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A STOCHASTIC PROOF OF AN EXTENSION OF A THEOREM
OF RADO

by BERNT 0KSENDAL

(Received 2nd June 1982)

1. Introduction

The purpose of this article is to illustrate how the theorem of Levy about conformal
invariance of Brownian motion can be used to obtain information about boundary
behaviour and removable singularity sets of analytic functions. In particular, we prove a
Frostman-Nevanlinna-Tsuji type result about the size of the set of asymptotic values of
an analytic function at a subset of the boundary of its domain of definition (Theorem 1).
Then this is used to prove the following extension of the classical Rado theorem: If <j> is
analytic in B\K, where B is the unit ball of C" and K is a relatively closed subset of B,
and the cluster set %> of <f> at K has zero harmonic measure w.r.t. <j)(B\K)\(tfj=0, then (f>
extends to a meromorphic function in B (Theorem 2).

2. Brownian motion and boundary behaviour of analytic functions

Let B,(co), O^Koo, coeQ, denote Brownian motion in C = U2n. Let Px denote the
probability law of B,((o) starting at the point xeC". We may regard Px as a measure on
the space fi of continuous paths a>: [0, oo)->IR2".

An n-dimensional version of the theorem of P. Levy about conformal invariance of
Brownian motion can be stated as follows:

Let C/crC be open, xeU and <f>: U-*C analytic.

Let

be the first exit time from U of Bt(co), and define

) = )\4>\Bs)\
2ds for O^r^ t .

o

Let Bt(co);0^t<co, cbeCl with probability law Py, be Brownian motion in C =
and define W,(-):QxCi-*U2 by
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where the limit

<p*(co) = \\m<p{Bu{(o)) exists a.e. on {GJ;CT(T)<OO}. (2.2)

Then W,( •), with the probability law Px x P° on Q x &, induces a measure on the space
of paths in C which is precisely that of 2-dimensional Brownian motion starting at

A proof of an extended Levy theorem can be found in [2]. The existence of the limit
(2.2) is not proved explicitly in [2]. A proof in a more general setting, which also
includes a proof of (2.2), can be found in [5].

The following result can be regarded as a partial extension of a theorem of
Frostman-Nevanlinna-Tsuji (see [12], Th. VIII. 44, p. 339). If V c C" is open, we call a
function </>: F->Cu{oo} meromorphic in V if each xeV has a neighbourhood VX<=V
such that either </> or l/<j) is analytic on Vx.

Let / : F->C be continuous and Ec V, the closure of V. We say that _yeCu{oo} is an
asymptotic value o f /a t E if there exists a curve y in V terminating at some point zeE
such that

y = limf(x)
x-*z
xey

The set of all asymptotic values of/at E is denoted by Aj-(E), the asymptotic set of/
at E.

Theorem 1. (Extended Frostman-Nevanlinna-Tsuji theorem) Let FcC" be
connected, open, KczdV (the boundary of V) compact. Suppose $ is meromorphic in V, let
A = A^K) be the asymptotic set of <p at K. If (j>( V)\A =/= 0 and A has harmonic measure 0
w.r.t. <f>(V)\A, then K has harmonic measure 0 w.r.t. V. In particular, z/cap(y4) = 0, then K
has harmonic measure 0 w.r.t. V.

Here cap denotes the logarithmic capacity.

Proof. Put K1 = K<u(p~i(co) and let U=V\Kl. Then <p is analytic in U and we
apply the Levy theorem above.

Let G = {a>;a(x)<co}, H = {a>;Bz{w)(a>)eKt}. For a.a. co<£ G the path of </>(/}„-,<„);
0 ;£ t < CT(T) = oo is dense in C. So, if the limit b = BAa)(w) exists, we have A4>({b}) = <C and
therefore b^K1 for a.a. a>£G. Therefore PX(H\G) = O.

If A = A<j>(K) has harmonic measure 0 w.r.t. </>(K)\<4, then A has harmonic measure 0
w.r.t. <j>(U)\A. Let (B,,Q,P) denote Brownian motion in C, f the first time from (j)(U)\A
of B,. Then

Since <T(T) 5j i a.s. P x P°, we deduce that

CT(T)<OO with <j)(Ba-Ut))eA] =
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This implies that

P[HnG]=0.

Therefore

PX(H) = Q for all xeU,

i.e. K{ has harmonic measure 0 w.r.t. U= V\Kt.

Thus, since <p~1(oo)cV is never hit by Brownian motion in C" a.s., we conclude that
K has harmonic measure 0 w.r.t. V.

Remark. For results similar to Theorem 1 in a more general context (harmonic
morphisms) but with cluster sets instead of asymptotic sets, see [6] and (8].

3. An extension of a theorem of Rado

A classical theorem of T. Rado from 1924 [10] states that if (p is continuous on
A = {zeC;|z|<l} and analytic on A\0~'(()), then <p is analytic on A. Subsequently several
extensions of this result have been found. See [1], [3], [7], [9], [11] and—for a more
abstract version—[4]. Using Theorem 1 we now prove a version which contains
essentially the extensions in [1], [3], [7] and [11].

If F c C is open and/ : K->C is continuous we let %> =C\f(E) denote the set of cluster
values of/at the set £ c F .

Theorem 2. (Extended Rado theorem) Let B be the open unit ball in C, K a
relatively closed subset of B. Let (p:B\K^-C be analytic. Put <̂  = C10(K) and A = A<t> (K).

(i) Suppose 4>{B\K)\e€ + 0 and <g has harmonic measure 0 w.r.t. <f>{B\K)\g. Then <p
extends to a meromorphic function on B.

(ii) Suppose (p is bounded, (j)(B\K)\A^0 and A has harmonic measure 0 w.r.t.
</>(B\K)\A. Then <p extends to an analytic function on B.

Remark. The conditions on # and A in (i) and (ii) are satisfied if, for example,
cap(#)=0 and cap(A) = 0, respectively.

Proof, (i) Choose a component W of B\K such that <p(W)\<€±0. By Theorem 1, K
has harmonic measure 0 w.r.t. W. So Brownian motion starting from a point x e W does
not hit K before it hits dB. This implies that C2n(K) = 0 and that W = B\K. Here C2n is
the capacity associated to the kernel |z|~2n + 2 for n > l and log(l/|z|) for n=\ (i.e.
C2 = cap). Choose a point aeK. Since Cl̂ ({a})=/=C there exists beC and a neighbourhood
V of a such that ip(z) = l/((p(z) — b) is bounded in VnW. But then KnV is a removable
singularity set for ip(z), so that \j/(z) extends analytically across V. Hence (p extends to a
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meromorphic function in V, and since aeK was arbitrary, the proof of (i) is complete.
The first part of this argument proves (ii).

Remark. Both Theorem 1 and Theorem 2(i) remain valid if we only assume that <p is
meromorphic in the weaker sense that <f> is locally (in V or B\K) of the form f/g, where
/ and g are analytic. This is because the set of singularities of such functions has C2n-
capacity zero (as can be seen, for example, from Theorem 1). In Theorem 2(i) the
conclusion is still that (f>, locally at K, is meromorphic in the stronger sense defined
above. We conjecture that Theorem 2(i) also holds if we replace the cluster set $> by the
asymptotic set A.
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