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The hyper-archimedean kernel

sequence of a lattice-ordered group

Jorge Martinez

The hyper-archimedean kernel AA(G) of a lattice-ordered group

(hence forth Z-group) is the largest hyper-archimedean convex

Z—subgroup of the Z—group G . One defines A.A. (G) , for an

ordinal a as U AA.a(G) if a is a limit ordinal, and as the
a<a

unique Z-ideal with the property that

otherwise. The resulting "Loewy"-like sequence of characteristic

Z-ideals, A/t(G) c M2(G) c . . . c A/ia(G) E . . . , is called the

hyper-archimedean kernel sequence. The first result of this note

says that each A/i°(G) <=_ M(G)" .

Most of the paper concentrates on archimedean Z-groups; in

particular, the hyper-archimedean kernels are identified for:

D(X) , where X is a Stone space, a large class of free products

of abelian Z-groups, and certain Z-subrings of a product of

real groups.

I t is shown that even for archimedean Z-groups the hyper-

archimedean kernel sequence may proceed past n/t\j) .

1. Introduction

The purpose of this note is to derive structure of an archimedean
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Z—group using the notion of the hyper-archimedean kernel sequence defined

in [is]. Our general terminology and notation is standard, as in [3]; the

special notions to be discussed here are in the notation of [8].

An Z-group H is hyper-archimedean if i t is archimedean and every

Z-homomorphic image of H is archimedean. The following theorem

encapsules the basic facts about the structure of hyper-archimedean

Z-groups. Many individuals have contributed to this well known theorem;

for a fairly complete history see Theorem 1.1 in [5].

THEOREM 1.1. For an l-group G the following are equivalent:

(1) G is hyper-archimedean;

(2) every proper prime subgroup of G is maximal, and hence

minimal;

(3) the regular subgroups of G form a trivially ordered set;

(h) G = G(g) ffl g' } for each g € G ;

(5) if 0 < a , b € G then [a-(nibML)] A b = 0 , for some

positive integer m ;

(6) if 0 < a , b € G then a A nb = a A (n+l)b s for some

positive integer n ;

(7) G is l-isomorphic to an l-subgroup G' of 1 |~{R. | i £ l}

so that for all 0 < x , y € G' , there exists an n > 0

such that nx. > y. whenever x. > 0 . (R. = R , the

additive group of reals with the usual ordering, for each

i € I .)

NOTES. (a) With reference to the notation in (It), i f x 6 G , 5(x)

denotes the convex Z-subgroup generated by x . If {(?. | X € A} is a

family of Z-groups then G = 93{C-. | X € A} i s the direct sum of the G-.
»

with coordinatewise ordering.

If x i s a subset of an Z-group G ,

X' = {g e G | \g\ A \x\ = 0 , for a l l x € X}

i s t h e polar of X ; g' = {g}' = G(g)' .

(b) It should be noted that Conrad calls hyper-archimedean Z-groups
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epi-archimedean; see [5] .

If G i s an Z-group there i s a convex Z-subgroup Kn.(G) which i s

hyper-archimedean and contains every hyper-archimedean convex Z-subgroup

of G . M(G) i s character is t ic ; that i s , invariant under a l l

Z-automorphisms of G , and 0 < g € AA(G) i f and only i f a l l i t s values

are minimal prime subgroups. Further AA-(G) i s the intersection of a l l

non-minimal primes of G . We ca l l A/i(G) the hyper-archimedean kernel of

G , henceforth to be abbreviated h.a. kernel. I t was f i r s t introduced and

characterized as indicated in the l ines of th i s paragraph in [S]. by the

author for representable Z-groups; then in [5] Conrad removed the

author's assumption of representabi l i ty .

I f o i s an ordinal, define Ai (G) as follows:

(a) Ma(G)/A40~1(G) = /Vi(G/A^.a"1(G)) , i f a i s not a limit

ordinal;

(b) A*a(G) = U A*a(G) , otherwise.
a<a

Then AA.(G) C M2(G) C . . . cAt°(ff) c . . . , and a l l entries in th i s

sequence are characterist ic Z-ideals. This i s the hyper-archimedean

kernel sequence (henceforth h.a. kernel sequence).

The following was not defined in [S]: by a standard cardinality

argument A/t (G) = kh. (G) for a suitable large ordinal x . We define

AJL*{G) = U AA.°(G) ; thus AA*(G) = AA.T(G) for some ordinal x .
a

THEOREM 1.2. For any l-group G, KK*(G) C AA.(G)" .

Proof. If suffices to show that i f AA.°(G) C M(G)" then

A*a+1(G) c AA(C)" . If KfLa{G) c A î(G)" then M0(G)' = AK(G) ' .

So suppose 0 < x € kh. (G) n AA(G)' ; then the values of

x + At. (G) are minimal prime subgroups of G/A/i (G) . Any such value i s

of the form N/An.a(G) where N i s a prime subgroup of G . Either N i s

i t s e l f a minimal prime of G , or else i t contains a minimal prime subgroup
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M of G , and then M j) kti \G) . We may then select y € AA°(G)\M ; by

our assumption about a , x A y = 0 , and th i s i s absurd.

Therefore each prime subgroup N of G so that fl/kh. (G) i s a

value of i + A* (G) , i s a minimal prime of G , proving that x € A/i(<?) .

This"is once again a contradiction. Hence A/i (<J) n AA(G) ' = 0 ; that

i s , , A/iO+1(G) c A/i(G)" as promised.

2 . The h .a . kernel sequence app l ied to archimedean z-groups

The central question here is naturally: how long can the h.a. kernel

sequence be? Obviously, if one makes no restrictions on the types of

Z—groups one wishes to consider the answer i s : as long as one pleases.

Simply specify an ordinal a and then construct a long enough

lexicographic product of copies of the reals.

So let us ask the question again for archimedean Z-groups. Let us in

fact ask: if G is an archimedean Z-group, is AA*(G) = AJi(G) ? The

answer is not, but most archimedean Z-groups one considers have, in this

sense, ar t r ivial hi'av kernel sequence.

I t is'useful to4 start with the following characterization of AM.G) •

LEMMA 2 .1 . Suppose G is a representable l-group; 0 < x is in

AJL(G) if and only if for each 0 < a € G there is a positive integer n

so'that x A na = x A

Proof. Suppose - 0 < x € AA(G) and 0 < a € G ; then x A a is in

AJL(G) , so by Theorem 1.1 (6), x A n(xAa) = x A (n+l)(xAa) , for a

suitable positive integer n . •' Since fc(xAd) = kx A ka in a representable

Z-group for all k Ji 1 , we get x A n(x/\a) = i A n i A r a = i A « a , so

that x A na = x A (n+i)a .
.' • • -

Conversely, if x A na = x A (n+l)a ,' for all 0 < a € G , and an

appropriate .« = n(a) , then G(x) is hyper-archimedean by Theorem 1.1.

Consequently, x € AA.(G) .

COROLLARY 2.1.1. If G is representable, M(G) = D [G(a)&i'] .
• • • • - • • • - . . • - • • . . • - . . . 0 < a

Proof. By our lemma, 0 < x € M.(G) i f and only i f whenever
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0 < a € G , x A na = x A (n+l)a , for a suitable n . This equation i s

valid i f and only if [x-(naAx)] A a = 0 ; that i s , i f and only if

x - (naAx) € a' . Since no. A x € G(a) , i t i s clear that 0 < x € AR(G)

if and only i f x € G(a) B a' for a l l 0 < a € G .

Now le t us have a look at a few examples.

(1) G = TT{R
A 1 x e AJ » where R

x = R for each X € A . From

Lemma 2.1 i t i s clear that A/i(G) = S3. R, . Now we wish to identify
A A

At2(G) , so we look at A/t(G/A/!.(G)) : if 0 < x + A/i(G) € k>i{G/K>i<G))

then each value of x is either a minimal prime of G or else properly

contains a minimal prime M £ A/t(G) . However, each such minimal prime M

is of the form G, = {g € G | g. = o} , since Af will be the value of an

element of At(G) . Thus M is maximal, giving us a contradiction. It

follows that every value of x is a minimal prime, putting x € AA.(G) ,

again a contradiction. The conclusion is then A/i(G/A/i(G)) = 0 ; that is,

Af(G) = A*(G) = A/i*(G) .

(2) G = ] f{Z. | X € A} , where 1, = 1 , the additive group of

integers with the usual ordering. Again using Lemma 2.1 we can see that

A'i(G) is the Z-ideal of bounded integral functions. That

A*.(G/A/L(G)) = 0 can be seen as follows. If 0 < x + M(G) € M(G/A*.(G))

then x is unbounded and - taking x > 0 without loss of generality - we

can find a sequence X., \n, ..., X , € A such that the x. diverge.

1 2 n \n
Define u € G as follows: a, is the largest integer 5 /x. , for all

Xi ki
1 = 1, 2, . . . , and u^ = 0 otherwise; then u \ kh.(G) .

For each posit ive integer m , x A (m+l)w - x i\ mu i s unbounded:

note that

, i f mu. 2 x. ;

,
x^ - mû  , i f (m+l)«x 2; x^ >

i i i i

, i f X. •- \m>.i./M. .
A . A .i
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p
For each m , there i s an i = 1, 2, . . . such that (m+l) < x. • , for

3

all 3 > i . It is easy to see that this implies that (m+l)u, < x, ,
A » A •

3 3

when j i t . I t should now be clear that x A (m+l)u - x A mu is indeed

unbounded.

This is a contradiction, for according to Lemma 2.1 there i s an m > 0

so that (xmu) + AA(G) = (xA(m+l)w) + Afi(G) . We conclude therefore that

Afi{G/AA(G)) = 0 .

THEOREM 2.2. Let G be an l-subring of ~\~\ \ faith R, = R for

each X € A ) consisting of bounded functions. Then Ah(G) is the

subgroup generated by

T = {0 < g € G | g . l . b . [>x | gx > 0] > 0 ,

and each positive element h < g also has this property] .

Moreover, A*.{G/AK{G)) = 0 .

Proof. From Lemma A in [3] it is clear that if 0 < g f T then

g € AA(G) . Conversely, suppose 0 < g € Afi(G) but

g.l.b. \g, | g, > 6] = 0 ; then we can find a sequence

X , X , ..., X , ... in A such that lim g, = 0 . Let s = g ;
-L 2 n «_w« "•„.Kn

without any loss of generality we assume each gr, < 1 . By Lemma 2.1
i

there i s an m > 0 so that g A ms = g A (m+l)s . For a l l but f in i te ly
< l / ( '"+ l) ; thus (tfi+l)s, = (,m+l)g. < g^ . So

i i i i

(gtois), = ms, and (^A(OT+1)S), = (m+l)e. , and then
i i i i

g A ms < g A (m+l)s , a contradiction. Therefore,

g.l.b. [g^ | ̂  > 0] > 0 , and clearly g € T .

Suppose now by way of contradiction that 0 < g + AA(C) in

A?I[G/AA.(G)) . Then either g.l.b. [g, \ g-. > o] = 0 or some element below

g has this property. Without loss of generality we take g > 0 and

g.l.b. Qj\ | g-. > 6] = 0 . We use the notation of the previous paragraph:

2
lim g-^ = 0 . By setting s = g once more, notice that for each m > 0 ,

*°° n
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[gA{m+l)s-gtons]. = s. for all but finitely many X. . Since
i i v

lim s. = 0 we have that g A (m+l)s - g A ms fi M(G) ; moreover
nn

s £ A/i(G) , hence g A (m+l)s + Â i(G) > g A ms + AA(G) , for all m > 0 ,

contradicting the hypothesis that g + AA(G) € A/I(G/A/L(G)) . Plainly then

A/i(G/A/i(G)) = 0 .

Let us continue with our examples.

(3) Suppose G is a free abelian Z—group on two or more generators;

Bleier [J] has shown that G has no non-trivial characteristic Z-ideals.

Since G is obviously not hyper-archimedean Afi(G) = 0 = AA*(G) .

(h) Let G = C{X) , the group of all real valued continuous functions

on a compact, connected Hausdorff space X . It is a consequence of

Theorem 2.2 that M(G) = 0 ; for if 0 < g € G and

g.l.b.[#(a:) | g(x) > 0] > 0 then g{x) > 0 , for all a; € X . To see this

let m = g.l.b.[ff(a;) | g{x) > 0] and U = {x € X \ g{x) < m] ; then

U = {x € X | g(x) = o) , which implies that V is both open and closed.

This is a contradiction unless V is void.

Now, if 0 < g i. AA(G) we may assume without loss of generality that

g(x) > 1 for all x € X . Select two distinct points a, b € X . By

Urysohn's Lemma there is a continuous function / € G so that

f(X) c [o, 1] , and f(a) = 0 while f(b) = 1 . 0 < / £ g , and by our

arguments of the previous paragraph g.l.b. [/(a:) | fix) > 0] = 0 . This

is a contradiction, and so kh.{G) = 0 as we had claimed.

(5) Let G = Z J[ Z , the free product as abelian Z-groups of two

copies of Z . By Theorem 2.8 of [8], G is isomorphic to the Z-group of

continuous functions on [0, l] generated by f(x) = x and

(̂a;) = 1 - x . Applying Lemma 2.1 directly, M(G) = 0 .

We shall return to this example shortly.

Next, we shall take a look at D(X) , the Z-group of almost finite

continuous functions from a Stone space X into the extended reals.

(Recall: A Stone space is a compact, Hausdorff, extremally disconnected

space.) We need to define a crucial concept first: a point p in a

topological space X is a p-point, if whenever / is a real valued

continuous function on X and f{p) = 0 , then / = 0 on a neighbourhood
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of p . If / is a real valued continuous function on X , let supp(/)

stand for the set {x £ X \ f{x) t 0} .

THEOREM 2 .3 . Let X be a Stone space and G = D{X) . Then

AA(G) = {/ € G | supp(/) is closed and consists of p-points} .

= 0 .

Proof. Suppose first that 0 < f € G and supp(/) is a closed set

consisting of p-points. Let

P = {g € G | g = 0 on a neighbourhood of y) ,

with y € X ; by Proposition 3.1 in [2] these are precisely the minimal

primes of G . So if f f P then /(j/) > 0 , and £/ is a p-point, or

else /(j/) = 0 but every neighbourhood of y contains a point of

supp(/) ; that is, yd supp(/) . This contradicts our hypothesis, and

hence f(y) > 0 . Using Theorem 3.11 in [2], P is a maximal Z-ideal

and hence a value of / ; clearly / 6

Conversely, suppose 0 < f € A/t(G) yet f(z) > 0 at the non p-point

z € X . Without loss of generality we may suppose f{z) 2 1 since A/t(G)

is a real subspace of G . Let V = {x € X | f(x) > 1/2} ; then 7 is a

neighbourhood of z . Since z is not a p-point there is a function

0 < g € G such that g(z) = 0 yet each neighbourhood U of z contains

a point s with g(s) > 0 .

Let V = {x € X | #(*) < 1/n} n V ; 7 is a neighbourhood of z ,

so we may select an s € V such that g[s ) > 0 . Then lim g[s ) = 0
7T+oo

while /(ej > 1/2 , for all w = 1, 2, .... Since f € M.(G) there

should be a positive integer k so that f A fey = f A (fe+l)^ ; yet for

each fe , (k+l)/n < 1/2 if n is large enough. Thus

kg[sn) < (k+l)g[sn) < (k+l)/n < 1/2 < /(sj , so that

sM) < [f*(k+l)g) [s ) ; this is a contradiction. We conclude that

vanishes at all non p-points.

If x € supp(/) while f{x) = 0 , there i s a sequence of p-points

{t } so that lim f[t ) = 0 , while each f[t ) > 0 and f in i t e . Using

7 as in the proof of Theorem 2.2 one can obtain a contradiction to the
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supposition that / € AK(G) . I t follows that f{x) > 0 , and supp(f)

is closed.

Next, suppose 0 < h + M(G) € AI[G/AA.(G)) with ft > 0 ; then either

( l ) h(x) > 0 at some non p-point x ? X , or else

(2) supp(fe) contains a non p-point.

We leave the second case to the reader.

In the f i r s t case we may suppose as ear l ie r in the proof that

h(x) 5 1 and l e t V = {t 6 X \ h(t) > 1/2} . Choose a positive function

d so that d(x) = 0 , yet each neighbourhood of x contains a point s

for which d{s) > 0 . Again l e t ^ = {t € X \ d(t) < 1/n} n V , and

select s € V so that d[s ) > 0 ; then d fi M.(G) since supp(d) i s

not closed. As ear l ier h A kd < h A (?c+l)<i , for each k 5 1 ; further

[hh{k+X)-h/<kdUx) = 0 .

Finally, i f h A (k+l)d - h A fed were in M.(ff) i t would be rea l

valued. Also [hh(k+l)d-hhkd][t ) = d[t ) for large enough n ; the

l a t t e r sequence converges to 0 , so that one can once again use the

squaring method of the proof of Theorem 2.2 to get a contradiction. Hence

h A (fe+l)d + AA(G) > h A kd + A/i(G) for a l l k = 1, 2, . . . ; th i s

contradicts our i n i t i a l assumption, so i t follows that k)i\G/kfi(G)) = 0 .

To conclude th is section l e t us observe that i f G i s any Z-group

which i s a subdirect product of Z-groups whose h.a. kernel i s zero, then

Afi(G) = 0 ; (see Proposition 1.8 in [8] ) . This enables us to show:

PROPOSITION 2.4. If A and B are abelian l-groups and

G = A j|_ B j the free product as abelian l-groups, then if G is a

subdireat product of integers, M.(G) = 0 .

Proof. By the proof of Proposition 3.1* in [7 ] , G i s then a

subdirect product of copies of Z J[ Z , whose h.a . kernel i s zero (Example

5).

NOTE. G sa t i s f ies the hypotheses of Proposition 2.1+ i f A and B

are both hyper-Z Z-groups; reca l l from [S] that an Z-group i s hyper-1

i f i t i s a subdirect product of integers and each Z-homomorphic image has

the same property.
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3. Two examples

Let us record the following result, Proposition 1.10 in [S].

THEOREM 3.1. if G is a subdirect product of integers, say
G c ] f"{Z. | H A} , and G contains a bounded weak order unit, then

AJi{G) consists of all the bounded functions in G .

(Recall that 0 < e € G is a weak order unit if e A g > 0 for al l
0 < g € G .)

In [4] Conrad showed that a free abelian Z-group on two or more
generators had the property that in every representation as a subdirect
product of integers there were no non-zero bounded functions. The question
was then raised by him of how close this came to characterizing free
abelian Z-groups.

Consider a free product G = A J|_ B of two abelian Z-groups so that
G is a subdirect product of integers. According to Proposition 2.U,
M.(G) = 0 ; moreover, in any subdirect product of integers a bounded
functions is in the h.a. kernel. It follows that G has no non-zero
bounded function in any representation by integers. A and B can be
selected so that G is not free; for example le t 1 A = B = Z .

Theorem 3.1 leaves open the question of what k>i[p/k>i(G)} i s ; we
give an example of a subdirect product of integers so that

foi{G) C A/I2(G) = G , and A/L(G) is a prime subgroup.

00

Let E = *TT Z ! Z = Z , for each n = 1, 2, ... . Let G be the

Z—subgroup generated by H(u) and v , where u = (l, 1, ...) and

V = (1, 2, 3, h, 5, •••) • By Theorem 3.1, A4(G) = H(u) . It is not

too hard to show that if x € H , then x € G if and only if x - nv is

bounded for a suitable integer n . It is evident then that G/AK(G) & 1 ,

so that G = A/i2(G) .

This example also indicates how to construct an example of a subdirect

1 The argument can also be presented by quoting Theorem 3-3 in [7], to the
effect that these free products have no singular elements, and then using a
result of Conrad in [4]: if a subdirect product of integers has no
singular elements, then it has no non-zero bounded functions.
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product of integers G so that A/im(G) = G and AA.m" (G) c G , for any
CO

predetennined integer m . Once again let E = ] f Z , u = (l, 1, ...)

w=l

and v, = ( l , 2 , 3 , h , . . . ) , 1 5 k 5 m-1 . Then def ine G t o be t h e

Z-subgroup of G generated by H(u) and {v , V , . . . , V^} .

4. Parting comments

It would be nice if the h.a. kernel were well behaved with respect to

large subgroups; (recall that the Z—subgroup H of G is targe in G

if for each non-zero convex Z-subgroup K of G , K n H ? 0 ). What we

would like is to have AK(H) = H n A/i(G) if H is a large subgroup of

G . Then we could use our theorem about the h.a. kernel of D(X) to some

advantage, in view of the so-called Bernau embedding theorem for

archimedean Z-groups. However, if G = ~| [ R , the Z--group of all real
n=\ n

sequences, and H is the Z-subgroup of all eventually constant sequences,

then A-t(G) = E i? , while according to Theorem 2.2, Ki{H) = H ; that
n=l "

is, H is hyper-archimedean. H is large in G , yet

A/t(#) 3 A/t(G) = A/i(G) n H .

Another important question is the following. When is the h.a. kernel

of an Z-group dense in G ? (Recall that the Z—subgroup H of G is

dense in G if for each 0 < g € G there is an element 0 < h S g , with

h £ H .) A convex Z-subgroup A of G is dense in G if and only if

A" = G . So it is immediate from Theorem 1.2 that if AA*(G) = G then

AA.(G) is dense in G .

If G is an archimedean Z-group with basis then it is well known

that G may be expressed as a subdirect product of reals in such a way

that G contains the cardinal sum. Since the h.a. kernel of G contains

this cardinal sum it follows that A/L(G) is dense in G . However, our

very first example shows that A^.*(G) may be a proper subgroup.

We should point out that if AA.(G) is a cardinal summand of an

Z-group G , then A*.*(G) = A/i(G) , but the converse is false.
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This is a good place to mention a conjecture. If G is an

archimedean Z-group and AA.(ff) is dense (or large) in G , then G is a

subdirect product of reals. In particular, if A/i*(G) - G the same

conclusion is valid.

Finally, we mention two unpublished results of Conrad:

(a) if G is a finite valued Z-group, then A>i*(G) = C if

and only if the set of regular subgroups of G satisfies

the descending chain condition;

(b) let A be a root system; that i s , A is a p.o. set, and

if X || y in A they have no common lower bounds. Consider

V = K(A, RX) = {v € TT{Rx I X € AJ t h e support of v

satisfies the ascending chain condition} ;

as is well known, V is an Z-group if one declares

0 < v € V if and only if each maximal non-zero component of

v is positive. (For details the reader may consult [3] or

161.)

kfi*{V) = {v € V I V is finitely non-zero, and if V. ? 0 then
A

(|l ( A | y < X} has finitely many maximal chains

and satisfies the descending chain condition} .
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