
HYPERBOLIC CONVOLUTION OPERATORS 

TAKAO KAKITA 

1. Introduction. Hyperbolic differential operators with constant coeffi­
cients introduced and studied systematically by Gârding (4), were characterized 
by the existence of the fundamental solution with some cone condition, accord­
ing to Hôrmander (6). Recently Ehrenpreis, extending the notion of hyper-
bolicity due to Gârding, has defined hyperbolic operators for distributions with 
compact support in the convolution sense. Under the hypothesis that the 
operator is invertible as a distribution, he has established a theorem analogous 
to the theorem of Hôrmander mentioned above (3). Motivated by these results, 
we shall define "hyperbolic convolution operators" which are similar to (but 
slightly different from) semi-hyperbolic operators in (3). In Section 2 we shall 
show that hyperbolicity for convolution operators can be reduced to that for 
"truncations'' of those operators. In Section 3 we shall discuss particularly 
hyperbolicity for finite difference-differential operators and characterize them 
in terms of their Fourier transforms. We shall give in Section 4 an algebraic 
condition for convolution operators (distributions with compact support) to 
be hyperbolic. In Section 5 we shall introduce some convolution operators 
with a leading linear differential operator P(D) and prove that the convolution 
operator is hyperbolic if and only if its support is contained in a cone and 
P(D) is hyperbolic in the sense of Gârding. Finally in Section 6 we shall show 
how smoothness of the fundamental solution for the operator in Section 5 
depends on that of the fundamental solution for P(D). 

I should like to express my deep gratitude to Professor G. F. D. Duff for 
many helpful suggestions and much kind encouragement during the prepara­
tion of this paper. To Professor F. V. Atkinson, Professor L. Schwartz and 
Professor L. Ehrenpreis I am also indebted for valuable suggestions and com­
ments on this work, and Mr. F. Suzuki I should like to thank for his valuable 
advice. 

2. Hyperbolic operators. 

2.1. Definitions. We shall fix a real vector N G Rn throughout the paper. 
A differential operator (of order m) P(D) is defined by 

P(D) = £ aaD" 
|a|<w 
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where all aa are constants , and part icularly aa for \a\ = m are no t all zero and 

jf = (r> J-Ytr1 —Y2 (r1 —)"" 
\ dxj \ bxj ' ' ' V dxj 

with ak > 0 integers. Let us denote by p the principal pa r t of the polynomial 
P ( r ) , t h a t is 

A polynomial P is said to be hyperbolic with respect to N if p(N) ^ 0 and 
there is a real number /0 such t h a t 

P ( f + M O ^ 0 when £ <E -#w and ^ < t0. 

By a T-cone we mean a closed cone having no points T^O in common with 
the half-space x-iV < 0, where the do t denotes the inner p roduc t operat ion 
in Rn. Then a theorem of Hôrmander m a y be s ta ted as follows. 

T H E O R E M 2.1.1. A polynomial P is hyperbolic with respect to N if and only 
if there exists a fundamental solution Ey for the differential operator P(D), 
whose support is contained in a T-cone. 

Now this theorem makes it na tu ra l to define l'hyperbolic convolution 
opera tors" as in the following, where é" denotes the space of dis t r ibut ions 
with compact suppor t (8, vol. 1, p . 88) . 

D E F I N I T I O N 2.1.1. Let S Ç $'. Then S is said to be hyperbolic with respect 
to N if there is a fundamental solution E for S 

S*E = Ô 

such that the support of E contains 0 and is contained in a certain T-cone. 

Since all dis tr ibutions with suppor t limited to the left with respect to a 
T-cone are associative and commuta t ive for convolution (8), we have a unique­
ness theorem on fundamental solutions. 

T H E O R E M 2.1.2. Let S Ç S" be hyperbolic with respect to N. Then there exists 
one and only one fundamental solution for S, with support in a T-cone. 

Proof. Assume t h a t E\ and E2 are two fundamental solutions, suppor ts of 
which are contained in a T-cone. Then the equalities 

E i = ô*Ex 

= (S * E2) * Ei 

= (E2 * S) * E i 

= E2 * (S * Ei ) 

= E 2 * 8 = E 2 , 

imply our assertion. 
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THEOREM 2.1.3. If S G $' is hyperbolic with respect to N, then the support 
of S is contained in a T-cone. 

Proof. From Definition 2.1.1 we find a fundamental solution E for 5 with 
support in a T-cone. Let K be the smallest convex T-cone containing supp E. 
(When T is a distribution, we denote by supp T the support of 2".) We denote 
by Ka the translation of K, with vertex at a, and by HT the convex closure 
of the set U 2 Kx where x runs through supp T. Then a theorem of Lions on 
supports (7) gives 

(2.1.1) H s = convex closure of (Hs + HE). 

Now we have HE D K since supp E 3 0. Conversely, for any x G supp E, 
Kx C Kf so that K 3 i7#. Hence we have i l # = i£ = Hs. Combining this 
fact and (2.1.1) we obtain that Hs C. K and so supp 5 C Kf which proves 
the theorem. 

THEOREM 2.1.4. If S Ç S' is hyperbolic with respect to N, then so is S with 
respect to Nf for all Nf in a neighbourhood of N. 

Proof. By our assumption, there is a fundamental solution E for S with 
support in K defined above. Let U(N) be the set 

{N' e IP\x>N' > 0 for all x G K\ x ^ 0}. 

Then K is also a T-cone with respect to N' G U(N) and hence, by definition, 
5 is hyperbolic with respect to Nf G U(N). 

2.2. Singularity at the origin. We say that a distribution S has a singu­

lar point P or that S is singular at P if 5 is not equal to any C°°-function in 

any neighbourhood of P. Then we have 

THEOREM 2.2.1. If S Ç S1 is hyperbolic with respect to N, then S must be 
singular at the origin. 

Proof. Suppose that 5 is equal to a C°°-function in a neighbourhood of 0. 
Take a G Co°° such that a(x) = 1 in a smaller neighbourhood and that 

KS = aS + S€1 

where aS G Co°° a n d supp S€ C {x-N > e} for some e > 0. Now let U be 
a neighbourhood of 0 contained in the half-space x-N < e. Hence for any 
<A G C0

œ(U), 

(S, 0) = (aS, *>. 

Since 5 is hyperbolic with respect to N, we can find a fundamental solution 
E for 5 so that 

supp(5c * JE) C supp S£ + supp £ C {X-N > e}. 
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Hence we have for any cj> £ Co°°(U) 

(S * E, <t>) = (aS * £ , </>). 

Now let yp 6 C0
œ be 1 in a neighbourhood of 0, with support in U. Then 

we get for any <t> G C0°° 

(8,<t>) =<*(aS *£) ,*> 

so that 

5 =t(aS*E) e c0
œ, 

which is a contradiction. Thus 5 should be singular at 0. 

2.3. Truncation. If S is hyperbolic with respect to iV, it can be easily 
seen that supp S 3 0. Let a 6 Co°° be 1 in a neighbourhood of 0. We call a 
distribution «5 a truncation of S. Then in view of the following theorem we 
may reduce hyperbolicity of convolution operators to a property of a small 
neighbourhood of 0. 

THEOREM 2.3.1. If S is hyperbolic with respect to N, then so is any truncation 
of S. Conversely, if a truncation of S is hyperbolic with respect to N, so is S. 

Proof. By our definition, we have a decomposition of S: 

S = Si + 52, 

where Si is a truncation of S and supp S2 C {x-N > 0}. First assume that 5 
is hyperbolic with respect to N. Hence 5 has to have a fundamental solution 
E with support in a T-cone. Let us consider a geometrical series of convo­
lutions {Ev} defined by 

£H- I = £ * É (E*S2)*\ 

where Ei = E and T*k denotes the &-tuple convolution of T. Since there is a 
positive number e such that 

supp5 2 C {x-N > e}, 

we may see, using a theorem on supports, that 

supp S ( £ * S 2 ) * * C {x-N>ve\, 

from which there follows that 

(2.3.1) HmE, 

exists in Q' (8, vol. 2, p. 71). Now define a distribution El by (2.3.1). Convo­
lv ing Ev+i by Si and using associativity and commutativity for Si, S2, and 
Ey we obtain that 
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Si * Ep+i = (S — S2) * Er+i 

= (5 - St) * E * É CE * S%)*k 

v 

= (5 - E * Si) * X) (E * ^2)** 

= 5 - (£*S2)* ("+1) . 

Since the last member in the above equalities tends to ô when v —» 001 we have 

lim(S*E„+i) = S i * £ * = 5. 

Thus we have constructed the fundamental solution E1 for Si. To see that 
Si is hyperbolic with respect to N it suffices to show that supp E1 is contained 
in a certain T-cone. However, it can be verified readily that 

supp{£ * (E *S2)**} C(k + l ) (suppE) + ^(supp52) C T1 + T2, 

where T1 and T2 are both T-cones containing supp E and supp S respectively. 
Therefore we may conclude that 

(2.3.2) supp E1 C Ti + T2. 

The second member of (2.3.2) being certainly a T-cone, we have proved the 
first part of our theorem. 

The same argument as above can be applied to prove the remaining part. 
Actually a fundamental solution E for S may be obtained by defining 

00 

(2.3.3) E = E1 * £ ( - l ) ' ( E 1 * S2)*
k 

provided that Si is hyperbolic with respect to N, where E1 is a fundamental 
solution for Si, with support in a T-cone. That E given by (2.3.3) satisfies 
5 * E = ô is clear. Thus the proof has been completed. 

2.4. Examples. By Theorem 2.1.1 a hyperbolic differential operator PÇD) 
is hyperbolic as a convolution operator P(D)b. For completeness we shall 
construct the fundamental solution with support in the 'Vave cone" by a 
method due to Hôrmander (6). Let P(D) be a hyperbolic linear differential 
operator with respect to N, and let TP(N) be the set of all N' such that 

p(N' + tN) = 0 

has only negative zeros. We call TP(N) the "normal cone" of P(D). Then 
it can be shown that there exist numbers t and C such that 

(2.4.1) |P(f + UN + isN')\ > C for all N' G rP(iV) 

when Re t < t\ and Re s < 0. Let us define a linear form E on C0°° by 
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(2-4.2) <£,*> = ( 2 * r / f ! ^ 

where f = £ + UN. (The Fourier transform of $ G £f is denned by 
<£"(£) = (e~ix'*t <t>(x)}. The Fourier inverse transform of yp G £f is given by 
#(*) = <*-'*•*, iK£)>.) For the definition of ^ see (8, vol. 2, p. 89). Since 
for <j> G Co00, 

T0(f) = J(Z>0)(x)e^x, 

we have for some a and C 

Z l|tf>IL 
(i + ifir 

where ? = £ + UN. Thus the second member of (2.4.2) is convergent in view 
of (2.4.1) and the above inequality, and then E defines a distribution. More 
precisely, the linear form on Co°° 

<«*•*£,*>= ^ r / J S U 
-PG0 

defines a temperate distribution F = etx-NE. In other words, £ is a product 
of an exponential function growing in the iV-direction and a temperate dis­
tribution. That £ is a fundamental solution for P(D) is readily verified. We 
remark here that E is independent of the choice of t if t < h. Now if 
supp <j) C. {x-N < —e} we obtain 

|<E,0>| < Ce« (</>G C0
œ) 

with a suitable constant C independent of t, from which follows (£, $) = 0 
making t —> — °°. Since we may take e > 0 arbitrarily small provided that 
supp 4> C {x-N < 0}, we conclude that supp E C {x-N > 0}. I t follows from 
the above remark and (2.4.1) that the contour in the integration (2.4.2) can 
be shifted to a contour f = £ + UN + isN', where 5 < 0 and N' G TP(iV). 
An argument similar to the above gives 

|<E,«)| < Cea^*, 

where <j> G Co°° with support in {x-N' < — e} and C and a are constants inde­
pendent of s. Hence we have (E, #) = 0 after making s —•» — co. Consequently 
we obtain that supp £ C W p̂ CAO, where 

WP(N) = {x |x-iV > 0 for all N' G TP(N)} 

which we call the wave cone of P(D). 
Next we shall give a simple example of a hyperbolic convolution operator 

as a function in R2, for simplicity. 
Let x(x,y) be the characteristic function of the square domain in R2: 
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[0,1] X [0,1]. We shall prove that x(xty) is hyperbolic with respect to 
N = (a, b), where a, b > 0. Since 

x(x,y) = c(x)c(y) 

where c(-) is the characteristic function of the interval [0, 1], the Fourier 
transform is given by 

XAtt, U) = C*ft)cA(i?) 

= (1 - e ~ ' * ) ( l - < T " ) 
en 

Now let us expand formally x"(£> 17)-1. Since 

(1 _ e-'t)-1 = £ -̂»« e 
1=0 

we obtain 

Z,m=0 

Taking the Fourier inverse transform of the second member, we have 

00 ^ 2 

S 7~T" 5(x — /, y — m). 
zSÉo dxdy 

This expression suggests a fundamental solution E for x as follows: 

k ^ 2 

£ = lim 2 T~V ô ( x "" J* y "~ w ) * 

That the second member is convergent in Q}1 is clear. In order to check that 
£ has the required property, we shall compute x * -E*> putting 

* ~2 

Eï=,S.â^;8(x- /'y-w)-
From the relation 

x(x,y) = {H(x) - H(x - l)}{H(y) - H(y - 1)}, 

where H(-) is the Heaviside function, it follows that 

a2 

= {«(*) - d(x - l)î X {«(y) - ô(y - 1)} * {8(x - l , y - m)} 

= {«(*, y) - «(* - 1, y) - «(*, y - 1) + *(* - 1, y - 1)} 
* {ô(x — l, y — m)} 

= ô(x — l, y — m) — ô(x — l — 1, y — m) — B(x — l, y — m — 1) 
+ S(x — l — 1, y — m — 1). 
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Now it can be easily seen that 

(2.4.5) x * Ek = ô(x, y) — ô(x — k, y) — ô(x, y — k) + ô(x — k, y — k). 

— i — 1 — i - -

J I 

l-f-p-
i i 4 

I t I I 

. - ]_J__L_L__ 
i I I I 

_ 4 - 4 - 4 - 4 - -
I I I I 

• - l - t - f - h — 
- - i - T T - r — 

' I I I 

supp Ei supp x * -E3 

Then the second member of (2.4.5) tends to ô(x,y) as k —» <». Thus we have 
proved that E = lim Ek is a fundamental solution for x- Also we have proved 
that supp E consists of all lattice points (/, m), where /, m > 0 are integers, 
and that the singularity located at each lattice point is uniformly of order 4 
(2). 

3. Hyperbolicity of finite difference-differential operators. 

3.1. Finite difference-differential operators. Let us consider a finite 
difference-differential operator 

(3.1.1) 5 = E Pk(D)5ak. 

If 5 is hyperbolic with respect to N, then from Theorem 2.1.3 it follows that 

(3.1.2) ak = 0 for some jfe, ak> N > 0 for all V ^ *. 

Further, since Pk(D)8 is a truncation of 5, Theorem 2.3.1 implies that Pk{D) 
is hyperbolic with respect to N as a differential operator. Conversely, if 5, 
given by (3.1.1), satisfies (3.1.2) and if the differential operator Pk(D) is 
hyperbolic with respect to N, then using again Theorem 2.3.1 we conclude 
that 5 is hyperbolic with respect to N. Hence we have 

THEOREM 3.1.2. A finite difference-differential operator S, given by (3.1.1), 
is hyperbolic with respect to N if and only if there exists a k (0 < k < 1) such 
that ak = 0 and ayN > 0 for all kr 9^ k, and that Pk{D) is hyperbolic with 
respect to N. 

Now we shall give a precise description of the fundamental solution E for 
5 with support in a T-cone. We may assume k = 0 without loss of generality. 

In view of Theorem 2.3, E is given by 

(3.1.2) E = E0* £ (-!)"(-
ra=0 \ 

£ o * X Pk(D)Ô0 

\ * 3 

V 
00 / I \*m 

= E0* 2 ( -1)*( £ Pk(D)rakE0) , 
m=0 \ k=l / 
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where E0 is the fundamental solution for Po(D) just constructed in 2.4. How­
ever, since 

( E ^ P K ^ o ) = E t~Pi(Dyi...Pl(Drrqlai+...+nal(E*0
m), 

we have 
CO I 

E= E (- irE^^-
where 

Et = P1(D)ti . . . Pl(DylrQlal+...+lllal(ET). 

Then it is obvious that 
i 

suppE ? C X) <hP>* + WPo(N), 

where Wp0(iV) is the wave cone of P0(D). Therefore we have 

THEOREM 3.1.3. To the hyperbolic finite difference-differential operator S 
defined by (3.1.1) corresponds a fundamental solution E with support in the 
sum of all the cones, each of which is congruent to WPo (N) and with its vertex 
at some lattice point ]^=i qk ak consisting of vectors ai, . . . , ax and integers 
qk > 0, * = 1, . . . , /. 

Example. If 5 = P(D)5 + 8a is hyperbolic with respect to N, then a-N > 0 
and supp E is contained in the T-cone 

oo 

W {ma+ WP(N)}. 
m=0 

a£ WP(N) a£ WP(N) 

3.2. Some algebraic conditions. Let 5, defined by (3.1.1), be hyper­
bolic with respect to N. Then there is a k (0 < k < /), say 0, such that 
a0 = 0, Po(D) is hyperbolic with respect to N, and ak-N > 0 for k = 1, 2, 
. . . , / . Now the Fourier-Laplace transform of S is given by 

(3.2.1) 5A(f) = PoG") + É P*(r)e-fa*-r. 

Let T be the set {N'\ak-N
f > 0 for k = 1, 2, . . . , /} . Bearing in mind that 

\Po(t + itN + isN')\ > d 
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for some constant d when t < /i, 5 < 0, and N' € rPo(iV), we have for 
another constant C% 

|5A({ + UN + isN')\ > Ci{l - C2(l + I? + i/iV + isN'\)meW} 

when iV' G rPo(iV) H I\ where 

m = max degP*, e = min ak-N, and ô = min ak'N'. 

Let us choose a constant Co such that 

Co > c2 sup (1 + M)V*. 

Since 

(1 + |£ + UN + isN'\)m < (1 + |f + UN\)m(l + \s\)m, 

we obtain 

|SA(f + i/iV + wiV')| > Ci{l - C0(l + |f + itN\)me"}. 

Now we can find a constant X > 0 such that —KKh and that 

(3.2.2) / < -K[l + log(l + |*| + |f|)] 

implies 
^-«' > 2C0(1 + |f + i*#|)m-

Hence below a contour 7: 

(3.2.3) t = - i £ ( l + l o g [ l + |*| + lfl)L 

we have 

(3.2.4) |5A(f + i/iV + isN')\ > C ^ 

for some constant CN> depending only on Nf and 5 if N' Ç rPo(iV) P\ T. 
Next we assume that there exists a convex neighbourhood Z7(iV) of N such 

that if iV' 6 [ / (#) , then for some K and C ^ as above, (3.2.2) implies (3.2.4). 
In order to construct a fundamental solution for 5 we define a linear func­
tional on Co°°: 

(3.2.5) <£, <*>>= (2T rJ^J^d f , 

where 0 Ç Co°°. We note that |f|/|f| and |df|/d£ are bounded on 7. Since 
for any v > 0, 

|<£(f + UN + isN')\ < Mv{\ + If + #iV + wiV'l)-', 

the integration on the above converges. Thus we may see that E defines a 
distribution. Now let <j> Ç C0°°, with support in {x-N < 0}. Then 

supp 0 C {x\ x-N < — e} 
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for some e > 0 and we have 

|<K£ + UN + isN)\ < Mv(\ + |f + UN + isN\)~ve^^ 

for some constant Mv. Hence we obtain for any 5 < 0 that 

\(E, *>| < (2T)~n Mn+1 CN~' ees J ( i + |f + *W + isNl)-*-1 e€t | # | 

< Mec*, 

where ikf is a constant independent of s. Making s —> — <», we get (E, <f>) = 0. 
Thus we conclude that supp E C {x-N > 0}. 

Similarly, if t is fixed and </> G Co00 with 

supp 0 C {x\x-N' < -0} (Ô > 0), 

then there exist constants a and M both independent of s such that 

|<£,«)| < Meate8s. 

Thus it follows that supp E C {x-iV7 > 0}. Consequently we have proved that 

supp E C H {x \x-N' > 0}. 

The second member being a T-cone, (3.2.5) defines a distribution with support 
in a T-cone. It is obvious that E is a fundamental solution for 5. Thus the 
following theorem has been proved. 

THEOREM 3.2.1. Let S be a finite difference-differential operator. Then a 
necessary and sufficient condition that S be hyperbolic with respect to N is that 
a convex neighbourhood of N, U(N), exist such that for some constants K and CN* 
depending only on N' and S, (3.2.2) implies (3.2.4) when Nf G U(N). 

4. An algebraic condition for hyperbolic convolution operators. In 
this section we shall suppose that S 6 S' is hyperbolic with respect to N, 
and discuss the variety in which S"(£ + UN) is zero-free. A result of the 
previous section may suggest to us that £"(£ + UN) ^ 0 below some contour 
like (3.2.3). Actually we shall prove the following theorem. 

THEOREM 4.1. Let S G S' be hyperbolic with respect to N. Then for any 
positive number a there exist positive constants m and C such that 

(4.2.1) \S"(S + itN)\ >e°* 

when 

(4.2.2) erl > C(l + |{ + UN\)m (t < 0). 

Proof. We shall carry out the proof following the ideas of Hôrmander (6). 
Suppose that our theorem is false. Then we may find a triple of sequences 
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[nij}, {Cj}, and [^ + itjN} (tj < 0) such that the following conditions are 
satisfied for some a > 0: 

(1) C „ Mj-+a> a s j - > oo ; 

(2) \S^(^ + itjN)\ <e°<i; 

(3) er*i > C,(l + |£, + itjNl)"'. 

The hypothesis on S implies that there exists a fundamental solution E for 
S with support in a T-cone, say T0. Let co be an open set with compact closure 
C T0 and let 

sup x-N = 8. 

Now let us introduce a Banach space Co(w), the set of continuous functions 
vanishing outside w. Also we introduce the set of Cco-functions vanishing when 
x-N > 7} + 5, say C^+s where 

77 = max x-iV. 
are supp S 

Then the mapping 

(4.2.3) / G Co («)-></,*> 

is continuous with the norm ||/||oo for each fixed <j> G C^+s- On the other hand, 
for each fixed/ G Co(co) there exists a distribution w such that 

5 * u = / , 
supp w c r0. 

In fact, u = E *f has the required properties. Hence we have the following 
equalities, for 0 G C^+s: 

(4.2.4) </, 0) = (S * «, 0) = (u, S- * 0). 

Since 
supp(5v * </>) C supp5 v + supp 0 C {x-iV < 77 + ôî, 

^ should be integrated over the compact set 

(4.2.5) r 0 n {x-N < 77 + 0} 

in the last member of (4.2.4). Now let 0 be a neighbourhood of the set (4.2.5), 
contained in the half-space {x-N > — e} and with compact closure, and let 
12i be another neighbourhood of the set (4.2.5) such that Ôi C Œ. Let us take 
a G Co00 such that a (x) — l o n O i and 0 outside 12. Then we define a metrizable 
topological linear space C^s.a by 

with the topology introduced by semi-norms: 
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Since 
if, 4) = (u,a(Sr*4>)) 

for each fixed / G C0(cô), there exist an integer k > 0 and a constant M such 
that 

(4.2.6) |(f, * ) | < J l f t P i (*) f * = a (5 v * 0). 

Hence the linear mapping yp —> (/, </>) is continuous on C^+o,a. Combining 
(4.2.3) and (4.2.6) we observe that the bilinear mapping 

(4.2.7) ( f , * ) - ( f , *> 

from the product space C0(co) X C™+s,a to C1 is separately continuous. How­
ever, since a separate continuous bilinear form on the product of a Fréchet 
space and a metrizable space is continuous (1), the mapping (4.2.7) is con­
tinuous. Therefore there exist an integer k > 0 and a constant K such that 

(4.2.8) \<S,4>)\<KT. P , (* ) l l / IL 

We shall construct a couple of sequences <j)j G C^+8,fj G Co(ûi),j = 1, 2, . . . , 
such that 

E P,(ih) l l / i lU->o, ^ = « (5 V * *,) 

and 

as j — ^ » , which contradicts the inequality (4.2.8). We fix a y G co. Then for 
sufficiently small e > 0, 

y-N + e < Ô. 

Now let us define <t>j(x) by 

(4.2.9) «,(*) = \(x-N - v)exp[i(y - x) • ({, + i^iV)], 

where A(0) G C00^1) has the value 1 when 6 < y-N + e and 0 when 0 > <5. 
It is easy to see that <t>j G CSJ+a. Also define fj(x) by 

(4.2.10) / ,(*) = exp(h\tj\)F[(y - *)exp(e|/,|/3n)], 

where F G Coœ satisfies the condition 

JF(x)dx = 1. 

That fj G Co(cô) for sufficiently large j is clear. Now we shall estimate 
|SV*0,(*)|. 

By the definition of <£;- we have 

(4.2.11) 5V * «,(*) = (SZ1 <t>j(z + x)) = exp[i(y - x) • (f, + i/,iV)] 

X <SZ> X((x + g).JV - ^ )exp [ - i s - (£, + i^iV)]>. 
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First, consider the case x-N > y-N + e. Since S is represented as a linear 
combination of Dh, where D is some differential monomial and h(x) £ U° 
with support in a neighbourhood of supp S and in {x-N > —Je}, it follows 
from (4.2.11) that for a differential operator D there exist constants C\ and 
4̂ such that 

\D^(pc)\ < Ciexp[/,(* - y)-N](l + fa + itjN\)A exp(-*€*,) 

Next, let us discuss the case x-iV < y-N + e. When z Ç supp 5, we have 

(4.2.12) \{x-N + z-N - rj) = 1. 

For, if z Ç supp 5, s-iV < ry, and hence 

From the definition of X, (4.2.12) follows. Hence combining (4.2.11) and 
(4.2.12) we obtain 

(4.2.13) 5V * cf>j(x) = exp[i(y - x) - (£, + #,iV)]SA(£, + itjN). 

From the conditions (2) and (3) and for x £ supp a from the relation 

x-N — y-N > min z-N — maxs-iV 
2 6 supp a ze w 

> - € - 3, 

it follows that for a differential operator D there exist constants Co and I? 
such that 

\Da(S^ * <^)(x)| < C0exp[^(x - y)-N](l + fa + ^ - i V | ) s exp(<rf,) 

< Co exp ( a — (e + ô) ) tj . 
L \ ntj / J 

In view of (4.2.10) we obtain that for all j and sufficiently small e, <5 

(4.2.14) E p ^ ) - H / i l U < M e x p 
2 w M 

where C and M are suitable constants. The second member of (4.2.14) tends 
to 0 as j - ^ oo and so does the first member of (4.2.14). 

On the other hand the definition of </>j and fj implies that 

(4.2.15) (fj9 <j>3) = exp(h\tj\)SF((y ~ *)exp(e|*,|/3n)) 
X exp[i(y - *)(£, + itjN)]\(x-N - rj)dx 

= JF(x)\(-x-Nexp(etj/3n) + y-N - 77) 

X exp[{ — ix- (£, + itjN)exp(etj/3n)}]dx. 
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However, we have 

Re[-ix- (£, + itjN^xpietj/Sn)] < \tj\-\x-N\ exp(etj/3n) 

< L expfl^l/m,) exp(etj/3n) = L exp^( j~ - — J ^ J 

for a suitable constant L, since Cj —> °o 0* —* °° ) a n d since for large 7 

«i''i > C,(l + |£i + itjN\)m* > \tj\m>\ 

Thus in the last member of (4.2.15) the exponential factor in the integrand 

exp[ — ix- (fy + i^iV)(exp(€^/3»))] -> 1 

when j —> <» because of condition (1), and then also 

\[-x-Nexp(etj/Sn) +y-N - ri]-+\(y-N — 77) = 1. 

Making j—> 00 under the integral sign in (4.2.15), we conclude that 

lim (fjf fa) = 1 

since 
JF(x)dx = 1. 

Thus we have proved our theorem. 

5. Some hyperbolic operators. In this section we shall study when 
finite sum distributions of the form 

Si = E P * (£)/** 

are hyperbolic, where fxk are measures with compact support. We say that 
a differential operator P(D) is "strictly stronger" than another differential 
operator Q(D) (which we denote by Q « P) if Q(D) < P(D) and deg (2(f) 
< degP(f) . Now let us consider the case where 

(5.1) Si = P(D)8 + £ Pk(D)n € <f', 
k=l 

supp fjLk C supp 5. 

Hôrmander proved in (6) that if fxk = 5, Pk « P for k = 1 , 2 , . . . , / and 
if P is a homogeneous hyperbolic differential operator (with respect to iV), 
then Si is hyperbolic (with respect to N). In the following we shall prove 
a generalization of this theorem. 

THEOREM 5.1. Let S = Si + 52 where S2 is an arbitrary distribution G S" 
with support in {x-N > 0}. Then the conditions that P(D) be hyperbolic with 
respect to N and supp S C V-cone are together equivalent to the following con­
ditions : 
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(1) S is hyperbolic with respect to N, 

(2) for some constants C and th \t\-\Pk{^ + itN)\ < C\P{% + itN)\ when 
t <hand£ G Rn (k = 1,2, . . . , / ) , 

(3) P(N) * 0. 

Proof. Let S satisfy the conditions (1), (2), and (3). Then from Theorem 
2.1.3, it follows that supp 5 C T-cone. In order to see that P(D) is hyperbolic 
with respect to N, it suffices to show that there is a real number to such that 

(5.2) P(£ + UN) 9* 0 when t < t0 and £ € Rn. 

Since 5 is hyperbolic with respect to N, in view of Theorem 4.1, for any 
a > 0 there exist positive constants m and C such that 

(5.3) \S*(£ + itN)\ >e°t 

when 

(5.4) er% > C(l + |£ + *W|)m 

where / < 0. Suppose that (5.2) is false. Then we can find two functions 
£p and tp in p (>0) such that 

P(fp + #pi\0 = 0, 
(5.5) |fp| = p, 

*p = ap"(l + 0(1)), 

where 0 < /x < 1 and a < 0 (6). Certainly we have, for some positive con­
stants C and A, 

\ÇP + itpN\m < Cpm, 

exp |/p| > exp Apil. 

For sufficiently large p, (£p, £p) satisfy (5.4), so that 

(5.6) |SA(£P + i/p iV)| > exp erfp. 

We note that 

S*(Çp + itpN) =S\(Çp + itpN). 

This follows immediately from condition (2) and (5.5). Since 

supp5 2 C {x-N > 0}, 

there exists e > 0 such that supp S2 C {x-N > e} and S2 is of the form: 

l«|<v 

where /« 6 Lœ(œ) and co is a compact set C {x-iV > e}. Hence we have 

S\(£P + itpN) = E & + itpN)f\{iP + itpN). 
\a\<v 
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Since 

fa(!ip + itPN) = I /«(*)exp[-ix- (£p + it,N)]dx, 
Jx.N>e 

we obtain 

\fafa + it, N)\ < Cill/alUexpÉ/p. 

Also we have for all a Qa\ < v) 

| (fp + itp NY\ < C2f>\ 

Combining these inequalities we have for some constant C 

(5.7) \S\{%P + itp N)\ < Cpv exp e*p. 

Thus (5.6) and (5.7) give, for sufficiently large p, 

(5.8) exp atp < Cpv exp e£p. 

Here we note that o- can be chosen so that a < e. Hence from (5.8) it follows 
that 

exp[(e - v)Ap*] < Cp\ 

which leads to a contradiction when p —•> oo. Thus (5.2) must be true, and 
together with the condition (3) this implies that P{D) must be hyperbolic 
with respect to N. 

Conversely, let us assume that P(D) is hyperbolic with respect to N and 
s u p p S C T-cone. The argument in the proof of Theorem 2.3.1 applies to 
5 = Si + 52, where supp S2 C {x-N > 0}, even though Si is not a truncation 
of 5. Then it remains only to prove condition (2) and that Si is hyperbolic 
with respect to N. According to (6, Lemma 5.5.1), if 

P(D) > Q(D) = Qm{D) + Qm-i(D) + . . . , 

then P(D) > Qk{D) for every k, where P and Qk are homogeneous polynomials 
(deg Qic = k). Hence we have for some constant Co, 

ie*tt)i < CoP®. 
The Taylor expansions of P and Qk yield 

(5.9) | & ( É - iN)\ < Ci P® < C2 P(Z - iN) 

for suitable constants Ci and C2. 
On the other hand, we have (P being homogeneous, we may take /0 = 0) 

(5.10) \P(£ - iN)\ < const. |P({ - iiV)| 

provided that P is hyperbolic with respect to N (6). Thus (5.9) and (5.10) 
imply that 

(5.11) \Q*(t-iN)\ <C\P(Ç-iN)\ 
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with some constant C, for every k. In (5.11) we replace £ by —%/L Since both 
sides of (5.11) are homogeneous polynomials, we obtain that for every k 

(5.12) |*| • |&({ + itN)\ < C |P(f + itN)\ 

when deg Qic < deg P and t < — 1, which is condition (2). Now we recall 
that 

EP(x) = ( 2 T ) J p ( ? + , W ) # . ' < ' i . 

gives a fundamental solution for P(D), with support in a T-cone. In an 
analogous way we observe that 

*exp[ix-(£ + itN)] 
PU + itN)h 

defines a fundamental solution for (P(D)Y with support in a T-cone. On 
the other hand, the &-tuple convolution of EP 

(2T)-J ! 
vr^dt 

*& EP = J5P * . . . * £p 

is also a fundamental solution for (P(D))k, and 

supp EP*fc C k supp E P C T-cone. 

Hence from Theorem 2.1.2 it follows immediately that 

77 **/r\ _ / o ^ - * fexp[ix»(g + ^W)] 

Now set Ç = 5i - P(£>)<5. Then for 0 G C0
œ we have 

<EP*a+1) * Q*\ 4>) = (Ep*a+1), <2v*fc * 0) 

~ (2?r) J P(J; + M)M *(* + ] l 

Since |P(£ + i£iV)| is bounded from below when £ < t\ for some constant tu 

(5.1) and (5.12) give the estimate 

\(Ep*+1) * Q*k, 4>)\ 

< const. \t\-kj: | V , ( { + *W)](1 + |U|)- (n+1)^, 

when / < min( — 1, t±). 
However, we have 

/*%(£ + UN) = J expf-z'x- (J + itN)]dnj(x) 
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and 

supp nj C supp Si for j = 1 , 2 , . . . , / . 

Therefore for some constant M > 0, 

(5.13) |M
A,tt + itN)\ < M, j = 1, 2, . . . , /. 

For, let Œ be an open set, containing supp Si and with compact closure K. 
Then there is a constant a > 0 such that for all / £ Co(iO 

IW/)I < « Il/Il-
Now take a Ç Co(i£) s o that 0 < a < 1 and a(x) — 1 on a neighbourhood 
of supp Si. Then we have 

KM,-,/>| H<M*«/> |<a | | / | | » 

fo r / Ç Cœ. Since for x>N > 0 

|a(x) exp[- i*- (f + i/iV)]| < 1, 

we obtain (5.13) for j = 1, 2, . . . , I. Thus we have proved that for a constant 
C> 0 

|<Ep*<*+« * <2**, 0 ) | < C \t\~\ k = 1, 2, 

Hence for each 0 G Co°° the series 

£(-i)Wa'+1)*<2**-4>> 

is convergent when / < min(/i , —1), or 

£i = É (-l)*£/a+1)*<2** 

converges in Q}1 when / < min(/i, —1). Because of (5.1) and our assumption, 
we obtain supp Ei C T-cone. Thus we have proved that Si is hyperbolic 
with respect to N. This completes the proof. 

6. Structure of fundamental solutions. 

6.1. Fundamental solutions for P(D)5 + Q. By Hs (s real) we mean 
the space of u G L2 such that 

(i + ms/2ir& e L2 

with the norm 

ii(i + ms/*u%, 

by which Hs is made a Hilbert space .Us = —m (w a positive integer) it is 
well known that u Ç H~m if and only if there exist fa £ L2 for \a\ < m such 
that 
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U = £ Dja. 
|a|<m 

Replacing L2 by L2ioc
 m the definition of H~m, we get the space H~mioc. 

Now we shall discuss the structure of fundamental solutions for the operator 

(6.1.1) S = P ( Z > ) 5 + I ) - P i ( £ W 
3=1 

where 
(1) P(.D) is homogeneous and hyperbolic with respect to N\ 
(2) DkPj(D) < P{D) forj = 1, 2, . . . , Z; jfe = 1, 2, . . . , n; and 
(3) supp M; C T-cone for j = 1 , 2 , . . . , / . 
From (2) it follows that 

(1 + |{ + ôiV|) |P,(£ + */iV)| < C |P(£ + i/iV)| 

for some constant C, when £ < h for some /i. For, we can obtain as in the 
proof of Theorem 5.1 that when t < t\ 

|f, + itNj\ |P*(£ + */iV)| < Ci |P({ + itN)\, j = 1, 2, . . . , n; 
k = 1,2, . . . , / 

for suitable constants Ci and /i. Hence if we set 

Q = Z W W 
then 

(6.1.2) < c(i + HI)-1 Qr(Z + itN)\ 

with some constant C when / < /i. Let us define, as usual, the unique funda­
mental solution for 51 with support in a T-cone by 

E = EP*'£(-l)k(EP*Q)**, 

where EP is a fundamental solution for P(D) and is given by 

"expfcc-fé + i/iV)] (2x)"" p 
P(Z + itN) ^ 

for an arbitrarily fixed 2 < h. Thus we have for <f> 6 C0°° 

<£/ ( i : + 1 ) * Q*\ 4>) = <£P*(*+1), (2v*ft* 4>) 

- <9rT~ f 0"tt + **#)* r,t 4. ,VA7^f 
~ (2T) J pa + iW)^ *(£ +ltN)di-

Therefore the distribution EP*{1c+l) * Q*k is represented by the formula 

fn , o\ (9 _ \ - n \t\x.N f ( T ( £ + * ^ ) * „**.*,/> 

(6.1.3) (2TT) e J p a + ^ H i g # . 
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In view of (6.1.2) we have for t < t\ 

Q*(t: + itN)k
 r j2 

P(ï + itN)k+T eL 

when k > [in] + 1 since |P(£ + itN)\ > const. > 0, so that the Fourier 
inverse transform 

(2x ) J P({ + UNf+l e ** € L ' 

and the distribution E^^+D * Q*k € L2ioc when * > [J«] + 1. On the other 
hand if k < [fre] + 1, we observe that 

<?(£ + itNf _ , |t|»xli«]+i« 
P( f + i;iv)*+1 ~ U + |f' j "*'"* 

where ûk,„ £ L2, and hence that the Fourier inverse transform is 

(1 - A) [*"1 +W € H-1^-2 

or Ep* t t+1) * Q*k € ^ i r e ] - 2 when £ < \\n\ + 1 . 

Defining £ 0 and Fk by 

£o = E (-i)*E/(*+1)*<2**, 
£=0 

P _ / -i \[èn]+ifcE| * ([!«]+*+!) ^ 0 * ( [ b l + * ) 

we obtain 

£ = E0 + F1 + F2 + . . . . 

Thus we have proved the following theorem. 

THEOREM 6.1.1. Let S £ <§'be defined as in (6.1.1.) Then the unique funda­
mental solution E for S with support in a T-cone is of the form 

E = E0 + F1 + F2 + . . . , 

where E0 € Hl0(r^-* and Fk G L\oc for k = 1,2, . . . . 

COROLLARY 6.1.1. Let S be the hyperbolic finite difference-differential operator 
defined in Section 3 with P 0 homogeneous, and let Dk Fj < P0forj = 1 , 2 , . . . , / ; 
k = 1, 2, . . . , n. Then the fundamental solution E with support in a Y-cone is 
of the form 

E = £ 0 + F1 + F2 + . . . , 

where E0 £ Hioc~
[in]~2 and Fk £ L2

l0c with support in the half-space x - iV> 
dhn] + k)ai-N for k = 1, 2, . . . . (Here we assume that a\-N < ak-N for 
k = 2, 3, . . . , I.) 
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For, supp Q is contained in the half-space x-N > ai-N; and then we have 

supp Fk C i[\n\ + k + 1) supp EPo + ([±n] + k) supp Q 

C din] + k)HavN, 

where we set HayN = [x-N > ai-N}. 

Example. Let 5 = S(x, y, t) be given by 

U? - A ) s + *«••»•» 
in i?3. Since d2/dt2 — A is hyperbolic with respect to N = (0, 0, 1), 

J i(xZ+yv) 

(T + ïa) — ((• + i? ) 

for any fixed a > 0. Now Po(£, ??, r) = (£2 + V2) — r2. Since 

|Po(É,i7,T + ier)| > CPo (£,*?, r) 

for large |o-| and since 

Po(^V,r)2> {1+ (£2 + v2 + r2)*}2 , 

we have 

|(r + ia)2 - (e + V
2)\ > const.{l + (£2 + V2 + r2)*} 

for large |<r|. Hence we obtain, for k > 1, 

^* = EPo(x, y, t) * EPo(x - a, y - b,t - c)*fc G L2ioc 

and supp Ffc C {x-iV > kc], so that E0 = EPo G Hl0Q~2. 

6.2. Singular support of £ . Finally we shall study the singular support 
of the fundamental solution E, with support in a T-cone, for a distribution 
5 G $' such that 5 has a hyperbolic truncation Si. We denote the singular 
support of a distribution / by ss(f), that is, the smallest closed set outside 
of which / is equal to a C°°-function. 

LEMMA 6.2.1. Let f and g be in Q}1 and let one of them have compact support. 
Then 

ss( /*g) C ss(/) + ss(g). 

Proof. First we assume that both / and g are in S". Take a, f} G C0°° so 
that a(x) = 1 in a neighbourhood of ss(f) and /3(x) = 1 in a neighbourhood 
of ss(g). Since 

/ * g = <*f*pg + h, 

where h G Co°°, we have 

ss(f * g) C supp (a/ * 0g). 
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Let W be a neighbourhood of 0 £ Rn. Let us take another neighbourhood U 
oi 0 £ Rn so that 2U C W. U we take supp a> supp /? so small that 

supp aCU + ss(f), supp PCU + ss(g), 

then 
supp (a/ * (}g) C supp a C\ supp / + supp 0 P\ supp g 

C 2 [ / + s s ( f )+ss (g) 
CW + ss(f)+ss(g). 

Consequently we have 

ss(f*g) C ss(/) + ss(g). 

Now we shall pass to the general case where / 6 <^', g 6 ^ r . We take a par­
tition of unity {aj{ C Co00, and apply the above argument to / and ctjg to 
obtain 

ss(f*g) = ssÇ£Jf*aJg) 

C ^Jjssiftajg) 

C yjj (ss(f) + ssfeg)). 

Since ss(aj g) C ss(g) r\ supp aj we conclude that 

ss( /*g) C ss(/) + ss(g), 

which proves our lemma. 

THEOREM 6.2.1. Let S £ S' have a hyperbolic operator Si with respect to N 
as a truncation, and let E be the fundamental solution for S with support in a 
T-cone. Then 

CO 

ss(£) C U ((Jfe + l)ss(Ei) + Jfess(S2)), 
fc=0 

where Ex is the fundamental solution for S\ with support in a T-cone. 

Proof. Put 

£ ,+ i = £ i * X ; ( - l )* (E i*S 2 )** 

where S2 = S — Si. Then we obtain lim„£„+i = E. From Lemma 6.2.1 it 
follows that 

SS(£H-I) = S S ( E I * I ; ( - 1 ) * ( £ I * 5 2 ) * * ) 

Css(i:£1*<*+1)*52**) 

C U ( ( * + l ) s s ( E i ) + *ss(S,)) . 
k-0 
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Thus we conclude that 

ss(£) C U ( ( H l)ss(£i) + fess(52)), 

which proves our theorem. 
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