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The hyper-archimedean kernel

sequence of a lattice-ordered group

Jorge Martinez

The hyper-archimedean kernel Ax(G) of a lattice-ordered group

(hence forth l-group) is the largest hyper-archimedean convex
l-subgroup of the I-group G . One defines A%(c) , for an

ordinal ¢ as U A%(¢) if o is a limit ordinal, and as the
a<o

unique [-ideal with the property that
A% (6) /A6y = Ar(c/a®Ye))
otherwise. The resulting "Loewy"-like sequence of characteristic

1-1deals, At(G) c M2(6) c ... c MP(G) € ... , is called the
hyper-archimedean kernel sequence. The first result of this note

says that each A1%(G) c A(G)" .

Most of the paper concentrates on archimedean L-groups; in
particular, the hyper-archimedean kernels are identified for:
D(X) , where X is a Stone space, & large class of free products
of abelian I-groups, and certain Il-subrings of a product of

real groups.

It is shown that even for archimedean I-groups the hyper-

archimedean kernel sequence may proceed past AwnJ) .

1. Introduction

The purpose of this note is to derive structure of an archimedean
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l-group using the notion of the hyper-archimedean kernel sequence defined
in [8]. Our general terminology and notation is standard, as in [3]; the

special notions to be discussed here are in the notation of [§].

An l-group H 1is hyper-archimedean if it is archimedean and every
l-homomorphic image of H is archimedean. The following theorem
encapsules the basic facts about the structure of hyper-archimedean
l-groups. Many individuals have contributed to this well known theorem;

for a fairly complete history see Theorem 1.1 in [5].
THEOREM 1.1. For an 1l-group G the following are equivalent:
(1) ¢ 1is hyper-archimedean;
(2) every proper prime subgroup of G is maximal, and hence
minimal;
(3) the regular subgroups of G form a trivially ordered set;
() G=06(g)Bg', for each g €G ;

(5) 2f 0<a, b €G then [a-(mbra)]l A Db =0, for some

positive integer m ;

(6) if 0<a, b €G them aAnb=aAn (n¥tl)b , for some

positive integer n ;
(1) G 4is 1-isomorphic to an 1l-subgroup G' of HRv, | i €1}
so that for all 0 <x, y €G' , there exists an n > 0

such that nx, >y, whenever x. >0 . (Ri =R, the

additive group of reals with the usual ordering, for each
i€7I.)

NOTES. (a) With reference to the notation in (4), if z € ¢ , &{(x)
denotes the convex I-subgroup generated by « . If {G)\ | A€ A} is a

family of I-groups then G = EJ{G}‘ | A € A} is the direct sum of the GA
with coordi'natewise ordering.
If x is a subset of an I-group G ,
X' ={g€c| |g| Alx|] =0, for a1l =z ¢ X}
is the polar of X ; g' = {g}' = ¢(g)’

(b) It should be noted that Conrad calls hyper-archimedean I-groups
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epi-archimedean; see [51.

If G is an Il-group there is a convex L-subgroup Ax(G) which is
hyper-archimedean and contains every hyper-archimedean convex I-subgroup
of G . Ax(G) 1is characteristic; that is, invariant under all
l-automorphisms of G , and 0 < g € AL{G) if and only if all its values
are minimal prime subgroups. Further AL(G) is the intersection of all
non-minimal primes of G . We call A4(G) the hyper-archimedean kernel of
G , henceforth to be abbreviated h.a. kernel. It was first introduced and
characterized as indicated in the lines of this paragraph in [§] by the
author for representable Il-groups; then in [5] Conrad removed the

author's assumption of representability.
If © is an ordinal, define AMP(G) as follows:

(a) AC(6)/AC2(e) = A(e/M®Y(6)) , if o is not a limit

ordinal;

(b) AC(G) = U A*(G) , otherwise.
o<o

Then Ax(G) S AILQ(G) c ... EMO(G) C ... , and 211 entries in this
sequence are characteristic [-ideals. This is the hyper-archimedean

kernel sequence (henceforth h.a. kermel sequence).
The following was not defined in [§]: by a standard cardinality

T+l(

argument A4 (G) = Ar G) for a suitable large ordinal T . We define

A*(c) = U A%(@) s thus Ax*(G) = AA'(G) for some ordinal T .
o

THEOREM 1.2. For any Ll-group G, Ar*(G) c An(G)" .
Proof. If suffices to show that if A1°(G) < Ax(G)" then
A1) c An(e)" . 1t AMC(G) < A(G)" then AC(G)' = An(G)

So suppose 0 < x € Anc+l(G) n A1(G)' ; then the values of
z + M°(6) are minimal prime subgroups of G/A4°(¢) . Any such value is

of the form N/AnO(G) where N is a prime subgroup of G . Either #N is

itself a minimal prime of & , or else it contains a minimal prime subgroup
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M of G, and then M D A:°(G) . We may then select y € AC(G)\W ; by

our assumption sbout 0 , x Ay =0 , and this is absurd.

Therefore each prime subgroup N of G so that N/A/LO(G) is a
value of =z + A/LU(G) , is a minimsl prime of G , proving that x € Ax(G)
This is once again a contradiction. Hence A)Loﬂ'(G) n Ax(G)' = 0 ; that

is,, A)Lofl(G) c An(G)" as promised.

2. The h.a. kernel sequence applied to archimedean 1-groups

The central question here is naturally: how long can the h.a. kernel
sequence be? Obviously, if one makes no restrictions on the types of
l-groups one wishes to consider the answer is: as long as one pleases.
Simply spgpj.fy an ordinal O and then construect a long enough

lexicographic product of copies of the reals.

So let us ask the question again for archimedean I-groups. Let us in
fact ask: if G 1is an archimedean I-group, is A4*(G@) = Ax(G) ? The
answer is not, but most archimedean I-groups one considers have, in this

sense, a'trivial hia. kernel sequence.
It is useful to start with the following characterization of A#{g)

LEMMA 2.1. Suppose G is a representable l-group; 0 <z 4is in
Ar(G) if and onZy if for each 0< a € G there is a positive integer n
so' that = A na =2z A (n+l)a-.

Proof. Suppose~0 <x € M(G) and 0 <a € G; then z Aa is in
A7(G) , so by Theorem 1.1 (6), x A n(zaa) = z A (n+1)(xra) , for a
suitable positive integer 7 .‘ Since k(#Aa) = kx A ka in a representsble
l-group for all kz 1, we get z An(zma) =x AnxAna=xAna, so
that £ Ana=x A (vh'+i)a.. .

Conversely, if xAna=zA (n+l)a ; for al1 0 <a € G , and an
appropriate .n = n(a) , then G(x) is byper-archimedean by Theorem 1.1.
Consequently, x € A(G)

COROLLARY 2.1.1. If G <is representable, AL(G) = N [G(a)m'] .
) o ’ - 0%a

Proof. By our lennna.,- 0<zx¢ M(C)- if and only if whenever
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0<a€G, xAna=zxA (ntl)a , for a suitable n ., This equation is
valid if and only if [z-(manr)] Aa =0 ; that is, if and only if

T -~ (naAx) € a' . Since na A x € G(a), it is clear that 0 < z € AR(G)
if apd only if =z € G(a) Ba' for all 0 <a €G .

Now let us have a look at a few examples.
(1) 6= |{RX | X € A} , where R, = R for each X € A . From

Lemma 2.1 it is clear that Ax(G) = 2N RX . Now we wish to identify

AP(6) , so we look at An(G/A%(G)) : if O < x + Aa(G) € AM(G/ArG))
then each value of % is either a minimal prime of & or else properly
contains a minimal prime M P A4(G) . However, each such minimal prime M

is of the form GX = {g €c| gy = 0} , since M will be the value of an

element of An(G) . Thus M is maximal, giving us a contradiction. It
follows that every value of 2z 1is a minimal prime, putting z € ALG) ,
again a contradiction. The conclusion is then A&[G/AK(G)) =0 ; that is,

AM2(G) = M(G) = An*(G) .
(2) ¢ = T_TTZA | A €A} , where ZA = Z , the additive group of

integers with the usual ordering. Again using Lemma 2.1 we can see that
A1(G) 1is the I-ideal of bounded integral functions. That

AL(G/AL(G)) = 0 can be seen as follows. If O < x + Ax(G) € Az(G/An(G))
then & is unbounded and - taking x > 0 without loss of generality - we

can find a sequence Al’ A2’ eens An’ ... € A such that the xy diverge.
n

Define u € G as follows: Uy is the largest integer = /xk , for all
1 i
i=1,2,...,and u =0 otherwise; then u b An(G) .

For each positive integer m , x A (m#1)u -~ £ A mu is unbounded:

note that
0 , if muk. 2 xx_ H
i i
_ oy = muy, o, if (m¥l)u, 2z, > mu,
[xA(m+1)u-xAmu]xi = Ai Ai Ai Ai Ai
uy » if x> (m+1)ux.
i 1 A
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For each m , there is an % =1, 2, ... such that (m+l)2 <z

\ o for

J
all j =1 . It is easy to see that this implies that (m+l)u)“ <@y

J J
when J = 7 . It should now be clear that x A (m+l)u - £ A mu is indeed

unbounded.

This is a contradiction, for according to Lemma 2.1 there is an m > 0
so that (xamu) + AL(G) = (xA(m+1)u) + AL(G) . We conclude therefore that
AM(G/A(6)) =0 .

THEOREM 2.2. Let G be an l-subring of | | Ry with R, =R for
each X € A) consisting of bounded functions. Then AL(G) is the
subgroup generated by
r={0<g¢G|elb.fg]g >0>0,

and each positive element h < g also has this property} .
Moreover, A(G/An(G)) =0 .

Proof. From Lemma A in [3] it is clear that if 0 < g € T +then
g € Ar(G) . Conversely, suppose 0 < g € Ax(G) dbut
g.l.b.[gA | gA > O] = (0 ;3 then we can find a sequence

)‘l’ )\2, cees )‘n’ ... in A such that 1lim g, = 0. Let s = 92 3
nro p
without any loss of generality we assume each g)\ <1 . By Lemma 2.1
7

there is an m > 0 so that g Ams = g A (m+l)s . For all but finitely

_ 2
many )\i s gxi < 1/(m+l) ; thus (m+l)s>\i = (m+l)g>‘i < gxi . So

(g/\ms)A =ms, and (gA(m+1)s)>‘ = (m+1)s>‘ , and then
7 A 7 7

gAms < gA (m+l)s , a contradiction. Therefore,
g.l.b.[g)‘ | 9 > 0] >0 , and clearly g €T .

Suppose now by way of contradiction that 0 < g + Aa(@) in
An(G/An(G)) . Then either g.l.b.[g)‘ | gy > 0] = 0 or some element below

g has this property. Without loss of generality we take g > 0 and
g.1l.b. [gx | g>‘ > O] = 0 . We use the notation of the previous paragraph:

1lim g9y = 0 . By setting s = g2 once more, notice that for each m > 0 ,
n
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(gA(m+l)s—gAms)A. =8y, for all but finitely many Ai . Since
7 1

lim s, =0 we have that g A (ml)s - g A ms § AL(G) ; moreover
n o n

s £ AL(G) , hence g A (m+l)s + AL(G) > g Ams + An(G) , for ell m >0 ,
contradicting the hypothesis that g + An(G) € At(G/A1(G)) . Plainly then
AL(G/A%(G)) =0 .

Let us continue with our examples.

(3) Suppose G is a free abelian I-group on two or more generators;
Bleier {1] has shown that G has no non-trivial characteristic l-ideals.
Since G 1is obviously not hyper-archimedean A4(G) = 0 = Ar*(G) .

(4) Let G = C(X) , the group of all real valued continuous functions
on a compact, connected Hausdorff space X . It is a consequence of
Theorem 2.2 that At(G) =0 ; for if 0<g € G and
g.1.b.[g(z) | glz) > 0] >0 then g(x) >0, for all z € X . To see this
let m = g.1.b.[g(x) | g(z) > 0] and U= {x € X | g(z) <m} ; then
U= {x € X | g(x) = 0} , which implies that U is both open and closed.

This is a contradiction unless U 1is void.

Now, if 0 < g € A1(G) we may assume without loss of generality that
g({x) 21 for all x € X . Select two distinct points a, b € X . By
Urysohn's Lemma there is a continuous function f € G so that
f(x) [0, 1] , and fla) = 0 while f(b) =1 . 0< f=<g , and by our
arguments of the previous paragraph g.1.b.[f(x) | flz) > 0] = 0 . This

is a contradiction, and so AA(G) = 0 as we had claimed.

(5) Let G=12] Z , the free product as abelian I-groups of two
copies of Z . By Theorem 2.8 of [8], G is isomorphic to the I-group of
continuous functions on [0, 1] generated by f(z) = x and
g{z) =1 - x . Applying Lemma 2.1 directly, A(G) =0 .

We shall return to this example shortly.

Next, we shall take a look at D(X) , the I-group of almost finite
continuous functions from a Stone space X into the extended reals.
(Recall: A Stone space is a compact, Hausdorff, extremally disconnected
space.) We need to define a crucial concept first: a point p in a
topological space X is a p-point, if whenever f is a real valued

continuous function on X and f(p) =0, then f =0 on a neighbourhood
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of p. If f is a real valued continuous function on X , let supp(f)
stand for the set {x € X | f(x) # 0} .

THEOREM 2.3. Let X be a Stone space and G = D(X) . Then
A(G) = {f € G | supp(f) s closed and consists of p-points} .
An(G/An(G)) =0 .

Proof. Suppose first that 0 < f € G and supp(f) is a closed set

consisting of p-points. Let
Py ={g €G| g=0 on a neighbourhood of ¥} ,

with y € X ; by Proposition 3.1 in [2] these are precisely the minimal
primes of G . So if f § Py then f(y) >0 , and y is a p-point, or

else f(y) = 0 but every neighbourhood of ¥y contains a point of
supp(f) ; that is, y € supp(f) . This contradicts our hypothesis, and
hence f(y) > 0 . Using Theorem 3.11 in [2], Py is a maximal Z-ideal

and hence a value of f ; clearly f € A(G) .

Conversely, suppose O < f € A1(G) yet f(z) > 0 at the non p-point
z € X . Without loss of generality we may suppose f(3) =21 since A4(G)
is a real subspace of G . Let V= {x €X | flz) >1/2} ; then V is a
neighbourhood of 2z . Since 2 1is not a p-point there is a function
0 < g € G such that g(z) = 0 yet each neighbourhood U of 2 contains
a point & with g(s) >0 .

Let V, = {x €X ] glz) <1/m} nV,; V, is a neighbourhood of z ,

so we may select an sn € Vn such that g(sn) >0 . Then 1lim g(sn) =0
nroo
while f(sn) >1/2 , for all n=1, 2, ... . Since f € AL(G) there

should be a positive integer k so that f A kg = f A (k+l)g ; yet for
each k , (k+1)/n < 1/2 if n is large enough. Thus
kg(s,) < (k+l)g(s,) < (k+1)/n < 1/2 < f(e,) , so that

(f/\kg)[sn] < (fA(k+1)g) (Sn) 3 this is a contradiction. We conclude that
f veanishes at all non p-points.

If =z € supp(f) while f(x) =0 , there is a sequence of p-points
{tn} so that 1lim f(tn) = 0 , while each f[tn) > 0 and finite. Using
7

f2 as in the proof of Theorem 2.2 one can obtain a contradiction to the
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supposition that f € A4(G) . It follows that f(x) > 0 , and supp(f)

is closed.
Next, suppose O < h + Ai(G) € An{G/An(G)) with % > 0 ; then either
(1) h(x) >0 at some non p-point x € X , or else
(2) ‘supp(#) contains a non p-point.

We leave the second case to the reader.

In the first case we may suppose as earlier in the proof that
h{zx) 21 and let V ={t € x | h(¢) > 1/2} . Choose a positive function
d so that d(x) = 0 , yet each neighbourhood of x contains a point s
for which d(s) >0 . Again let V, ={tex| dt)y<i/m} nV , and

select s €V = so that d(sn) >0 ; then d f Ax(G) since supp(d) is

not élosed. As earlier h A kd < h A (k+1)d , for each k = 1 ; further
[AA(k+1)-hAkd])(z) = O .

Finally, if h A (k+l)d - h A kd were in A1(G) it would be real
valued. Also [hA(k+1)d-hAkd](tn] = d(tn) for large enough n ; the

latter sequence converges to O , so that one can once again use the
squaring method of the proof of Theorem 2.2 to get a contradiction. Hence
h A (k+1)d + AL(G) > h A kd + AL(G) for 211 k=1, 2, ... ; this
contradicts our initial assumption, so it follows that A&[G/AA(G)) =0 .

To conclude this section let us observe that if G is any I-group
which is a subdirect product of I-groups whose h.a. kernel is zero, then

AM(G) = 0 ; (see Proposition 1.8 in [8]). This enables us to show:

PROPOSITION 2.4. If A and B are abelian l-groups and
G=A4] B, the free product as abelian l-groups, then if G is a
subdirect product of integers, An(G) =0 .

Proof. By the proof of Proposition 3.4 in [7], G is then a
subdirect product of copies of Z ]| Z , whose h.a. kernel is zero (Example
5).

NOTE. ¢ satisfies the hypotheses of Proposition 2.4 if 4 and B
are both hyper-Z I-groups; recall from [§] that an I-group is hyper-I
if it is a subdirect product of integers and each I-homomorphic image has

the same property.
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3. Two examples
Let us record the following result, Proposition 1.10 in [&].

THEOREM 3.1. If G is a subdirect product of integers, say
G S.T_T{ZA | A € A} , and G contains a bounded weak order unit, then

An(G) consists of all the bounded functions in G .

(Recall that 0 < e € G 1is a weak order unit if e A g > 0 for all
0<g€G.)

In [4] Conrad showed that a free abelian Z-group on two or more
generators had the property that in every representation as a subdirect
product of integers there were no non-zero bounded functions. The gquestion
was then raised by him of how close this came to characterizing free

abelian I-groups.

Consider a free product G = A | B of two abelian I-groups so that
G is a subdirect product of integers. According to Proposition 2.l4,
At(G) = 0 ; moreover, in any subdirect product of integers a bounded
functions is in the h.a. kernel. It follows that ¢ has no non-zero
bounded function in any representation by integers. A and B can be

selected so that G is not free; for example let! A=B=1.

Theorem 3.1 leaves open the question of what Ax(G/A(G)) is; we

give an example of a subdirect product of integers so that

An(G) < AnQ(G) =G , and Ax(G) is a prime subgroup.

o«
Let H =] ] Zn s Z =1, foreach n=1, 2, ... . Let G be the
n=1 n
l-subgroup generated by H(u) and v , wvhere u = (1, 1, ...) and

v=1(1,2,3, 4,5, ...) . By Theorem 3.1, An(G) = H(u) . It is not
too hard to show that if x € H , then x € ¢ if and only if x - nv is
bounded for a suitable integer n . It is evident then that G/A4(G) =7 ,

so that G = Aaz(G)

This example also indicates how to construct an example of a subdirect

! The argument can also be presented by quoting Theorem 3.3 in [7], to the

effect that these free products have no singular elements, and then using a
result of Conrad in [4]: if a subdirect product of integers has no
singular elements, then it has no non-zero bounded functions.
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product of integers G so that AM(G) = ¢ and Aﬂm-l(G) < G , for any
[oe]

predetermined integer m . Once again let H = I | Zn s, u= (1,1, ...)
n=1

and v, = (2, 2k, 3k, hk, ...) » 1=k <m1. Then define G to be the

l-subgroup of G generated by H(u) and {vl, Vgs vees vm} .

4. Parting comments

It would be nice if the h.a. kernel were well behaved with respect to
large subgroups; (recall that the I-subgroup H of & is large in G
if for each non-zeroc convex I-subgroup X of G, K nH # 0 ). What we
would like is to have At(H) = H n Ax(G) if H 1is a large subgroup of
G . Then we could use our theorem about the h.a. kernel of D(X) to some

advantage, in view of the so-called Bernau embedding theorem for
[>2]

archimedean I-groups. However, if G = l Rn , the Ll-group of all real
n=1

sequences, and H is the I-subgroup of all eventually constant sequences,
(o]

then Ax(g) = H Rn , while according to Theorem 2.2, At(H) = H ; that
n=1

is, H 1is hyper-archimedean. H 1is large in G , yet
An(H) D A(G) = AR(G) nH .

Another important question is the following. When is the h.a. kernel
of an Il-group dense in G ? (Recall that the I-subgroup H of G is
dense in G if for each 0 < g € G there is an element 0 < 2 =g , with
h €H.) A convex Ll-subgroup A of G is dense in G if and only if
A" = G . So it is immediate from Theorem 1.2 that if AL*(G) = G then
AZ(G) is dense in G .

If G is an archimedean l-group with basis then it is well known
that G may be expressed as a subdirect product of reals in such a way
that G contains the cardinal sum. Since the h.a. kernel of (G contains
this cardinal sum it follows that A4(G) is dense in G . However, our

very first example shows that A1*(G) may be a proper subgroup.

We should point out that if A%(G) is a cardinal summand of an
l-group G , then An*(G) = AZ(G) , but the converse is false.
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This is a good place to mention a conjecture. If & is an
archimedean Z-group and A4{G) is dense (or large) in G , then G is a
subdirect product of reals. In particular, if A4*(G) = G the same

conclusion is valid.
Finally, we mention two unpublished results of Conrad:

(a) if G is a finite valued I-group, then A%#*(G) = G if
and only if the set of regular subgroups of G satisfies

the descending chain condition;

(b} let A be a root system; that is, A is a p.o. set, and

if Al u in A +they have no common lower bounds. Consider
v =v(A, RA) = {v €] |{RA | A € A} the support of v
satisfies the ascending chain condition} 5

as is well known, V 1is an [l-group if one declares
0 <v €V if and only if each maximal non-zero component of

v 1is positive. (For details the reader may consult [3] or
£61.)

AM*(V) = {v € V | v is finitely non-zero, and if vy # 0 then

{u € A| u=A} has finitely many maximal chains

and satisfies the descending chain condition} .
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