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A functorial version of a

construction of Hochschild and Mostow
for representations of Lie algebras

William H. Wilson

Llet g be a Lie algebra, h a complemented ideal of g , and W
an h-module. Hochschild and Mostow have described the
construction of a g-module "induced" from W , which is finite-
dimensional provided ¥ is finite-dimensional and satisfies a
nilpotent action condition. This note describes a modification
of their construction which is functorial and a weak adjoint to

the restriction functor from g-modules to h-modules.

Throughout this paper we shall suppose that g is a Lie algebra over
a field k , that h 1is an ideal of g , and that there is a subalgebra s
of g such that g=h®s . Uh, Ug will denote the universal enveloping
algebras of h and
g=h+s with h €

£ Clearly, every g € g can be written uniquely as
h and s € 3 . This allows us to define, (with

Hochschild and Mostow [1]), a composition * by
(1) g*u=hu+(su-us) for g €g, u €lUn.

It can be shown that su - us € Uh , hence (1) determines a g-module

structure on Uh .

We shall use mod-h, mod-g to denote the categories of right h- and
g-modules, and F : mod-g » mod-h to denote the restriction functor. Now

let W € mod~h . Then homk(Ug, W) has a g-module structure given by
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I(u) = flgau) for fehomk(ll_g_, W) , gé€g,and u€lth.

Construction of the functor I
Define a map :}'W : W homk(Ug, W) by setting 3W(w)(u) = w.u for
w €W and u € Uh . It is easy to check that 3W is a Uh-monomorphism.
We define a g-submodule IW of homk(llg, W) by setting IW = (im 3W) g .
Now let g, be 3‘W with codemain restricted to be FIW . Let
W, W' € mod-h and ¢ € homvh(W, W') . We define Iy : IW »> IW' by

()1 u) =(p ° f)(u) for u €Uh and f € IN . We must show

(p)(f) ew' . Since f € IF , f may be written as
n
f=13 jw[“’z) -z,
i=1

for suitable w, €W, z, €Ug . Then, for u € Uh ,

(I (£ 1)

o T 1
Izp igl Jw(wi) .xi_l(u)

] Lél z; (xt * u]]

§ lb(wi) .(xi * u)

[521 PAUCHIEA

n
so (m)(f) = Y jW' (q;(wi]).a:i € IW' . If W' 1is another h-module and
=1

P! € homUh(W' , W) ,then (Pp' oY) of=y"o (P of); it follows that T
has the multiplicative property of a functor.
LEMMA 1, jW ig natural in W .

Proof. We must show that if € homUh(W, W') then

FI¢°jW=jW,°w. Suppose w € ¥ and u € Uh . Then
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(FIy © ) @) () = (¥ © G (0))(u) = p(w.u) = p(w).u = g, (W@))(w)
= (dyr © ) (@) (w)

as required. ]

LEMMA 2. I 48 a faithful functor.

Proof. If Iy =0 , then for all w €W , 0= (Iy)(f,w)) 5 so
0= [(Iw)[jw(w)]](th) = Y(w) . That is, ¥ =0 . o

THEOREM 3. The funetor I : mod-h + mod-g , deseribed above, is an

injective weak left adjoint to F . That is, for W € mod-h and
V € mod-g , there is an injection

eWV : homqg(IW, V) » homqg(W, FV)

which 18 natural in W and V .

Proof. For ¢ € homué(lw, V) , we define ew(¢) =F¢ o j, . The
naturality of eWV follows from that of jW and the definition of 6
We must show that ew is injective. Suppose that ;5 ¢ € hom, (IW v,

and that Fd) = F¢2 Then ¢l and ¢2 coincide on im JW .

W .
Since ¢l’ ¢2 are Ug-homomorphisms, it follows that they must coincide on

(im 7)) .vg = v . O

THEOREM 4 (compare Hochschild and Mostow [1] and Zassenhaus [2]).
Let g be a finite-dimensional Lie algebra over a field k of
characteristic zero, and let h be an ideal of g with complementary
subalgebra s . Let W be a finite-dimensional h-module on which [h,
acts nilpotently. Then IW , as defined above, is a finite-dimensional

I
—

g-module.
Proof. If {0} = Wy < W, < ...<W =W is a composition series for
W, then set S(W) = (W /W )@ (wy/W,) @ (W /W)) . By the Jordan-

Holder theorem, S(W) is determined up to isomorphism. Clearly, a
subalgebra of h acts nilpotently on ¥ if and only if it annihilates

S(W) . Let us write d = dimk W , and let annUh(M) denote the

annihilator in Uh of an h-module M . Obviously,
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(2) (anny, (501))? € anny, (W) € annyy (S(0)

Un Un

Since, by hypothesis, [h, s] S ann, (S(W)) , it follows that ann _ (S(W))

Uh

is a g-submodule of ¥ . Hence [annUh(S(W)]]d is a g-submodule of

Uh .

If f € homk(Ug, W) and f(annUh(W)) = {0} , then for all =z € Ug ,

£ annyy (561))%) € 7z (amnyy (561
Ef(wn@(W)) vy (2),
- (o} .

Now im jW annihilates a.nnUh(W) ; so IW = (im jW) .Ug annihilates

[annUh(S(W))]d . Let us write J = (ann (S(W)])d . Then it is easy to

2 Uh
see that IW 1is embedded in homk(Ug/J, W) . Since W 1is finite-
dimensional, a.nnUh(W) is of finite codimension in Uh . Hence, by (2),

a.nnUh(S(W)) is of finite codimension in Uh . Now we appeal to a result

of Zassenhaus [2, page 263], which states that if X, Y are ideals of Uh
of finite codimension, then so is XY . We deduce from this that J is of

finite codimension in Uh , so that dim7< homk(Ug/J, W) < ® , and so

dimkIW<w. m]
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