HYPERBOLIC CONVOLUTION OPERATORS
TAKAO KAKITA

1. Introduction. Hyperbolic differential operators with constant coeffi-
cients introduced and studied systematically by Garding (4), were characterized
by the existence of the fundamental solution with some cone condition, accord-
ing to Hormander (6). Recently Ehrenpreis, extending the notion of hyper-
bolicity due to Garding, has defined hyperbolic operators for distributions with
compact support in the convolution sense. Under the hypothesis that the
operator is invertible as a distribution, he has established a theorem analogous
to the theorem of Hérmander mentioned above (3). Motivated by these results,
we shall define “hyperbolic convolution operators’” which are similar to (but
slightly different from) semi-hyperbolic operators in (3). In Section 2 we shall
show that hyperbolicity for convolution operators can be reduced to that for
“truncations’’ of those operators. In Section 3 we shall discuss particularly
hyperbolicity for finite difference—differential operators and characterize them
in terms of their Fourier transforms. We shall give in Section 4 an algebraic
condition for convolution operators (distributions with compact support) to
be hyperbolic. In Section 5 we shall introduce some convolution operators
with a leading linear differential operator P (D) and prove that the convolution
operator is hyperbolic if and only if its support is contained in a cone and
P (D) is hyperbolic in the sense of Garding. Finally in Section 6 we shall show
how smoothness of the fundamental solution for the operator in Section 5
depends on that of the fundamental solution for P (D).
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many helpful suggestions and much kind encouragement during the prepara-
tion of this paper. To Professor F. V. Atkinson, Professor L. Schwartz and
Professor L. Ehrenpreis [ am also indebted for valuable suggestions and com-
ments on this work, and Mr. F. Suzuki I should like to thank for his valuable
advice.

2. Hyperbolic operators.

2.1. Definitions. We shall fix a real vector N € R* throughout the paper.
A differential operator (of order m) P (D) is defined by

P(D) = >, a,D*
la|<m
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where all a, are constants, and particularly a, for |a| = m are not all zero and

(2T e
D—<’L P 1 ) 1 ox.

with a) > 0 integers. Let us denote by p the principal part of the polynomial
P(¢), that is

p() = lZ o £

al=m

A polynomial P is said to be hyperbolic with respect to N if p(INV) # 0 and
there is a real number £, such that

P+ 4tN) #0 when £ € R" and ¢ < &,.

By a T'-cone we mean a closed cone having no points #0 in common with
the half-space x-N < 0, where the dot denotes the inner product operation
in R". Then a theorem of Hormander may be stated as follows.

THEOREM 2.1.1. 4 polynomial P is hyperbolic with respect to N if and only
if there exists a fundamental solution E, for the differential operator P (D),
whose support is contained in a T-cone.

Now this theorem makes it natural to define ‘“hyperbolic convolution
operators’” as in the following, where &’ denotes the space of distributions
with compact support (8, vol. 1, p. 88).

DEeFiNITION 2.1.1. Let S € &'. Then S 1s said to be hyperbolic with respect
to N if there is a fundamental solution E for S

S*E =36
such that the support of E contains O and is contained in a certain T-cone.

Since all distributions with support limited to the left with respect to a
T-cone are associative and commutative for convolution (8), we have a unique-
ness theorem on fundamental solutions.

THEOREM 2.1.2. Let S € &' be hyperbolic with respect to N. Then there exists
one and only one fundamental solution for S, with support in a T-cone.

Proof. Assume that E; and E, are two fundamental solutions, supports of
which are contained in a I'-cone. Then the equalities
E, =6*FE,
= (S* Ey) * E;
= (Ey%.S) % E;
= Ey % (S Ey)
= FEy*x 6 = E,,
imply our assertion.
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THEOREM 2.1.3. If S € & is hyperbolic with respect to N, then the support
of S is contained in a T-cone.

Proof. From Definition 2.1.1 we find a fundamental solution E for S with
support in a T'-cone. Let K be the smallest convex I'-cone containing supp E.
(When T is a distribution, we denote by supp 7 the support of 7.) We denote
by K, the translation of K, with vertex at @, and by H, the convex closure
of the set \U, K, where x runs through supp 7. Then a theorem of Lions on
supports (7) gives

(2.1.1) H; = convex closure of (Hg + Hp).

Now we have Hy D K since supp E 3 0. Conversely, for any x € supp E,
K, C K, so that K D Hg. Hence we have Hz = K = H;. Combining this
fact and (2.1.1) we obtain that Hg C K and so supp S C K, which proves
the theorem.

THEOREM 2.1.4. If S € &’ is hyperbolic with respect to N, then so is S with
respect to N’ for all N' in a neighbourhood of N.

Proof. By our assumption, there is a fundamental solution E for S with
support in K defined above. Let U(N) be the set

{N' € R*|x-N' > 0forallx € K; x # 0}.

Then K is also a T'-cone with respect to N’ € U(N) and hence, by definition,
S is hyperbolic with respect to N’ € U(N).

2.2. Singularity at the origin. We say that a distribution S has a singu-

lar point P or that S is singular at P if S is not equal to any C*-function in
any neighbourhood of P. Then we have

THEOREM 2.2.1. If S € &’ is hyperbolic with respect to N, then S must be
singular at the origin.

Proof. Suppose that S is equal to a C®-function in a neighbourhood of O.
Take o € Co* such that a(x) = 1 in a smaller neighbourhood and that

S=aS54+ S,

where aS € Cy® and supp Se C {x-N > ¢} for some ¢ > 0. Now let U be
a neighbourhood of O contained in the half-space x-N < e. Hence for any
¢ 6 CUOO(U)!

(S, ¢) = (a5, ¢).

Since S is hyperbolic with respect to N, we can find a fundamental solution
E for S so that

supp(Se * E) C supp Se + supp E C {x-N > ¢}.
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Hence we have for any ¢ € Cy”(U)
(S*E, ¢) = (aS*E, ¢).

Now let ¢ € C¢” be 1 in a neighbourhood of O, with support in U. Then
we get for any ¢ € Co”

(6, ¢) = Y(aS* E), ¢)
so that
é = ll/(aS*E) S Com,

which is a contradiction. Thus S should be singular at O.

2.3. Truncation. If S is hyperbolic with respect to N, it can be easily
seen that supp S 3 0. Let @ € Cy” be 1 in a neighbourhood of 0. We call a
distribution aS a truncation of S. Then in view of the following theorem we

may reduce hyperbolicity of convolution operators to a property of a small
neighbourhood of O.

THEOREM 2.3.1. If S is hyperbolic with respect to N, then so is any truncation
of S. Conversely, if a truncation of S is hyperbolic with respect to N, so is S.

Proof. By our definition, we have a decomposition of S:
S =51+39,

where S; is a truncation of S and supp S: C {x-N > 0}. First assume that S
is hyperbolic with respect to N. Hence S has to have a fundamental solution
E with support in a T'-cone. Let us consider a geometrical series of convo-
lutions {E,} defined by

Eun= Ex) (ExS5)",
k=0

where E; = E and 7** denotes the k-tuple convolution of 7. Since there is a
positive number e such that
supp Se C {x-N > ¢},

we may see, using a theorem on supports, that

SUPPZ (E * Sz)*k C {x-N > ve},
k=0
from which there follows that

(2.3.1) lim E,

Vo

exists in 9’ (8, vol. 2, p. 71). Now define a distribution E! by (2.3.1). Convo-
luting E,4; by S; and using associativity and commutativity for .S;, S, and
E, we obtain that

https://doi.org/10.4153/CJM-1965-057-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-057-5

HYPERBOLIC CONVOLUTION OPERATORS 563
Si*Eppn = (S—8,) * E,

= (S — S;)*E x Z (E = Sy)**
%=0

=@ —E*S)* ), (E*S)*
k=0

=8 — (E* S)* "+,

Since the last member in the above equalities tends to § when » — », we have

Im(S* E,1) = Si*xE' = 6.

V>0

Thus we have constructed the fundamental solution E! for S;. To see that
S1 is hyperbolic with respect to N it suffices to show that supp E! is contained
in a certain I'-cone. However, it can be verified readily that

supp{E * (E *52)*k} C (& + 1)(supp E) + k(supp Ss) C Ty + Ty,

where T'; and T'; are both T'-cones containing supp £ and supp S respectively.
Therefore we may conclude that

(2.32) supp E C Fl + Pg.

The second member of (2.3.2) being certainly a I'-cone, we have proved the
first part of our theorem.

The same argument as above can be applied to prove the remaining part.
Actually a fundamental solution E for S may be obtained by defining

(2.3.3) E=E's g (—1)H(E! « Sp)**

provided that S; is hyperbolic with respect to N, where E! is a fundamental
solution for .S;, with support in a T-cone. That E given by (2.3.3) satisfies
S* E = § is clear. Thus the proof has been completed.

2.4. Examples. By Theorem 2.1.1 a hyperbolic differential operator P(D)
is hyperbolic as a convolution operator P(D)s. For completeness we shall
construct the fundamental solution with support in the ‘‘wave cone” by a
method due to Hérmander (6). Let P(D) be a hyperbolic linear differential
operator with respect to N, and let T'»(NV) be the set of all N’ such that

p(N'+tN) =0

has only negative zeros. We call T'p(N) the “normal cone’” of P(D). Then
it can be shown that there exist numbers ¢ and C such that

(2.4.1) |P(¢ + itN + 4sN')| > C  for all N' € Tp(N)

when Re? < t; and Res < 0. Let us define a linear form E on Cy* by
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- [2()
2.4.2 E, = (2 d
242) E 0 = e | gD
where { =&+ itN. (The Fourier transform of ¢ € ¥ is defined by
¢~ (&) = (e ¥ ¢(x)). The Fourier inverse transform of ¢ € & is given by
J(x) = (e %=, ¢(£)).) For the definition of .# see (8, vol. 2, p. 89). Since
for ] E Coooy

() = [ (D¢) (x)etdx,

we have for some ¢ and C

‘ ;HHD%HOO l
L Clalstt ot
where ¢ = £ + itN. Thus the second member of (2.4.2) is convergent in view
of (2.4.1) and the above inequality, and then E defines a distribution. More
precisely, the linear form on Cy”

tx.N -n ¢(E)
(" 7E, ¢) = (27) 0) dt
defines a temperate distribution F = ¢*VE. In other words, E is a product
of an exponential function growing in the N-direction and a temperate dis-
tribution. That E is a fundamental solution for P (D) is readily verified. We
remark here that E is independent of the choice of ¢ if ¢ < #. Now if
supp ¢ C {x-N < —e€} we obtain

KE, )| < Cest (¢ € Co™)

with a suitable constant C independent of ¢, from which follows (E, ¢y = 0
making £ — —o. Since we may take e > 0 arbitrarily small provided that
supp ¢ C {x-N < 0}, we conclude that supp E C {x-N > 0}. It follows from
the above remark and (2.4.1) that the contour in the integration (2.4.2) can
be shifted to a contour { = £ + it N + isN’, where s < 0 and N’ € T ().
An argument similar to the above gives

KE, ¢)| < Cevles,

where ¢ € Co™ with support in {x- N’ < —¢} and C and @ are constants inde-
pendent of s. Hence we have (E, ¢) = 0 after making s — — . Consequently
we obtain that supp E C Wp(IV), where

Wp(N) = {x|x-N" >0 for all N’ € Tp(N)}
which we call the wave cone of P(D).
Next we shall give a simple example of a hyperbolic convolution operator

as a function in R? for simplicity.
Let x(x,») be the characteristic function of the square domain in R2:
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[0,1] X [0, 1]. We shall prove that x(x,y) is hyperbolic with respect to
N = (a, b), where a, b > 0. Since

x(x, ) = c(x)c(y)

where ¢(-) is the characteristic function of the interval [0, 1], the Fourier
transform is given by

x (&) =c @) ()
(—Ha-—-e™
&n )

Now let us expand formally x" (¢, 1)~ Since

(1 _ e—iE)—l _ Z e—ilf7
=0

we obtain
X" n) " = (i) (in)lzzo g iEmn

Taking the Fourier inverse transform of the second member, we have

o 2
m2=0 %3y ox — 1,y —m).

This expression suggests a fundamental solution £ for x as follows:

k 2

E =lm ),

koo 1m0 0X0Y

ox — I,y — m).

That the second member is convergent in &' is clear. In order to check that
E has the required property, we shall compute x * Ej, putting
k 2

E,= Y,

1/m=0 0x3Y

dlx — 1,y —m).

From the relation
x@,9) = {Hx) — Hx — DH{H@y) — H@y — 1)},
where H(-) is the Heaviside function, it follows that
2
x* 0xdy

={8(x) —8(x ~ D} X {8(y) —8(y — D)+ {8(x — L,y — m)}
=dx—Ly—m)—d(x—1l—1,y—m)—dlx—1Ly—m—1)
+o(x—1—1,y —m —1).

d(x — 1,y —m)
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Now it can be easily seen that

(2.4.5)  x*E,=0(x,9) —o(x —ky) =80,y — k) +o(x —ky—k).

supp E; supp x* Es

Then the second member of (2.4.5) tends to &(x, y) as £ — . Thus we have
proved that E = lim E; is a fundamental solution for x. Also we have proved
that supp E consists of all lattice points ([, m), where [, m > 0 are integers,
and that the singularity located at each lattice point is uniformly of order 4

(2).
3. Hyperbolicity of finite difference-differential operators.

3.1. Finite difference-differential operators. Let us consider a finite
difference—differential operator
1

(3.1.1) S =Y. Py(D)by.

%=0
If S is hyperbolic with respect to N, then from Theorem 2.1.3 it follows that
(3.1.2) a; = 0 for some k&, aw N > 0 for all &' # k.

Further, since P;(D)é is a truncation of S, Theorem 2.3.1 implies that P;(D)
is hyperbolic with respect to N as a differential operator. Conversely, if S,
given by (3.1.1), satisfies (3.1.2) and if the differential operator P.(D) is
hyperbolic with respect to NV, then using again Theorem 2.3.1 we conclude
that S is hyperbolic with respect to N. Hence we have

THEOREM 3.1.2. A finite difference—differential operator S, given by (3.1.1),
is hyperbolic with respect to N if and only if there exists a B (0 < k < 1) such
that a;, = 0 and ay.-N > 0 for all k' # k, and that Py(D) is hyperbolic with
respect to N.

Now we shall give a precise description of the fundamental solution E for
S with support in a I'-cone. We may assume k = 0 without loss of generality.
In view of Theorem 2.3, E is given by

(3.1.2) E = E¢x* Z: (=n" (Eo* le Pk(D)Bak>*m
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where E, is the fundamental solution for Py(D) just constructed in 2.4. How-
ever, since

1 *m m! “m
<;Pk(D)TakE0> =|E EPI(D)“ oo PuD) "7 part.. v (E0™),

q|=m

we have

©

E = Z (_1)m2 7;_|!E11v

m=0 lgl=m{q-
where

E, = -PI(D)(I1 cee PI(D)qqulax+...+qla1(E:;m)-

Then it is obvious that
l
supp Eq C kz_l qiar, + W, (N)v

where Wp,(NV) is the wave cone of Py(D). Therefore we have

THEOREM 3.1.3. To the hyperbolic finite difference-differential operator S
defined by (3.1.1) corresponds a fundamental solution E with support in the
sum of all the cones, each of which is congruent to Wp,(N) and with its vertex
at some lattice point S 41 qx a consisting of vectors a, . ..,a; and integers
>0 k=1,...,1L

Example. If S = P(D)é + 6, is hyperbolic with respect to N, thena-N > 0
and supp E is contained in the I'-cone

©

U {ma + Ws(N)}.

m=0
aE WP(N) a& WP(N)
//Wo(N) Wo(N) \\\
Q
L
0 x*N=0 0 a 2a x*N=0

3.2. Some algebraic conditions. Let .S, defined by (3.1.1), be hyper-
bolic with respect to N. Then there is a £ (0 < k < I), say 0, such that
ao = 0, Po(D) is hyperbolic with respect to N, and ax-N > 0 for £ =1, 2,
..., 1. Now the Fourier-Laplace transform of S is given by

3.2.1) S™(¢) = Po(¢) + kz=:1 Pk(g')e_"’"'r.

Let T be the set {N’|a;*N’ > 0 for £ = 1,2,...,1}. Bearing in mind that
|Po(¢ + N + isN')| > C,
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for some constant C; when ¢ < ¢, s <0, and N’ € T'p,(N), we have for
another constant Cs

[S™ (£ 4+ itN + isN')| > Ci{l — Co(1 + |& + N + isN'|)mectt0s)
when N’ € Tp,(N) N T, where

m = max deg Py, e = min a;-N, and 6 = min a;-N'.
1<k< 1 1<E<1 1<k< L

Let us choose a constant Cy such that
Co > C, sup (1 + |s])"e.
Since
(I + [ + itN + isN')" < (1 + [& +aN)"(1 + [s)™,
we obtain
IS*(& + itN 4 isN")| > Ci{1 — Co(1 + £ + itN|)me<t}.
Now we can find a constant K > 0 such that —K < ¢; and that
(3.2.2) t < —K[1 + log(1 + [t + [])]
implies
—¢t > 2Co(1 + & + aN)™

Hence below a contour v:

(3.2.3) = —K( + log[l + [t| + [£D],
we have
(3.2.4) IS* (£ + itN + isN')| > C

for some constant Cy. depending only on N’ and S if N' € Tp, (V) N T.

Next we assume that there exists a convex neighbourhood U(N) of N such
that if N’ € U(N), then for some K and Cy- as above, (3.2.2) implies (3.2.4).
In order to construct a fundamental solution for S we define a linear func-
tional on Co™:

(3.2.5) ® 9= en” [
where ¢ € C¢®. We note that [¢|/|¢| and |d¢|/d¢ are bounded on y. Since
for any » > 0,

|¢ (& + N + isN")| < M, (1 + [§ + itN + isN'|))=,

the integration on the above converges. Thus we may see that E defines a
distribution. Now let ¢ € C,®, with support in {x-N < 0}. Then

supp ¢ C {x| x- N < —¢}
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for some ¢ > 0 and we have
| (& + 4N + isN)| < M,(1 + |t + 4N + isN|)~re«+9

for some constant M,. Hence we obtain for any s < 0 that

KE, )| < @m)™ Mpps Cy~' e f (L4 [£ 4 6N + isN|) ™" ! |dg|

< Me®,

where M is a constant independent of s. Making s — — o, we get (E, ¢) = 0.
Thus we conclude that supp E C {x-N > 0}.
Similarly, if ¢ is fixed and ¢ € C,* with

supp ¢ C {xfx-N' < =8} (6> 0),
then there exist constants ¢ and M both independent of s such that
KE, ¢)| < Met'e?.
Thus it follows that supp E C {x* N’ > 0}. Consequently we have proved that
suppEC N {x|x-N' > 0}.

N’'eU(N)
The second member being a T-cone, (3.2.5) defines a distribution with support
in a T-cone. It is obvious that E is a fundamental solution for S. Thus the
following theorem has been proved.

THEOREM 3.2.1. Let S be a finite difference—differential operator. Then a
necessary and sufficient condition that S be hyperbolic with respect to N 1is that
a convex neighbourhood of N, U (N), exist such that for some constants K and Cy.
depending only on N’ and S, (3.2.2) implies (3.2.4) when N’ € U(N).

4. An algebraic condition for hyperbolic convolution operators. In
this section we shall suppose that S € &’ is hyperbolic with respect to N,
and discuss the variety in which S™(¢ + 4#N) is zero-free. A result of the
previous section may suggest to us that S"(¢ 4 4N) 5 0 below some contour
like (3.2.3). Actually we shall prove the following theorem.

THEOREM 4.1. Let S € & be hyperbolic with respect to N. Then for any
positive number o there exist positive constants m and C such that

(4.2.1) IS* (£ + itN)| > et
when
(4.2.2) et > CA 4+ |&§+ aNh™ t <0).

Proof. We shall carry out the proof following the ideas of Hormander (6).
Suppose that our theorem is false. Then we may find a triple of sequences
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{m;}, {C;}, and {&, + it,N} (¢, <0) such that the following conditions are
satisfied for some ¢ > 0:

(1) Chmj—® as j—oo;
@) IS™ (&, + it;N)| < e7'i;
3) et > C;(1 + |&; + it,N|)™i.

The hypothesis on S implies that there exists a fundamental solution E for
S with support in a I'-cone, say I'o. Let w be an open set with compact closure
CTy and let

sup x-IN = 4.

Tew

Now let us introduce a Banach space Cy(@), the set of continuous functions
vanishing outside . Also we introduce the set of C®-functions vanishing when
x-N > 1+ 9, say Cyrs Where

7 = max x-N.
zesupp S

Then the mapping
(4.2.3) fe Col@) —(f, ¢)

is continuous with the norm ||f||» for each fixed ¢ € C5ys. On the other hand,
for each fixed f € Co(®) there exists a distribution # such that

S*u =f,
supp # C T.

In fact, # = E = f has the required properties. Hence we have the following
equalities, for ¢ € Cyis:

4.2.4) {fy ) = (S*u, p) = (u, S” * ¢).

Since
supp(S” * ¢) C supp S* + supp ¢ C {x-N < 5 + 8},

u should be integrated over the compact set
(4.2.5) ToNf{x-N <7+ 8}

in the last member of (4.2.4). Now let © be a neighbourhood of the set (4.2.5),
contained in the half-space {x-N > —e¢} and with compact closure, and let
Q, be another neighbourhood of the set (4.2.5) such that @, C Q. Let us take
a € Coy®such that a(x) = 1 on Q; and 0 outside Q. Then we define a metrizable
topological linear space Cqys.« by

Crrsa = {a(S"x¢) | ¢ € Cs}

with the topology introduced by semi-norms:

pe(¥) = lﬂzzkllDﬁ Ve ¥ € Chrse
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Since
(fr ¢> = <u7 a(Sv * ¢)>

for each fixed f € Cy(&), there exist an integer £ > 0 and a constant M such
that

(4.2.6) G, ) < M Z () = a(S % ¢).

Hence the linear mapping ¢ — (f, ¢) is continuous on Cjys... Combining
(4.2.3) and (4.2.6) we observe that the bilinear mapping

(4.2.7) fi) =, ¢

from the product space Co(®) X Coys,« to C! is separately continuous. How-
ever, since a separate continuous bilinear form on the product of a Fréchet
space and a metrizable space is continuous (1), the mapping (4.2.7) is con-
tinuous. Therefore there exist an integer 2 > 0 and a constant K such that

k
@28) 6 9 <K 3 0,9 Il
yre
We shall construct a couple of sequences ¢; € Coys, f; € Co(@), 7 =1,2,...,
such that
k
Z=:1py(1lff) [Ifille — O, ¥ = a(S * ¢,)
and

(fron—1

as j — o, which contradicts the inequality (4.2.8). We fix a ¥ € w. Then for
sufficiently small ¢ > 0,
y-N 4 e <.

Now let us define ¢;(x) by
(4.2.9) ¢;(x) = NN — mexpli(y — x)- (§; + it;N)],

where M(8) € C”(RY) has the value 1 when 6 < y-N + ¢ and 0 when 6 > 6.
It is easy to see that ¢; € Cyys. Also define f;(x) by

(4.2.10) fi() = exp(kelt,|) FI(y — x)exp(elt,|/3n)],
where F € Cy” satisfies the condition
fF (x)dx = 1.
That f; € Co(®) for sufficiently large j is clear. Now we shall estimate
IS” * ¢ (x)].

By the definition of ¢; we have

(4.2.11) S x¢,(x) = (S, ¢s(z + x)) = expli(y — x)- (¢, + it,N)]
X (So M(x + 2)- N — nexp[—1z- (¢; + it;N)]).
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First, consider the case x-N > y-N + e Since S is represented as a linear
combination of Dk, where D is some differential monomial and k(x) € L”
with support in a neighbourhood of supp .S and in {x-N > —%e}, it follows
from (4.2.11) that for a differential operator D there exist constants C; and
A such that

IDy;(x)| < Crexplt;(x — 3)-N](1 + |g; + it; N|)* exp(—3et;)

€ A
< G exp<2 - m,)t"

Next, let us discuss the case x-N < ¥-N + e. When 2z € supp .S, we have

(4.2.12) Nx-N +2-N—19) =1.
For, if 2 € supp S, 2- N < 5, and hence
xN+2zN—39<yN+et+2zN—n<y-N+ e

From the definition of A\, (4.2.12) follows. Hence combining (4.2.11) and
(4.2.12) we obtain

(4.2.13) SYx¢i(x) = expls(y — x)- (¢; + it;N)]S™ (&, + u,;N).
From the conditions (2) and (3) and for x € supp « from the relation

xN—y-N> min 2-N —maxz-N

z€ supp a z€w
> —e— 0,

it follows that for a differential operator D there exist constants Cy and B
such that

|Da(S” * ¢;)(x)| < Coexplt;(x — v)-NI(1 + |& + it, N|)® exp(ot;)

< Coexp[<o — (et 8) — %)tj].

In view of (4.2.10) we obtain that for all j and sufficiently small e, §

4214) > nte- Uil < arese] (5 - €)1 ]

y=1 m]'

where C and M are suitable constants. The second member of (4.2.14) tends
to 0 as j — « and so does the first member of (4.2.14).
On the other hand the definition of ¢; and f; implies that

(4.2.15) (Fi o0 = expGelts) [F((v — x)exp(elt,|/3n))
X expli(y — x) (&, + it;,N)IN(x- N — g)dx
= JF)N(—x- N exp(et,/3n) + y-N — n)
X expl{ —ix- (&; + it,N)exp(et,;/3n)} 1dx.
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However, we have
Re[—ix- (§; + it; N)exp(et;/3n)] < [t5]-|x-N| exp(et;/3n)

< Leexp([ts|/m;) exp(et;/3n) = L exp[(g% - J—)h]

my
for a suitable constant L, since C;— ® (j— ®) and since for large j
eltil > C;(1 + [& + it,ND™ > 8]0
Thus in the last member of (4.2.15) the exponential factor in the integrand
exp[—ix- (¢§; + it;N) (exp(et,/3n))] — 1
when j — o because of condition (1), and then also
M—x-Nexp(e;/3n) + y-N — 2] >Ay-N —n) =1
Making j — « under the integral sign in (4.2.15), we conclude that
lim {f;, ¢, = 1
since
fF (x)dx = 1.

Thus we have proved our theorem.

5. Some hyperbolic operators. In this section we shall study when
finite sum distributions of the form

Sy = ZPk(D)lhc

are hyperbolic, where u; are measures with compact support. We say that
a differential operator P(D) is ‘“strictly stronger’”’ than another differential
operator Q(D) (which we denote by Q << P) if Q(D) < P(D) and deg Q(¢)
< deg P({). Now let us consider the case where

1
(6.1) Sy = PD)s + kZ_l Py(D)u € &',

supp px C supp S.

Hérmander proved in (6) that if u, =6, Py << P for k =1,2,...,! and
if P is a homogeneous hyperbolic differential operator (with respect to N),
then S; is hyperbolic (with respect to V). In the following we shall prove
a generalization of this theorem.

THEOREM 5.1. Let S = S, + Sy where Sy is an arbitrary distribution € &'
with support in {x-N > 0}. Then the conditions that P (D) be hyperbolic with
respect to N and supp S C T-cone are together equivalent to the following con-
ditions:
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(1) S is hyperbolic with respect to N,

(2) for some constants C and ti, |t|-|Pr(¢ + itN)| < C|P(¢ + itN)| when
t<tiand € R (k=1,2,...,0),

3) P(V) #0.

Proof. Let S satisfy the conditions (1), (2), and (3). Then from Theorem

2.1.3, it follows that supp S C TI'-cone. In order to see that P (D) is hyperbolic
with respect to N, it suffices to show that there is a real number #; such that

(5.2) P(+iN)#0  when t<t  and £€ R

Since S is hyperbolic with respect to N, in view of Theorem 4.1, for any
o > 0 there exist positive constants m and C such that

(5.3) IS* (€ + itN)| > e!
when
(5.4) et > C(A + |&+ aN)™

where ¢ < 0. Suppose that (5.2) is false. Then we can find two functions
¢,and ¢, in p (>0) such that

P, + 1t,N) =0,
(5.5) &, = p,
t, = ap*(1 + o(1)),

where 0 < ¢ < 1 and @ < 0 (6). Certainly we have, for some positive con-
stants C and 4,

lEP + ’itp Nlm < Cp™,
exp |t,| > exp A7".

For sufficiently large p, (£, ¢,) satisfy (5.4), so that
(5.6) IS~ (£, + it, N)| > exp dt,.
We note that
S* (&, + it, N) = S™a(, + 1t, N).
This follows immediately from condition (2) and (5.5). Since
supp S: C {x-N > 0},
there exists € > 0 such that supp S: C {x-N > ¢} and S; is of the form:

52 = E Dafay

| <y

where f, € L®(w) and w is a compact set C {x-N > ¢}. Hence we have

SAZ(EP + itpN> = ‘Z< (Sp + itp N)f,\a(gp + itp N)
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Since

Faleo ity M) = | fu@expl—i- (6 + it, N,
z.N>e
we obtain

[fa(& + it, N)| < C1||falle exp e,
Also we have for all & (o < v)
| (& + it, N)*| < Cop.
Combining these inequalities we have for some constant C
5.7) |S*2 (&, + it, N)| < Cp” exp e,
Thus (5.6) and (5.7) give, for sufficiently large p,
(5.8) exp ot, < Cp’ exp et,.

Here we note that ¢ can be chosen so that ¢ < e. Heace from (5.8) it follows
that
exp[(e — 0)4p*] < Cp’,

which leads to a contradiction when p — «. Thus (5.2) must be true, and
together with the condition (3) this implies that P (D) must be hyperbolic
with respect to V.

Conversely, let us assume that P (D) is hyperbolic with respect to N and
supp S C T-cone. The argument in the proof of Theorem 2.3.1 applies to
S = S1 + S,, where supp S C {x-N > 0}, even though S; is not a truncation
of S. Then it remains only to prove condition (2) and that S; is hyperbolic
with respect to N. According to (6, Lemma 5.5.1), if

P(D) > QD) = Qn(D) + Qna(D) + ...,

then P (D) > Qy(D) for every k, where P and Q, are homogeneous polynomials
(deg Qx = k). Hence we have for some constant Cy,

[0c(®)] < CoP(#).
The Taylor expansions of P and Q; yield
(5.9) |0x(¢ — iN)| < C1 P(¢) < C2 P(¢ — iN)

for suitable constants C; and Co.
On the other hand, we have (P being homogeneous, we may take £, = 0)

(5.10) |P(¢ — iN)| < const. |P(¢ — iN)|

provided that P is hyperbolic with respect to N (6). Thus (5.9) and (5.10)
imply that

(5.11) |Qe(¢ — V)| < C|P(E —iN)|
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with some constant C, for every k. In (5.11) we replace £ by —£/t. Since both
sides of (5.11) are homogeneous polynomials, we obtain that for every &

(5.12) It]-1Qx (¢ + itN)| < C|P (& + itN)|
when deg O, < deg P and ¢ < —1, which is condition (2). Now we recall
that

gives a fundamental solution for P (D), with support in a T-cone. In an
analogous way we observe that

— (explix: & + it\)]
@m) P(E + i)

defines a fundamental solution for (P(D))* with support in a TI'-cone. On
the other hand, the k-tuple convolution of Ep

k
—_—
EP*k=Ep*...*EP

is also a fundamental solution for (P (D)), and

dg

supp Ep** C ksupp Ep C T'-cone.

Hence from Theorem 2.1.2 it follows immediately that

vty _ (ooyn ((explix: (& + it\)]

Now set Q = S; — P(D)é. Then for ¢ € Cy® we have
<EP*(k+1) * Q*Ic ¢> — <E *(k+1) Q"*k % >

= em [FELUN) ﬁ(g(f;ffﬂll bt + itN)de.

Since |P(¢ + itN)| is bounded from below when ¢ < ¢, for some constant ¢,
(5.1) and (5.12) give the estimate

|<E;(k+1) " Q*k’ ¢>l
< @ny [ REERRG n|6e + i) g

< const. ltl"‘; f w5 (& 4 itN) | (1 + )~ Pdg,

when ¢ < min(—1, #;).
However, we have

Wole+ i) = [expl—ix- ¢ + i), )
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and

supp u; C supp Si forj=1,2,...,L
Therefore for some constant M > 0,
(5'13) |MAJ(£+1tN)I < My j = 112;-'°yl-

For, let © be an open set, containing supp.S; and with compact closure K.
Then there is a constant ¢ > 0 such that for all f € Cy(K)

[us O < @ || fl]eo-

Now take a € Co(K) so that 0 < a < 1 and a(x) = 1 on a neighbourhood
of supp S:. Then we have

ks DI = Kusy o)l < @ l|flle
for f € C*. Since for x*N > 0
la(x) exp[—ix- (£ + 2NV)]| < 1,

we obtain (5.13) forj = 1,2, ..., Thus we have proved that for a constant
cC>0

KEF# D« QF ¢) [ < Clt|™, k=12,....

Hence for each ¢ € Cy® the series

kZ:O (_1)k<EP*(k+1) x Q*k7 d’)

is convergent when ¢{ < min(¢;, —1), or

El — ZO (_1)kEP*(k+l) * Q*k
k=

converges in 2’ when ¢ < min(¢;, —1). Because of (5.1) and our assumption,
we obtain supp E; C T'-cone. Thus we have proved that .S; is hyperbolic
with respect to N. This completes the proof.

6. Structure of fundamental solutions.

6.1. Fundamental solutions for P(D)s + Q. By H® (s real) we mean
the space of # € L? such that

1+ g 2u ) € L
with the norm

QA+ [&l5)72 w2,

by which H* is made a Hilbert space .If s = —m (m a positive integer) it is
well known that » € H—™ if and only if there exist f, € L? for |a| < m such
that
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w= Y, D%,

la|<m

Replacing L? by L%, in the definition of H—™, we get the space H "
Now we shall discuss the structure of fundamental solutions for the operator

(6.1.1) S = P(D)s +jz=:1 P(D)us,

where
(1) P (D) is homogeneous and hyperbolic with respect to NV;
2) Dy P;(D) < P(D)forj=1,2,...,1;k=1,2,...,n;and
(3) supp p; C T'-cone for j =1,2,...,L
From (2) it follows that

(1 + |& + @N|) |P;(E + iN)| < C|P(¢ + itN)|

for some constant C, when ¢ < #; for some ¢;. For, we can obtain as in the
proof of Theorem 5.1 that when ¢ < #;

|&;, + itN,| |Py(E + iN)| < Ci |P(E+ itN)|, 7=1,2,...,n;
E=1,2,...,1

for suitable constants C; and #;. Hence if we set

l
0 =3 P,(Dhu,
=
then

| Q" (¢ + itN)
(6.1.2) |P(E+ )

with some constant C when ¢ < #;. Let us define, as usual, the unique funda-
mental solution for S with support in a I'-cone by

<CcA+ |EH™

E=Ep+) (=D"(Er* Q)"
x=0
where Ep is a fundamental solution for P (D) and is given by

—n (explix- (¢ + iN)]
2m) f Pe+an)  “
for an arbitrarily fixed ¢ < ¢;. Thus we have for ¢ € Co®
<EP*(k+1) * Q*k’ ¢> — <EP*(1¢+1) QV*k* )

- @)™ ])Q(;ftjff;?ﬂ (& + itN)de.

Therefore the distribution Ep**+D x Q%% is represented by the formula

(G] 3) (Zw)—ne[llz.N Q (s + ”N) iz. Ed.f
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In view of (6.1.2) we have for ¢t < £,
Q" (& + itN)*
P(g+aN)™

when k > [$n] + 1 since |P(¢ + 4tN)| > const. > 0, so that the Fourier
inverse transform

€L?

(] ~ . E
(27'_)-n Q (g + ’LtN) eiz.fdg 6 L2,

P (¢ + itN)™

and the distribution Ep*®tD « Q** € L2 . when & > [in] 4+ 1. On the other
hand if 2 < [iz] + 1, we observe that

~ iIN k
SR — (e,

where #,., € L? and hence that the Fourier inverse transform is
(1 _ A)[%n]+1uk,n c H—[%n]—2
or EpF0HY 4 o*F ¢ p -2 when k< [in] —I—fl.
Defining E, and F; by

(371
Ey = Z:O (—1)*Ep®D & O,
=
F, = (_1)[%n1+kEP*([%n]+k+1) * Q*([%n]_,_k) ’

we obtain
E=Ey+ Fi+F;+....

Thus we have proved the following theorem.

THEOREM 6.1.1. Let S € & be defined as in (6.1.1.) Then the unique funda-
mental solution E for S with support in a T-cone is of the form

E=FE+Fh+F+...,
where Eg € Hyoo B2 and Fy € Lo for B =1,2,... .

COROLLARY 6.1.1. Let S be the hyperbolic finite difference—differential operator

defined in Section 3 with Po homogeneous, and let Dy, P; < Poforj = 1,2,...,1;
k=1,2,...,n. Then the fundamental solution E with support in a T'-cone is
of the form

E=E0+F1+F2+-.- )

where Eo € Hyo~W—2 and F, € L%, with support in the half-space x-N >
([n] + k)ai N for  =1,2,.... (Here we assume that a;-N < a;-N for
k=2,3,...,1)
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For, supp Q is contained in the half-space x: N > a;:N; and then we have
supp F; C ([3n] + % + 1) supp Ep, + ([37] + k) supp Q
C ([3n] + k) H,,-x,
where we set H,.y = {x'N > a,-N}.
Example. Let S = S(x, y,t) be given by

a2
<&§ - A) 0+ a(a,b,c)

in R3. Since 9%2/9t? — A is hyperbolic with respect to N = (0,0, 1),
ei(zi+1ﬂ7)
(r+1i0)" — E + 1)
for any fixed ¢ > 0. Now Py(§, 7, 7) = (£2 + 9?) — 72. Since

IPO(Sy n, T + 10)’ > CPO(E! n, T)

for large |o| and since

Po(g,n, 1) > (14 (84 12+ )1

Ep(x,v) = (2 7)o" dgdn

we have
(7 +d0)* — (8 + n%)| > const.{1 + (¢ + #* + )}
for large |o|. Hence we obtain, for & > 1,
Fp = Epy(x, 3, 8) * Ep,(x — a,y — b, t — ¢)¥ € L%,
and supp F, C {x-N > kc}, so that Eq = Ep, € Hie %

6.2. Singular support of E. Finally we shall study the singular support
of the fundamental solution E, with support in a I'-cone, for a distribution
S € &’ such that S has a hyperbolic truncation S;. We denote the singular
support of a distribution f by ss(f), that is, the smallest closed set outside
of which f is equal to a C*®-function.

LEMMA 6.2.1. Let f and g be in §' and let one of them have compact support.
Then

ss(f*g) Css(f) + ss(g).

Proof. First we assume that both f and g are in &’. Take o, 8 € Cy” so
that a(x) = 1 in a neighbourhood of ss(f) and B(x) = 1 in a neighbourhood
of ss(g). Since

frg=oaof xBg+ b,

where % € Cy”, we have

ss(f * g) C supp(af * Bg).
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Let W be a neighbourhood of O € R Let us take another neighbourhood U
of O € R" so that 2U C W. If we take supp «, supp 8 so small that

suppa C U + ss(f), supp 8 C U + ss(g),

then
supp (ef * 8g) C supp a M supp f + supp 8/ supp ¢
C 2U + ss(f) + ss(g)
C W + ss(f) + ss(g).

Consequently we have
ss(f*g) Css(f) + ss(g).

Now we shall pass to the general case where f € &7, g € &’. We take a par-
tition of unity {a;{ C C¢%®, and apply the above argument to f and a,g to
obtain

ss(fxg) =ss(X;f*asg)
C Usss(f*ay)
C Y, (ss(f) + ss(as9)).

Since ss(a; g) C ss(g) M supp a; we conclude that
ss(f*g) Css(f) + ss(g),

which proves our lemma.

THEOREM 6.2.1. Let S € &' have a hyperbolic operator Si with respect to N
as a truncation, and let E be the fundamental solution for S with support in a
T-cone. Then

ss(E) C kK_JO ((k + 1)ss(E1) + kss(Sy)),
where E; is the fundamental solution for Si with support in a T-cone.

Proof. Put
En=E; *2:0 (=) %(E1* S2)*™,
=

where S; =S — S;. Then we obtain lim, E,;; = E. From Lemma 6.2.1 it
follows that

SS(Ev+1) = SS(E], *Z (-—l)k(El * 52)*k>
%=0
C ss< > B0 52*k>
k=0

c u ((k + 1)ss(Ex) + kss(Sa)).
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Thus we conclude that

ss(E) C UO ((k + 1)ss(E1) + kss(S2)),
k=
which proves our theorem.
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