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ZERO DIVISORS AND IDEMPOTENTS
IN GROUP RINGS

GERALD H. CLIFF

1. Introduction. We consider the following problem: If KG is the
group ring of a torsion free group over a field K, show that KG has no
divisors of zero. At characteristic zero, major progress was made by Brown
(2], who solved the problem for G abelian-by-finite, and then by Farkas
and Snider [4], who considered G polycyclic-by-finite. Here we present a
solution at nonzero characteristic for polycyclic-by-finite groups. We
also show that if K has characteristic # > 0 and G is polycyclic-by-finite
with only p-torsion, then KG has no idempotents other than 0 or 1.
Finally we show that if R is a commutative ring of nonzero characteristic
without nontrivial idempotents and G is polycyclic-by-finite such that no
element different from 1 in G has order invertible in R, then RG has no
nontrivial idempotents. This is proved at characteristic zero in [3].

We denote by A(G) the augmentation ideal of a group ring RG. We
denote conjugate elements g and & of G by g~ h,and fora = > a,g € RG
and ¢ € G we write

tga« = Zh.,ga;,.

We denote by M,(RG) the ring of d by d matrices with entries in RG, and
fora € M (RG), we write tr « for the sum of the diagonal entries of a.
We cite [6] as a general reference.

2. Idempotents. For a ring 4, we set

[4,4] = {D(ad; — bay):a;,b; € A}.

If 4 has prime characteristic p, it is well-known that if ¢, @2, . . ., ap, € 4
then

(Za)? = Xa? + B
where 8 € [4, A]. We need the following analogue at characteristic p".

LEMMA 1. Let A be a ring of prime-power characteristic p*. If k is an
integer, k = n, and a1, as, . . ., ay € A, then for s = p" ' we have

(Zai)pk =8+ Z(ailaiz . ais)pk—wl

Received August 4, 1978 and in revised form February 22, 1979. This research was
partially supported by the National Research Council of Canada.

596

https://doi.org/10.4153/CJM-1980-046-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-046-3

~

GROUP RINGS 597
where the sum on the right is over all s-tuples (41,12, ... ,1,) with1 < 1; < m,
and where 8 € (A4, A].
Proof. Set t = p*. Then

vk s h
1
(201) Zaz Qig o oo Qs

where the sum on the right is over all ¢-tuples (41,42, ...,1%,) with
1 é 'ij é m. Let G'(Gilaiz RN a”) = Qg o o o W3y Qygq, then lf g’(x) =9,
we have x — y € [4, 4]. If x is not of the form (ana4, ... a,)» """,
then

oM (x) # %,

and so the c-orbit containing x has a multiple of p" members, each
congruent to x modulo [4, 4]. This completes the proof.

The following result is proved, at characteristic p, by Formanek
[5, Lemmas 6 and 7].

LEMMA 2. Let R be a commutative ring of prime-power characteristic p”.
Let G be a group with the property that if x € G has infinite order and
x ~x? for some i, then i = 0. Let e = D iy a;g; be an idempotent
element of RG. If x has infinite or p-power order, then t,e = 0.

Proof. Lets = p"1. Then by Lemma 1, we have, for any integer & > n,
e=e" =84 X(ands ... a )" " (gugn .. )"

where 8 € [RG, RG], and the sum is over all s-tuples (¢4, 2o, . . . , 15) with
1 £ 4; £ m. Pick k sufficiently large so that no (g:;8s ...g4)" """

is conjugate to x. Then since ¢,8 = 0, the proof is complete.
We define, for an ideal I of a ring,

I= N I" and I = (1)

n=1

Lemma 3 ([7, 1.3.15]). Let H be a poly-infinite-cyclic group with Hirsch
number n. Then for a field K, we have A(H)*" = 0.

Proof. Pick H, < H, with H/H, infinite cyclic, and H; poly-infinite-
cyclic. Then A(H/H,;)* = 0. Now use induction on 7.

We can now prove our result on idempotents. This is proved, at
characteristic 0, by Formanek [5, Theorem 1].

THEOREM 1. Let G be a polycyclic-by-finite group with only p-torsion and
let K be a field of characteristic p. If e € KG and e* = e, then e is 0 or 1.

Proof. We claim that it suffices to prove the theorem for finite K. For
ife= Z’Ll a;g; with each a; # 0, then [6, 2.2.6] there exists a valua-
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tion ring 4 in K containing all the ¢; and a homomorphism ¢ from 4
into an algebraic closure of GF(p) such that each ¢(a;) # 0. Then
S¢(a;)g: is an idempotent in the group ring of G over the finite field
generated over GF(p) by all the ¢(a¢:). We now assume that K is finite.
There exists a discrete valuation ring R of characteristic zero, unramified
over the p-local integers Z(,, such that R/pR = K [8, 11, Theorem 3].

We have e(1 — ¢) = 0, so we may assume that the augmentation of e
is 0, that is, ¢ € A(G). We may lift ¢ to an idempotent ¢, of (R/p"R)G
by [6, 2.3.7], since (pR/p"R)G is a nilpotent ideal of (R/p"R)G. We
choose ¢, so that ¢, is a lifting of ¢,, for n > 1. Let H be a normal
poly-infinite-cyclic subgroup of G of finite index, and let ¢, denote the
image of ¢, in (R/p"R)(G/H). Then if e, = > a,p, with a, € R/p"R,
¢ € G, we have

teé, = Z ay = Z [nn,

S =4 h

where the sum on the right is over certain 7 ¢ H. By Lemma 2, ¢, = 0
if & # 1, whence t;e, = tie,. Now for ¢ € G, ¢ # 1, we have t,e, = 0,
and since the augmentation of ¢, is 0, it follows that te, = #&, = 0. Let

e = lim &, E(EQ(R/;D"K) (G/H).

Then tie = 0, and since lim (R/$"R) is an integral domain of charac-
teristic 0, and G/H is finite, this implies that ¢ = 0. Thus ¢ is in the
kernel of KG — K(G/H), namely KGA(H). However for large #,

e € (KGA(H))*" = KG(A(H)")

which is 0 by Lemma 3. This completes the proof.

3. Euler characteristics. We state some elementary facts about
Euler characteristics of projective modules over group rings. Proofs can
be found in Chapter 13, § 4 of [6], and in [1].

Let R be a commutative ring and let P be a finitely generated pro-
jective RG-module. Choose a projective module Q such that P @ Q
is free over RG, of finite rank, say d. Let a: P ® Q —> P @ Q be the
projection onto P, and let ¢ € M (RG) be a matrix which represents «
with respect to some ordered basis of P @ Q. Thus e? = e. Define the
Euler characteristic of P, denoted x (P), to be £;(tr ¢); this is independent
of the choice of Q and of e. If H is a subgroup of G of finite index, then
the restriction of P to RH, denoted by Py, is finitely generated and pro-
jective over RH, and

x(Py) = [G: H]x(P).

If G is finite and R is local, then P; is free, and x(P;) is the rank of
Py over R.
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4, Zero divisors. We need a generalization of Lemma 2, proved at
characteristic p by Farkas-Snider [4] (see [6], Lemma 13.4.15).

LEMMA 4. Let R and G be as in Lemma 2. Let a = (a(z,7)) be an
idempotent element of M,(RG). If x has infinite or p-power order, then

t(tra) = 0.
Proof. Let s = p"~! and let
X = U suppla(iy, 12)a(is, 13) . . . a(,, 11)}
where the union is over all s-tuples (21, %2, . . ., 7,) with 1 < 7; < d. Let
V={gg... ¢ 2:.€X, 121755},

so Y is a finite subset of G. It follows from the hypothesis on G that
x ~ y?' for some y € Y for only finitely many integers . Let ¢, be the
largest such ¢, and let & be an integer such that 2 — 2n + 2 > ¢,

Let {e;;} be the matrix units of M,(RG), so that a = Y, ;a(i, j)eq;.
From Lemma 1, we have

a=a*=B+ X (alinjdaling) .. al, i) " Casn .. en)? ",

where the sum is over all s-tuples of pairs ((¢4, j1), ..., (z,,7,)), with
1 <4,y < d,and B € [M,(RG), M;(RG)]. Using the facts that tr 8 = 0

and eex; = 8¢, where 8, is the Kronecker delta, we have
tra = 3 (a(iy, i2)a(ly, 13) . . . a(d,, 4,))? "
where the sum is over all s-tuples (z1,...,%;) with 1 = 12; < d. Con-

sider a typical term in this sum, and suppose that

a(iy, i2)a(is, is) . . . a(iy, i1) = ; ag; € RG.

Then
(Zajgj)pk_"H =7 + Z(ahah e ajs)pkqnﬂ(gjlgj‘z e gh)plc~2n+2’
v € [RG, RG], and the sum is over all s-tuples (ji,Jj2 ...,J,) with

1 < j, £ m. By our choice of k, we know that (g;gj,...g;)" "’

is never conjugate to x, and since ¢,(y) = 0, we conclude that {,(tra) = 0.

THEOREM 2. Let G be a torsion free polycyclic-by-finite group and let K
be a field of characteristic p > 0. Then KG has no zero divisors.

Proof. As in the proof of Theorem 1, we may assume that K is finite,
and that K = R/pR where R is an integral domain of characteristic 0.
Fix an integer » > 1 and set S = R/p"R.
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Now Theorem 13.4.11 of [6] (which is a version of Theorem 1 of
Farkas-Snider [4]) states the following: KG has no zero divisors provided
that for every finitely generated projective KG-module P, and any poly-
infinite-cyclic normal subgroup H of G of finite index, we have that
[G:H] divides dimg(Pg/A(H)Pg). Accordingly, let P be a finitely
generated projective KG-module, and let e € M,;(KG) be an idempotent
matrix such that x(P) = ¢,(tr e). Since pM4(SG) is a nilpotent ideal of
M,(SG), and

Mi(SG)/pMi(SG) ~ M(SG/pSG) ~ M,(KG)

then [6, 2.3.7] ¢ may be lifted to an idempotent matrix ¢ € M,(SG).
If

™. Md(SG) - Md(KG)

is the extension of the natural map S — S/pS = K, then 7(¢’) = e. Let
P’ be the projective SG-module given by the kernel of

1 —¢: (8§G)— (SG)4,

so x(P') = ti(tre’). Let H be a normal poly-infinite-cyclic subgroup of
G of finite index; then

(1) x(Px') = [G: H]x(P").
We claim that x(P'/A(G)P') = x(P’). Let tre’ = > a,¢ € SG. Then
X(P'/AGP) = Fay, = a1+ Xai Dopmsily

for certain x; € G. Since G satisfies the hypothesis of Lemma 4, we
deduce that »_,_,; a, = 0 for each x,, and therefore

2.a, = a1 = x(P'),

and our claim is valid. By the same argument, we have
x(Pu'/AH)Py') = x(Px').

Therefore (1) becomes

(2) x(Py'/AH)Py') = [G: HIx(P'/A(G)P").

Now Py'/A(H)Py' is a finitely generated projective S-module, and is
therefore free since .S is local. Moreover,

x(Py'/A(H)Py') = ranks(Py'/A(H)Py') = dimg(Py/A(H)Py)
and
x(P'/A(G)P") = rankg(P'/A(G)P') = dimg(P/A(G)P)

where the right sides of these equations are interpreted as elements of
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S. We then have, from (2),
dimg (Py/A(H)Py) = [G: H] dimg P/A(G)P (mod p*)

and since # was arbitrary, this congruence may be replaced by an equality.
The theorem now follows from Theorem 1 of [4].

5. Idempotents again. We remark that the proof of Theorem 2 may
be used to give an alternate proof of Theorem 1. For if ¢ € KG is an
idempotent in A(G), we have, with P = KGe,

dimg ((KGe)uy/A(H) (KGe)g) = [G: H|dimg (KGe/A(G)KGe).

Since e € A(G), the right side is 0; hence so is the left side, and
e € KGA(H), which implies that ¢ = 0 from Lemma 3.
Our final result was proved at characteristic 0 in [3, Theorem 2].

THEOREM 3. Let R be a commutative ring of characteristic n > 0, having
no idempotent other than 0 or 1. Let G be a polycyclic-by-finite group,
having no element %1 whose order is a unit of R. Then RG has no nontrivial
idempotent.

Proof. Let e € RG be a nontrivial idempotent. Since R has no non-
trivial idempotent, its characteristic must be a p-power for some prime
p. We may factor out the nil radical of R, and thus assume that R has
no nilpotent element; in particular, R has characteristic p. We may
further assume that R is generated (as a ring) by the finitely many
coefficients of ¢ € RG, so R is Noetherian, and

RCI:II F,

a direct product of fields of characteristic . Then RG C IIF,G, and by
Theorem 1, we have

e=(1,1,...,1,0,0,...,0) € IIFG.

Let I be the ideal of R generated by the coefficients of e. Then I2 = I, so

I"=1T;
n=1

by Krull’s Theorem, [9, p. 216, Theorem 12], there exists x € I with
I(1 —x) =0. Then x? = x, so x is 0 or 1. Since ¢ # 0, then x < 0.
Therefore x = 1 so I = R, which is impossible, since

e=(1,1,...,1,0,...,0) % (1,1,...,1,...,1).

This completes the proof.
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