinguish

two cases. Assume that there is an edge (u, v) ∈ E such that c1 �∈ {r, g, b} or c2 �∈ {r, g, b}.
Thus, t ∈ Q1(J) which implies t ∈ Q(J). Assume now that for every edge (u, v) ∈ E,

c1, c2 ∈ {r, g, b}. Thus, since G does not admit a 3-coloring, for at least one edge (u, v) ∈
E, c1 = c2. Hence, t ∈ Q2(J), which implies that t ∈ Q(J) and the claim follows.

We point out that the query employed in the proof of the above theorem is a simple

Boolean combination of CQs. This kind of FO queries have been studied in the con-

text of incomplete databases, for example, see (Gheerbrant and Libkin 2015). However,

differently from the incomplete databases setting, where such queries guarantee query

answering in polynomial time, the complexity in our setting is higher, due to the presence

of TGDs; the latter is true even for weakly-acyclic TGDs, as shown by Theorem 8 above.

Similarly, arbitrary FO queries (e.g., involving also universal quantification) behave very

differently depending on the given setting. For example, according to Theorem 7, for

any FO query, supported certain answers remain in coNP, under weakly-acyclic settings,

while for arbitrary settings, the use of universal quantification makes supported certain

answering undecidable; the latter is a consequence of the proof of Theorem 6. Hence,

one cannot directly conclude much on the complexity of supported certain answers by

considering the query alone, as done for querying incomplete databases.

We conclude this section by recalling that for positive queries, supported certain an-

swers coincide with the classical ones (Theorem 3), and computing (classical) certain an-

swers for weakly-acyclic settings, under positive queries, is tractable (Fagin et al . 2005).

Hence, the result below follows.
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Corollary 2

For every weakly-acyclic setting S and every positive queryQ, SCERT(S, Q) is in PTIME.

5 Exact query answering via logic programming

In this section, we show how to compute supported certain answers exactly by means of a

translation into logic programming under the stable model semantics, that is, answer set

programming (ASP). First, we need to recall the syntax and semantics of logic programs.

In particular, we focus on a fragment of logic programs that is enough for our purposes,

which is Datalog with (possibly non-stratified) negation, which means we do not allow

for function symbols or disjunctive rules.

Syntax. A literal L is an expression of the form α or ¬α, where α is either an atom

without nulls, or the expression t1 = t2, where t1, t2 are variables or constants; we write

t1 �= t2 for ¬t1 = t2. We say that L is positive (resp., negative) if L = α (resp., L = ¬α).
If a literal contains no variables, it is said to be ground.

A rule r is an expression of the form

H :- A1, . . . , An,¬B1, . . . ,¬Bm.

with n ≥ 0, m ≥ 0, and where H is either a positive literal or the symbol ⊥, A1, . . . , An

are positive literals, and ¬B1, . . . ,¬Bm are negative literals. We denote head(r) = {H}
as the head of r, while body(r) = {A1, . . . , An,¬B1, . . . ,¬Bm} is the body of r; we use

body+(r) to denote {A1, . . . , An}, and body−(r) to denote {B1, . . . , Bm}. If H = ⊥, we

say that r is a constraint. If m = 0, we say the rule is positive; if r contains no variables,

it is said to be ground. We say the rule r is safe if every variable in the rule occurs in

some literal of body+(r). We will require every rule to be safe (besides being a common

requirement, safe rules suffice for our purposes).

As customary, we will consider two kinds of sets of rules:

1. finite sets of rules of the form H :- , with H �= ⊥ (notice that such rules must be

ground because of safety), which are commonly used to represent databases – a set

of this kind will be called an extensional database;

2. finite sets of rules of any other form – a set of this kind will be called a program.

Semantics. Let P be a program and ED an extensional database. We will often use

PED to denote the set P ∪ ED . The Herbrand universe of PED , denoted U(PED), is the

set of all constants occurring in PED . The Herbrand base of PED , denoted base(PED),

is the set of all atoms that can be built using relations and constants occurring in PED .

A ground version of a rule r ∈ PED is a ground rule r′ that can be obtained from r by

replacing all occurrences of each variable x of r with some constant from U(PED).

The grounding of PED , denoted ground(PED), is the set of rules obtained from PED

by replacing each rule r ∈ PED with all its ground versions.

We say that an instance I satisfies a ground positive literal L if either L is of the form

α = β and α and β are the same constant, or L is an atom occurring in I. Furthermore,

we say that I satisfies a ground negative literal ¬L, if I does not satisfy L. Finally,

I satisfies a set of ground literals if I satisfies each literal in it.
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Consider a rule r ∈ ground(PED) and an instance I. We say that I satisfies r if, either

r is a constraint and I does not satisfy body(r), or I satisfies body(r) implies that I

satisfies head(r) (notice that an empty body is always satisfied).

A model of PED is an instance M such that M ⊆ base(PED) and such that M satisfies

each rule of ground(PED). We say that M is minimal if there is no other model M ′ of P
such that M ′ �M . We use MM(PED) to denote the set of all minimal models of P.

The reduct of PED w.r.t. some instance I is the set of ground rules obtained from

ground(PED) by removing each rule r for which I does not satisfy body−(r), and by

removing all negative literals from the body of each rule r for which I satisfies body−(r).
An instance M is a stable model of PED if M ∈ MM(P ′

ED), where P ′
ED is the reduct

of PED w.r.t. M . We use SM(PED) to denote the set of all stable models of PED .

Cautious Reasoning. Consider an extensional database ED , a program P, and a query

Q. The cautious answers to Q over ED and P is the set:

cansP(ED , Q) =
⋂

M∈SM(PED )

Q(M).

The key task we are interested in, regarding logic programs, is computing cautious

answers. In particular, we are interested in its data complexity, that is, when the program

and the query are fixed; as usual, we focus on the decision version of the problem. In the

following, P and Q denote some program and some query, respectively:

PROBLEM : CANS(P, Q)

INPUT : An extensional database ED and a tuple t ∈ Constar(Q).

QUESTION : Is t ∈ cansP(ED , Q)?

It is well known that for every program P and every query Q, CANS(P, Q) is in coNP

– e.g., see (Greco et al . 1995).

The choice construct. We now extend logic programs with an additional construct,

called choice. We point out that extending logic programs with the choice is purely for

syntactic convenience, as this construct can be implemented by means of standard rules

with negation.

The choice construct has been introduced in Datalog in (Saccà and Zaniolo 1990),

studied in (Giannotti et al . 1991; Greco et al . 1995; Greco and Zaniolo 1998; Greco et al .

1992), and implemented in the Datalog systems LDL++ (Arni et al . 2003) and, in some

form, in recent ASP systems (e.g., Potassco (Gebser et al . 2011) and DLV (Alviano et al .

2010)). It is used to enforce functional dependency (FD) constraints on rules of a logic

program.

A choice rule r is an expression of the form

H :- A1, . . . , An,¬B1, . . . ,¬Bm, choice((X), (Y )).

where n, m, H, A1, . . . , An, and B1, . . . , Bm are all defined as for standard rules, while X

and Y denote disjoint sets of variables occurring in body(r).3 The original definition of

choice rule allows for multiple choice constructs in the rule body; here we focus on choice

rules with only one choice construct in the body as this is enough for our purposes.

3 When X (resp., Y ) is a singleton, we may use its only element in place of X (resp., Y ).
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Intuitively, the construct choice((X), (Y )) prescribes that the set of all consequences

derived from r must respect the FD X → Y .

The formal semantics of choice rules is given in terms of a translation to standard rules

using negation. In particular, the choice rule r defined above is a shorthand for writing

the following set of rules; in what follows, x and y are the tuples of all variables in X

and Y , respectively, in some arbitrary order.

r(1) : Ranger(y) :- A1, . . . , An,¬B1, . . . ,¬Bm.

r(2) : H :- A1, . . . , An,¬B1, . . . ,¬Bm,Chosenr(x,y).

r(3) : Chosenr(x,y) :- A1, . . . , An,¬B1, . . . ,¬Bm,¬DiffChoicer(x,y).
r
(4)
i : DiffChoicer(x,y) :- Chosenr(x,w),Ranger(y),y[i] �= w[i], ∀i ∈ {1, . . . , |Y |}.

In the above rules, Ranger, Chosenr, and DiffChoicer are fresh relations not occurring in

P, which are used only to rewrite the rule r.

5.1 Implementing supported certain answers via logic programming

with choice

The goal of this section is to prove the following key result.

Theorem 9

For every weakly-acyclic data exchange setting S = 〈S,T,Σst,Σt〉, and every query Q

over T, there exists a program P such that SCERT(S, Q) reduces to CANS(P, Q) in

polynomial time.

The rest of this section is devoted to prove the above claim. In particular, we show

how to convert a weakly-acyclic data exchange setting S = 〈S,T,Σst,Σt〉, together with
a source instance I of S and a query Q over T, into an extensional database ED and a

program P using choice rules, in such a way that P depends only on S and such that

scertS(I,Q) = cansP(ED , Q).

The main idea of the translation is to derive a program together with an extensional

database such that the stable models correspond to a subset of the supported solutions

that is enough for computing supported certain answers. For this, we rely on the following

useful result that one can extract from the proof of Theorem 7. For a set S of terms and

a set of instances I, we use I↓S to denote the set of instances {I ∈ I | dom(I) ⊆ S}.
Lemma 10

Consider a weakly-acyclic data exchange setting S = 〈S,T,Σst,Σt〉. There exists a poly-

nomial pol such that, for every source instance I of S, and every query Q over T, the

following holds:

scertS(I,Q) =
⋂

J∈ssol(I,S)↓S

Q(J),

where S is the set of all constants occurring in S, I and Q, plus some fixed, arbitrarily

chosen constants c1, . . . , cpol(|I|) not occurring anywhere in S, I, or Q.

Proof

The claim easily follows by construction of the non-deterministic procedure building the

instance J∗ in the proof of Theorem 7, from the fact that it terminates after a polynomial
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number of steps w.r.t. I, and the fact that it halts with J∗ �= ⊥ iff J∗ is a supported

solution in ssol(I,S).
The result above tells us that considering supported solutions of a certain polynomial

size suffices for computing supported certain answers. The stable models of the program

together with the extensional database we are going to define will correspond to such

supported solutions.

Definition 7 (Translation)

Consider a data exchange setting S = 〈S,T,Σst,Σt〉, a source instance I of S, a query Q

over T, and the set of constants S as defined in Lemma 10 w.r.t. S, I and Q.

We use LP(S) to denote the set consisting of the following rules.

1. For each TGD ρ of the form α1∧· · ·∧αn → ∃zβ1∧· · ·∧βm in Σst∪Σt, with y = fr(ρ),

if k = |z| = 0, the following rules are introduced:

βi :- α1, . . . , αn, i ∈ {1, . . . ,m}, (1)

otherwise, the following rules are introduced:

ExChoiceρ(y, z) :- α1, . . . , αn,Dom(z[1]), . . . ,Dom(z[k]), choice((Y ), (Z)), (2)

βi :- ExChoiceρ(y, z), i ∈ {1, . . . ,m}, (3)

where Y and Z are the sets of all variables in y and z, respectively, and Dom is a fresh

predicate.

2. For each EGD α1 ∧ · · · ∧ αn → x = y in Σt, the following constraint is introduced:

⊥ :- α1, . . . , αn, x �= y (4)

We use ED(S, I, Q) to denote the extensional database consisting of the following rules.

1. For each constant c ∈ S, the following rule is introduced:

Dom(c) :- . (5)

2. For each fact α ∈ I, the following rule is introduced:

α :- . (6)

Example 6

Considering the data exchange setting S and the source instance I of S from Example 2,

we have that LP(S) is the following logic program:

ExChoiceρ1
(x, z) :- Emp(x), Dom(z), choice((x), (z)).

EmpC(x, z) :- ExChoiceρ1
(x, z).

EmpC(x, y) :- KnownC(x, y).

SameC(x, x′) :- EmpC(x, y), EmpC(x′, y).
⊥ :- EmpC(x, y), EmpC(x, z), y �= z.

Intuitively, the choice rule associated to the TGD ρ1 is in charge of non-deterministically

assigning a certain value to the existential variables of ρ1, for each value its frontier

variables can take, that is, the choice rule essentially builds an ex-choice for ρ1. Once the
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ex-choice is constructed, the rule EmpC(x, z) :- ExChoiceρ1
(x, z) simply propagates these

choices to the head of ρ1, as needed. All other TGDs have no existential quantification,

and so use no choice construct. Finally, the only EGD η is converted to a constraint, so

that the stable models of the logic program satisfy η.

We are now ready to prove Theorem 9.

Proof of Theorem 9. Given an instance I over a schema S, and a schema S′ ⊆ S, we

use I[S′] to denote the restriction of I to only its facts referring to relations in S′. Notice
that for every query Q over S′, the following holds: Q(I) = Q(I[S′]).

Consider a data exchange setting S = 〈S,T,Σst,Σt〉, a source instance I of S, a query

Q over T, and the set of constants S as defined in Lemma 10 w.r.t. S, I, and Q.

Let P = LP(S) and ED = ED(S, I, Q).

We want to show cansP(ED , Q) = scertS(I,Q). Leveraging Lemma 10, we show that

{M [T] |M ∈ SM(PED)} = ssol(I,S)↓S .
(1) In the following, we show {M [T] |M ∈ SM(PED)} ⊆ ssol(I,S)↓S . Let X ∈ {M [T] |

M ∈ SM(PED)} and M be a stable model in SM(PED) such that X =M [T].

Let γ be an ex-choice defined as follows: given a TGD ρ = ϕ(x,y) → ∃zψ(y, z)
in Σst ∪ Σt and a tuple t ∈ Const|y|, γ returns a set γ(ρ, t) of pairs of the form

(zi, c), one for each existential variable zi ∈ z, where c is defined as follows: if

ExChoiceρ(t, c1, . . . , ck) ∈M , then c = ci, otherwise c is an arbitrary constant of S.

It is easy to see that U(PED) = S, and thus X contains only constants in S. Moreover,

I ∪ X satisfies Σγ
st, because otherwise M would not satisfy some ground version of the

rules derived from the TGDs in Σγ
st. Also, X satisfies Σγ

t , because otherwise M would

not satisfy some ground version of the rules derived from the TGDs/EGDs in Σγ
t .

Since every stable model is also a minimal model, the minimality of M ensures that

there is no J ′ � X such that I∪J ′ satisfies Σγ
st and J

′ satisfies Σγ
t . Thus,X is a supported

solution of I w.r.t. S containing only constants in S.

(2) We now show {M [T] | M ∈ SM(PED)} ⊇ ssol(I,S)↓S . Let J ∈ ssol(I,S)↓S and γ

be the ex-choice for which I∪J satisfies Σγ
st and J satisfies Σγ

t . Let X = I∪J∪{Dom(c) |
c ∈ S}. We show that X ∈ SM(PED).

First, X satisfies each ground rule in ground(P) of the form βi :- α1, . . . , αn (cf. (1) in

Definition 7), because otherwise the TGD of the form α1 ∧ · · · ∧ αn → β1 ∧ · · · ∧ βm in

Σγ
st or Σ

γ
t would not be satisfied by I ∪ J or J , respectively.

Also, X satisfies the ground rules in ground(P) of the form (2)–(3) in Definition 7,

derived from a TGD having existential variables, because otherwise such a TGD would

not be satisfied by either I ∪ J or J , or J would not be minimal.

Further,X satisfies each ground constraint of the form⊥ :- α1, . . . , αn, x �= y (cf. (4) in

Definition 7) in ground(P) as otherwise J would not satisfy the EGD α1∧· · ·∧αn → x = y

in Σγ
t .

Then, X satisfies each rule in ED of the form (5) of Definition 7 because {Dom(c) |
c ∈ S} ⊆ X.

Finally, X satisfies each rule in ED of the form (6) of Definition 7 because X

contains I.

By the minimality of J we obtain the minimality of X, and thus, X is a stable model

of PED . Noting that X[T] = J , we conclude that J ∈ {M [T] |M ∈ SM(PED)}. �

https://doi.org/10.1017/S1471068423000339 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000339


268 M. Calautti et al.

6 Approximate query answering via materialization

As already discussed in the introduction, there might exist scenarios where it is desir-

able to materialize a target instance starting from the source instance and the schema

mapping, in such a way that supported certain query answers can be computed by con-

sidering the target instance alone. The goal of this section is thus to study the problem

of materializing such an instance, when focusing on our notion of supported solutions.

It would be very useful if such a special target instance could be computed in

polynomial-time, already for weakly-acyclic settings. However, due to Theorem 8, this

would imply PTIME = coNP. Hence, we need something different.

We introduce a special instance that enjoys the following properties: the answers over

this instance are an approximation (i.e., a subset) of the supported certain answers for

general queries, but they coincide with supported certain answers for positive queries. We

also show that we can compute such an instance in polynomial time for weakly-acyclic

settings.

Our approach relies on conditional instances (Imielinski and Lipski 1984), which we

introduce in the following.

Conditional instances. A valuation ν is a mapping from Const ∪ Null to Const that is

the identity on Const. A condition φ is an expression that can be built using the standard

logical connectives ∧, ∨, ¬,⇒, and expressions of the form t = u, where t, u ∈ Const∪Null.
We will also use t �= u as a shorthand for ¬(t = u). We write ν |= φ to state that ν satisfies

φ, and φ |= ψ if all valuations satisfying φ satisfy the condition ψ. A conditional fact

is a pair 〈α, φ〉, where α is a fact and φ is a condition. A conditional instance I is a

finite set of conditional facts. We also denote I[1] = {α | 〈α, φ〉 ∈ I}. A possible world

of a conditional instance I is an instance I such that there exists a valuation ν with

I = {ν(α) | 〈α, φ〉 ∈ I and ν |= φ}. We use pw(I) to denote the set of all possible worlds

of I.
Definition 8

Consider a conditional instance I and a query Q. The conditional certain answers of Q

over I is the set con-cert(I, Q) =
⋂

J∈pw(I)Q(J).

We are now ready to introduce our main tool.

Definition 9 (Approximate Conditional Solution)

Consider a data exchange setting S and a source instance I of S. A conditional instance

J is an approximate conditional solution of I w.r.t. S, if for every query Q:

1. ssol(I,S) ⊆ pw(J ), and thus con-cert(J , Q) ⊆ scertS(I,Q), and

2. if Q is positive, con-cert(J , Q) = scertS(I,Q).

That is, an approximate conditional solution is a conditional instance that allows to

compute approximate answers for general queries, and exact answers for positive queries.

It is easy to observe that there are settings S = 〈S,T,Σst,Σt〉 and source instances I

for which an approximate conditional solution might not exist, even if S is weakly-acyclic.

This is due to the presence of EGDs in Σt.

However, for weakly-acyclic settings without EGDs, an approximate conditional so-

lution always exists, and we present a polynomial-time algorithm that is able to con-
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struct one. We show how to deal with general weakly-acyclic settings with EGDs in

Section 7.

The algorithm is a variation of the well-known chase algorithm, which iteratively in-

troduces new facts, starting from a source instance, whenever a TGD is not satisfied,

that is, it triggers the TGD. This variation also allows for a conditional triggering of

TGDs, where new atoms are introduced, under the condition that some terms in the

body coincide.

Normal TGDs. To simplify the discussion, we consider an extension of TGDs that

allow for equality predicates in the body. We will use these TGDs to rewrite standard

TGDs in the following normal form. A normal form TGD ρ is an expression of the form

ϕ(x,y) ∧ η(x,y) → ∃zψ(y, z), where ϕ and ψ are conjunctions of atoms, ϕ uses only

variables and each variable in ϕ occurs once in ϕ. The formula η is a conjunction of

equalities of the form x = t, where x is a variable in x or y, and t is either a variable in x

or y, or a constant. The above equalities denote which variables should be considered to

be the same and which positions should contain a constant. A (set of) standard TGDs

Σ can be converted in normal form in the obvious way. We denote norm(Σ) as the (set

of) TGDs in normal form obtained from Σ.

In the following, fix a conditional instance I, a TGD ρ with norm(ρ) = ϕ(x,y) ∧
η(x,y) → ∃zψ(y, z), and a homomorphism h from ϕ(x,y) to I[1]. We use h(η(x,y))

to denote the condition obtained from η(x,y) by replacing each variable x therein with

h(x). Letting h(ϕ(x,y)) = {α1, . . . , αn}, we use ΦI
ρ,h to denote the set of all conditions

of the form h(η(x,y)) ∧ φ1 ∧ · · · ∧ φn, such that 〈αi, φi〉 ∈ I, for each i ∈ {1, . . . , n}.
Example 7

Consider the TGD ρ3 of Example 2. The normal form TGD norm(ρ3) is

EmpC(x, y),EmpC(x′, y′), y = y′ → SameC(x, x′).

Consider now the conditional instance

I = {〈EmpC(john,miami),⊥1 = a〉, 〈EmpC(mary,⊥2), true〉},
where a is a constant. Then, the mapping h = {x/john, y/miami, x′/mary, y′/⊥2} is

a homomorphism from {EmpC(x, y),EmpC(x′, y′)} to I[1]. Moreover, ΦI
ρ3,h

= {⊥2 =

miami ∧ ⊥1 = a}.
We are now ready to define the notion of conditional chase step. In what follows, for

a conditional instance I, a TGD ρ with norm(ρ) = ϕ(x,y) ∧ η(x,y) → ∃zψ(y, z) and a

homomorphism h from ϕ(x,y) to I[1], we use result(I, ρ, h) to denote the set of atoms

obtained from head(norm(ρ)), where each frontier variable x in fr(norm(ρ)) is replaced

with h(x), and each existential variable z in exvar(norm(ρ)) is replaced with a fresh null

not occurring in I.
Definition 10 (Conditional Chase Step)

Consider a conditional instance I, a TGD ρ, and let norm(ρ) = ϕ(x,y) ∧ η(x,y) →
∃zψ(y, z). A conditional chase step of I w.r.t. ρ is an expression of the form I ρ,h,φ−→ J ,

where (i) h is a homomorphism from ϕ(x,y) to I[1], (ii) φ ∈ ΦI
ρ,h is such that φ �|= false,

and (iii) J = I ∪ {〈α, φ〉 | α ∈ result(I, ρ, h)}.
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Example 8

Consider the conditional instance I, the homomorphism h, and the TGD ρ3 of Example 7.

Then, I ρ3,h,φ−→ J is a conditional chase step, where φ is the condition ⊥2 = miami∧⊥1 = a,

and J = I ∪ {〈SameC(john,mary), φ〉}.
With the notion of conditional chase step at hand, we can define conditional chase

sequences, which are sequences of conditional chase steps. For this we need one additional

notion. A conditional tuple is a pair 〈t, φ〉, where t is a tuple of constants and nulls, and

φ a condition. For two conditional tuples 〈t, φ〉, 〈u, ψ〉, with |t| = |u| = n, we write

〈t, φ〉 � 〈u, ψ〉 if φ |= ψ and φ |= t = u, where t = u is a shorthand for the condition∧n
i=1 t[i] = u[i]. We write 〈t, φ〉 �� 〈u, ψ〉, if 〈t, φ〉 � 〈u, ψ〉 does not hold.
Intuitively, 〈t, φ〉, 〈u, ψ〉 should be understood to be two tuples, each of them belonging

to a set of “worlds,” described by the valuations that satisfy their conditions. Moreover,

〈t, φ〉 � 〈u, ψ〉 means that every world in which t occurs, is also a world in which u

occurs (φ |= ψ), and in each such world, t and u are the same tuples.

Definition 11 (Conditional Chase Sequence)

Consider a TGD-only data exchange setting S = 〈S,T,Σst,Σt〉 and a source instance I of

S. A conditional chase sequence of I w.r.t. S is a (possibly infinite) sequence of conditional

instances (Ji)i≥0, where for each i ≥ 0, Ji
ρi,hi,φi−→ Ji+1, and (i) J0 = {〈α, true〉 | α ∈ I},

(ii) ρi ∈ Σst∪Σt, for i ≥ 0, and (iii) for every j < i, if ρ = ρi = ρj , then 〈hi(fr(ρ)), φi〉 ��
〈hj(fr(ρ)), φj〉.
Intuitively, condition (iii) of the definition above is required to prevent the chase

sequence to apply superfluous steps. That is, at a certain step, a fact is produced only if

the possible worlds in which it occurs is not a subset of the possible worlds in which the

same fact has already been introduced by previous steps. An example follows.

Example 9

Consider the data exchange setting S = 〈S,T,Σst,Σt〉, with S = {A/1, B/1}, T =

{R/2, S/1, T/1}, where the sets Σst = {ρ1, ρ2} and Σt = {ρ3} are such that ρ1 =

A(x) → ∃z R(x, z), ρ2 = B(x) → S(x), and ρ3 = R(x, y), S(y) → T (x). Given I =

{A(a), B(b1), B(b2)}, the following is a conditional chase sequence of I w.r.t. S:
J0 = {〈A(a), true〉, 〈B(b1), true〉, 〈B(b2), true〉}, J1 = J0 ∪ {〈R(a,⊥), true〉},
J2 = J1 ∪ {〈S(b1), true〉}, J3 = J2 ∪ {〈S(b2), true〉},
J4 = J3 ∪ {〈T (a),⊥ = b1〉}, J5 = J4 ∪ {〈T (a),⊥ = b2〉}.

For a TGD-only setting S = 〈S,T,Σst,Σt〉 and a source instance I of S, a finite

conditional chase sequence (Ji)0≤i≤n of I w.r.t. S is maximal if there is no conditional

instance Jn+1, such that (Ji)0≤i≤n+1 is a conditional chase sequence of I w.r.t. S. We

call Jn the result of the maximal sequence.

Example 10

Consider the conditional chase sequence J0, . . . ,J5 of Example 9. The sequence is maxi-

mal, since any conditional chase step of the form J5
ρ,h,φ−→ J , for some conditional instance

J , cannot satisfy condition (iii) of Definition 11. The sequence J0, . . . ,J4 is not maximal

because although a conditional atom of the form 〈T (a), φ〉 is already present in J4, an

additional conditional atom of the same form needs to be introduced in J5. This is needed

https://doi.org/10.1017/S1471068423000339 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000339


Querying data exchange settings beyond positive queries 271

to allow the fact T (a) to be present for two different reasons (either because ⊥ = b1 or

⊥ = b2), and both reasons should occur in the result of the sequence.

We are now ready to present the main result of this section. In what follows, given a

schema S and a conditional instance I, I|S denotes the restriction of I to its conditional

facts with relations in S.

Theorem 11

Consider a TGD-only setting S = 〈S,T,Σst,Σt〉 and a source instance I of S. If J is the

result of a maximal conditional chase sequence of I w.r.t. S, then J|T is an approximate

conditional solution of I w.r.t. S.

Proof

To prove the claim, it is enough to prove that each supported solution J ∈ ssol(I,S) is

such that I ∪ J is a possible world of J , and that each possible world J of J contains a

supported solution. We prove first that each J ∈ ssol(I,S) is such that I ∪J is a possible

world of J .

Let γ be the ex-choice witnessing that J is a supported solution. Then, J can be

characterized as the result of a procedure that computes a sequence J0, J1, . . . Jm such

that J0 = I, Jm = J , and each Ji with i > 0 is obtained from Ji−1 by adding the head of

a TGD in Σγ
st∪Σγ

t whose body is contained in Ji−1 (i.e., the first part of the procedure in

the proof of Theorem 7) – notice that such a procedure ensures also the minimality of J .

For each step of the aforementioned procedure, there must be a corresponding conditional

chase step in the sequence yielding J , which in turn induces I ∪ J as a possible world.

Regarding whether each possible world J of J contains a supported solution, consider

a possible world J ∈ pw(J ). By construction of J , J = I ∪ J ′, for some instance J ′ over
T, since all conditional facts in J , which correspond to the facts in I, have the always

true condition. Moreover, by construction of J , I ∪ J ′ satisfies Σst, and J
′ satisfies Σt.

Hence, if we consider the set of TGDs Σ∗
st ∪ Σ∗

t , where Σ∗
st and Σ∗

t are the sets of all

ground versions of the TGDs in Σst and Σt, respectively, we have that I ∪ J ′ satisfies
Σ∗

st ∪ Σ∗
t and J ′ satisfies Σ∗

t . However, since Σγ
st ⊆ Σ∗

st, and Σγ
t ⊆ Σ∗

t , for any ex-choice

γ, we must have that J ′ must contain a supported solution in ssol(I,S), as needed.

Example 11

Consider the setting S, the source instance I of S, and the conditional chase sequence

J0, . . . ,J5 of Example 9. From Theorem 11, we conclude that J5 is an approximate

conditional solution for I w.r.t. S.
We can further show that for TGD-only weakly-acyclic settings, a maximal conditional

chase sequence always exists, and its length is polynomial. Moreover, its result can be

computed in polynomial time.

Theorem 12

Consider a data exchange setting S that is TGD-only and weakly-acyclic, and a source

instance I of S. Every conditional chase sequence s = (Ji)0≤i≤n of I w.r.t. S is such

that n is a polynomial of |I|, and the result Jn of s can be computed in polynomial time

w.r.t. |I|.
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Proof

To prove that the length of a conditional chase sequence is bounded by a polynomial, it

suffices to follow an argument similar to the one given in (Fagin et al . 2005) for proving

that the length of a standard chase sequence is polynomial, for weakly-acyclic settings.

Let s = (Ji)0≤i≤n be a conditional chase sequence of I w.r.t. S, with Ji
ρi,hi,φi−→ Ji+1,

for i ∈ {0, . . . , n − 1}. Since n is a polynomial of |I|, we just need to show that for

each i ∈ {0, . . . , n − 1}, Ji+1 can be constructed in polynomial time. To this end, it

suffices to focus on condition (ii) of Definition 10 and condition (iii) of Definition 11.

Since n is polynomial, the maximum number of terms occurring in each condition φi is

polynomial. Thus, each φi contains at most polynomially many equalities, and we can

easily check whether φi �|= false, by simply computing the closure of all equalities in φi,

and checking whether an equality of the form a = b can be derived, where a, b are distinct

constants. Similarly, for each i ∈ {0, . . . , n − 1}, and every j < i, we can check whether

〈hi(fr(ρ)), φi〉 �� 〈hj(fr(ρ)), φj〉, by using a similar approach.

Querying Approximate Conditional Solutions. What now remains to show is how

we can compute the conditional certain answers over an approximate conditional solu-

tion, for example, obtained via the conditional chase. It is known that the problem of

computing the conditional certain answers of a query Q is coNP-hard in general, even

when we assume all the conditions in the given conditional instance are true (Imielinski

and Lipski 1984). Hence, given a data exchange setting S and a source instance I of S,
if an approximate conditional instance J of I w.r.t. S can be computed in polynomial

time w.r.t. |I|, one cannot always compute con-cert(J , Q), in polynomial time. Hence,

we require an additional step of approximation.

To this end, we exploit an existing algorithm presented in (Greco et al . 2019) to

compute approximate certain answers over incomplete databases. Here we only recall the

main properties of the algorithm. For more details, we refer the reader to (Greco et al .

2019).

For a query Q, the function Q̇t from conditional instances to sets of tuples is defined

in (Greco et al . 2019), and it is such that the following holds.

Theorem 13

Given a conditional instance J over some schema S and a query Q over S, then

1. Q̇t(J ) ⊆ con-cert(J , Q);

2. if Q is positive, Q̇t(J ) = con-cert(J , Q);

3. if every condition in J is a conjunction of equalities, then Q̇t(J ) is computable in

polynomial time w.r.t. |J |.
The theorem above implies that the approximation algorithm provides so-called cor-

rectness guarantees (Item 1 of the theorem), that is, the algorithm always constructs a

subset of the conditional certain answers, and thus, only returns correct answers. This

is the standard notion for measuring the quality of the set of approximate answers these

algorithms are able to compute, in the context of querying incomplete databases – for

example, see (Libkin 2016; Guagliardo and Libkin 2016; Console et al . 2016). To the

best of our knowledge, none of the existing approximation algorithms from the literature

provide other kinds of theoretical guarantees, for example, w.r.t. to “how complete” the

set of approximate answers is.
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From the result above, Theorem 12, and Definition 11, we obtain the following crucial

result.

Corollary 3

Consider a TGD-only weakly-acyclic setting S. For every source instance I of S, an
approximate conditional solution J of I w.r.t. S can be constructed in polynomial time,

and for every query Q, Q̇t is such that

1. Q̇t(J ) ⊆ con-cert(J , Q) ⊆ scertS(I,Q);

2. if Q is positive, Q̇t(J ) = con-cert(J , Q) = scertS(I,Q);

3. Q̇t(J ) is computable in polynomial time w.r.t. |J |.

7 Dealing with EGDs

We now show how to deal with weakly-acyclic settings with EGDs, when it comes to

construct approximate conditional solutions.

Consider a weakly-acyclic data exchange setting S = 〈S,T,Σst,Σt〉 and a source in-

stance I. We assume that ssol(I,S) �= ∅. Checking whether ssol(I,S) = ∅ is feasible in

polynomial time, for weakly-acyclic settings (Theorem 5), and if ssol(I,S) is empty, no

approximate conditional solution can be constructed.

The goal is to first construct an approximate conditional solution J for the data

exchange setting S∃ obtained from S by removing the set ΣE of all EGDs from Σt. Then,

we show that for every query Q, the EGDs in ΣE can be embedded in Q, obtaining a

query Q′, in such a way that

con-cert(J , Q′) =
⋂

J∈pw(J ) and J satisfies ΣE

Q(J).

As we will see, this will imply that con-cert(J , Q′) ⊆ scertS(I,Q).

Thus, modulo a rewriting of Q, we can exploit J to compute an approximation of the

supported certain answers of Q. Despite our efforts, we were not able to prove that Q′ is
also such that con-cert(J , Q′) = scertS(I,Q), when Q is positive. It is an open question

that we hope to answer in a future work.

In what follows, for a data exchange setting S, S∃ denotes the setting obtained from

S by removing the set ΣE of all EGDs from Σt.

Lemma 14

Consider a weakly-acyclic data exchange setting S = 〈S,T,Σst,Σt〉, and assume I is

a source instance of S such that ssol(I,S) �= ∅. Moreover, let J be an approximate

conditional solution of I w.r.t. S∃. Then, for every query Q, there exists a query Q′,
which depends only on Q and the set of EGDs ΣE in S, such that

con-cert(J , Q′) =
⋂

J∈pw(J ) and J satisfies ΣE

Q(J).

Proof

Let k = ar(Q). The goal is to construct, for a given query Q, a query Q′ such that, for

every target instance J , whenever all the EGDs in ΣE are satisfied by J , then Q′(J) =
Q(J), and Q′(J) = Ck otherwise, where C is the set of all constants occurring in J , S,
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and Q. That is, if J does not satisfy ΣE , the query Q′ outputs every possible tuple of

length k, using constants from J , S, and Q. Clearly, if Q′ enjoys the above property,

the claim will follow immediately. We now explain how the query Q′ can be constructed,

starting from Q and ΣE . The query Q′ is made of two subqueries, that are put together

via a union. That is:

Q′ = Q1 ∨Q2.

Q1 is such that for every target instance J , if J satisfies ΣE , then Q1(J) = Q(J), and

Q1(J) = ∅, otherwise. On the other hand, Q2 is such that for every target instance J ,

if J satisfies ΣE , then Q2(J) = ∅, and Q2(J) = Ck, otherwise. It remains to show how

Q1 and Q2 are constructed. For each EGD η ∈ ΣE , we let Qη be the boolean query

such that for every instance J over T, Qη(J) = {()}, if η satisfies J , and Qη(J) = ∅,
otherwise. Furthermore, we use Q¬

η to denote the complement of Qη, that is Q
¬
η (J) = {()}

iff Qη(J) = ∅. All the above queries can be easily written in FO. Finally, we let Qdom

be the query of arity k, such that, for every target instance J , Qdom(J) is the set of all

tuples of length k over the constants in J , S, and Q. The above query can be encoded

with a UCQ. Then, we have

Q1(x1, . . . , xk) = Q(x1, . . . , xk) ∧
∧

η∈ΣE

Qη,

and

Q2(x1, . . . , xk) = Qdom(x1, . . . , xk) ∧
∨

η∈ΣE

Q¬
η .

By construction, Q1(J) = Q(J) if J satisfies ΣE and Q1(J) = ∅, otherwise, and Q2(J) =

∅, if J satisfies ΣE , and Q2(J) = Ck, otherwise.

From the result above, and from the fact that the supported solutions of a data ex-

change setting S correspond to the supported solutions of S∃ that also satisfy the EGDs

of S, we obtain the main result of this section.

Theorem 15

Consider a weakly-acyclic data exchange setting S = 〈S,T,Σst,Σt〉, and assume I is

a source instance of S such that ssol(I,S) �= ∅. Moreover, let J be an approximate

conditional solution of I w.r.t. S∃. Then, for every query Q, there exists a query Q′,
which depends only on Q and the set of EGDs ΣE in S, such that

con-cert(J , Q′) ⊆ scertS(I,Q).

Proof

From Lemma 14, there exists a query Q′, depending only on Q and ΣE , such that

con-cert(J , Q′) =
⋂

J∈pw(J ) and J satisfies ΣE

Q(J). (7)

From the definition of approximate conditional solution, we have that ssol(I,S∃) ⊆
pw(J ). Moreover, by definition of supported solution, ssol(I,S) = {J ∈ ssol(I,S) |
J satisfies ΣE}. Hence, ssol(I,S) ⊆ {J ∈ pw(J ) | J satisfies ΣE}. The latter inclusion

and equation (7) let us conclude that con-cert(J , Q′) ⊆ scertS(I,Q).
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The above results tell us that we can still materialize a target instance, even for weakly-

acyclic settings that allow for EGDs. Moreover, modulo a rewriting of the query Q, the

constructed target instance allows for the construction of a subset of supported certain

answers of Q.

8 Connections with other work and next steps

Conditional instances and, more in general, incomplete databases, have already been em-

ployed in the context of data exchange. However, in most of previous work, incomplete

databases are used to encode source and target instances with incomplete information.

In (Arenas et al . 2013), the authors extend the standard data exchange framework by

allowing source and target instances to be incomplete databases, encoded via some rep-

resentation system, such as conditional instances. There, the main goal is to study the

semantics of data exchange under the assumption that the source and target instances

can be incomplete. In contrast, in our work, we focus on the classical data exchange

setting, where source and target instances are standard (complete) databases. Here we

employ incomplete databases, in particular conditional instances, only as a tool to com-

pute the (approximate) certain answers of a query over our set of supported solutions,

which are standard databases as well. Adapting our notion of supported solution to the

setting of data exchange with incomplete instances is a non-trivial task which we will

consider for future work.

In Section 6, we have seen how a conditional extension of the chase procedure, working

on a normalized form of TGDs, can be employed to compute in polynomial time, for

weakly-acyclic settings, an approximate conditional solution. A similar normal form to

the one we employ in our paper is presented in (Gheerbrant and Sirangelo 2019). However,

in that work, the normal form is applied to queries, and the goal is to compute so-called

best answers of UCQs over incomplete databases, while in our case, we employ a normal

form for TGDs, which we then use to simplify the definition of the conditional chase.

Finally, the idea of extending the chase procedure with conditional TGD applications

is not new and has been explored in previous work. In particular, the work of (Grahne

and Onet 2011) introduces a conditional version of the chase procedure which is similar

to ours. The main difference is that the conditional chase of (Grahne and Onet 2011)

is much simpler, since it is an extension of the simplest variant of the chase algorithm,

called oblivious chase, while ours can be seen as an extension of the more refined semi-

oblivious (a.k.a. skolem) chase (see, e.g., (Calautti et al . 2015; Grahne and Onet 2018;

Calautti and Pieris 2019; 2021; Calautti et al . 2022) for more details). For this reason,

it is not difficult to show that when considering weakly-acyclic settings, the conditional

chase of (Grahne and Onet 2011) is not guaranteed to terminate, while termination for

weakly-acyclic settings is a crucial property for our purposes, since we need to be able

to construct a finite conditional instance in this case.

The problem of dealing with non-monotonic queries has been investigated beyond data

exchange, as for example for ontology-mediated query answering. In this setting, we are

given an instance (database) D, an ontology Σ encoded in some logical formalism (e.g.,

via TGDs), and a query Q(x), and the goal is to compute all the certain answers of

Q(x) w.r.t. D and Σ, that is, the tuples that are answers to Q in every model of the

logical theory D∪Σ. A relevant work in this scenario is the one in (Calvanese et al . 2007),
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where the authors define the query language EQL-Lite(Q), parametrized with a standard

(positive) query language Q (e.g., UCQs), and supports a limited form of negation. In

particular, an expression ψ in EQL-Lite(Q) is of the form ψ := K ρ | ψ1∧ψ2 | ¬ψ1 | ∃xψ1,

where ρ ∈ Q, and ψ1, ψ2 are EQL-Lite(Q) expressions.

Here, the epistemic operator K is applied to expressions ρ ∈ Q and returns the certain

answers of ρ w.r.t. the input database D and the ontology Σ. The main instantiation of

EQL-Lite that the authors study is EQL-Lite(UCQ), that is, where Q coincides with the

set of all UCQs.

From the above definition, we observe that negation is applied only to (a combina-

tion of) the certain answers of positive queries. This gives a semantics to negation that

fundamentally differs from ours, as illustrated in the following example.

Consider the data exchange setting S = 〈S,T,Σst,Σt〉, where S stores employees of

a company in the unary relation Emp. The target schema T contains a unary relation

Emp′ storing employees, the ternary relation Addr assigning to each employee her work

and home address, and the unary relation WorkFromHome, storing employees work-

ing from home. Assume we have Σst = {ρ1 = Emp(x) → Emp′(x), ρ2 = Emp(x) →
∃z ∃wAddr(x, z, w)} and Σt = {ρ3 = Addr(x, y, y) → WorkFromHome(x)}.

The above setting copies employees from the source to the target via the TGD ρ1, while

the TGD ρ2 states that each employee must have a work and home address, denoted via

the existential variables z and w, respectively. Finally, the TGD ρ3 states that if the

work and home address of an employee coincide, then this employee works from home.

Assume the source instance is I = {Emp(john)}, and let Q be the query asking for all

employees who do not work from home, that is, Q(x) = Emp′(x) ∧ ¬WorkFromHome(x).

According to (Calvanese et al . 2007), the query Q corresponds to the EQL-Lite(UCQ)

expression Q′(x) = KEmp′(x)∧¬KWorkFromHome(x). Letting D = I, and Σ = Σst∪Σt,

roughly, the above means that an employee is an answer to the query Q′ if she is present
in all models of D ∪ Σ and such that there is at least one model in which the employee

does not work from home. Under this interpretation, the answer to Q′ is john. However,
under our semantics, the answer to Q is empty. Hence, the fundamental difference is that

negation, under EQL-Lite, is interpreted as negating classical certain answering, and thus

an expression ¬Kψ is “satisfied” when at least one model/solution does not entail ψ,

while in our case, we consider the given query as a whole, and require it to be satisfied

in every valid solution.

We conclude by discussing avenues for further research. First, we would like to extend

the conditional chase to weakly-acyclic settings with EGDs, and identify relevant data

exchange settings for which computing the supported certain answers is tractable. More-

over, we would like to identify other quality measures of our approximation algorithm

using techniques such as the ones introduced in (Libkin 2018). We also plan to experi-

mentally evaluate both our translation to logic programs for computing exact answers,

as well as our materialization-based approaches for computing approximate answers by

means of a dedicated benchmark, as done for example, in the context of approximate

consistent query answering (Calautti et al . 2021).

To conclude, we mention that explaining query answering has recently drawn consider-

able attention under existential rule languages (e.g., see (Lukasiewicz et al . 2022; Ceylan

et al . 2021; 2020; Lukasiewicz et al . 2020; Ceylan et al . 2019)), and knowledge repre-

sentation in general (e.g., in the context of argumentation (Alfano et al . 2020)). Hence,
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an interesting direction for future work is to address such issues in our setting. Also, it

would be interesting to account for user preferences when answering queries, as recently

done in (Calautti et al . 2022) for ontology-mediated queries.
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