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Abstract

We give an extension of Lé’s stochastic sewing lemma. The stochastic sewing lemma proves convergence in L,
of Riemann type sums 3} (s s]ex As,+ for an adapted two-parameter stochastic process A, under certain conditions
on the moments of A ; and of conditional expectations of Ay ; given Fg. Our extension replaces the conditional
expectation given Fy by that given F,, for v < s, and it allows to make use of asymptotic decorrelation properties
between Ay ; and F, by including a singularity in (s — v). We provide three applications for which Lé&’s stochastic
sewing lemma seems to be insufficient. The first is to prove the convergence of Itd or Stratonovich approximations
of stochastic integrals along fractional Brownian motions under low regularity assumptions. The second is to
obtain new representations of local times of fractional Brownian motions via discretization. The third is to improve
a regularity assumption on the diffusion coefficient of a stochastic differential equation driven by a fractional
Brownian motion for pathwise uniqueness and strong existence.
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1. Introduction and the main theorem
In analysis and probability theory, we often consider the convergence of sums
DL A (L.1)

[s,t]em

Here,  is a partition of an interval [0, 7], and we consider the limit of
|7] := max |t —s| — 0.
[s,t]en
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. . . . . . T
For instance, if A ; := f(s)(¢ — ), then we consider a Riemann sum approximation of /0 f(s)ds, and
if Ag; = X (W; — W), where W is a Brownian motion and X is an adapted process, then we consider

the Itd approximation of the stochastic integral /OT X, dW,..
Gubinelli [17], inspired by Lyons’ results on almost multiplicative functionals in the theory of rough
paths [30], showed that if

SAgus=Ass—Agu—Auyn O0<s<u<i<T, (1.2)

satisfies |0As | < |t - s|'*¢ for some & > 0, then the sums (1.1) converge. This result is now called
the sewing lemma, named so in the work of Feyel and de La Pradelle [13]. This lemma is so powerful
that many applications and many extensions are known. For instance, it can be used to define rough
integrals (see [17] and the monograph [14] of Friz and Hairer).

When (A ;)s<: is random, and when we want to prove the convergence of the sums (1.1), the above
sewing lemma is often not sufficient. For instance, if As; = (W; — Ws)z, the sums converge to the
quadratic variation of the Brownian motion. However, we only have

[6As,u (W)] Se00 |t = S|l_"3

almost surely for every £ > 0, and hence, we cannot apply the sewing lemma.
L& [24] proved a stochastic version of the sewing lemma (stochastic sewing lemma): if a filtration
(Ft)eejo,r] is given, such that

o A, is Fy-measurable and
o for some g1,&, > 0 and m € [2, 00), we have for every s < u < ¢,

||E[6AS,M,Z|~F\‘]”L,"(P) < |t_5|1+82, (1.3)
lig
16As,uellL,, 2 S |t —s[2%2, (1.4)

then the sums (1.1) converge in L,,(P). As usual, the Banach space L, (P) is equipped with the norm

Xliper = ( [ 1)

IfAg = (W - W,)2, then we have E[6Ag .| Fs] = 0and (1.4) is satisfied with &) = % Therefore, we
can prove the convergence of (1.1) in L,,(P). The stochastic sewing lemma has been already shown to
be very powerful in the original work [24] of L&, and an increasing number of papers are appearing that
take advantage of the lemma.

However, there are situations where L&’s stochastic sewing lemma seems insufficient. For instance,
consider

1
As,t = |Bt - leH s (15)
where B is a fractional Brownian motion with Hurst parameter H € (0, 1). It is well-known that the sums
(1.1) converge to cyT in Ly, (P). Although we have the estimate (1.4), we fail to obtain the estimate
(1.3) unless H = 1.

To get an idea on how L€’s stochastic sewing lemma should be modified for this problem, observe
the following trivial fact:

E[6As.,.] =0.

This suggests that we consider estimates that interpolate E[5As ;] and E[6A; /| F5]. In fact, we can
obtain the following estimates:

t— 1-H
IEI6A sl Folll, su (S=) (=9, O<v<s<u<r<T. (1.6)
N %
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We can prove (1.6), for instance, by applying Picard’s result [37, Lemma A.1] on the asymptotic
independence of fractional Brownian increments, or more directly by doing a similar calculation as in
Section 4. This discussion motivates the following main theorem of our paper.

Theorem 1.1. Suppose that we have a filtration (F; );ej0,71 and a family of R%-valued random variables
(As.t)o<s<t<T, such that As s = 0 for every s € [0,T] and such that A, ; is F;-measurable. We define
0As,ur by (1.2). Furthermore, suppose that there exist constants

m e [2, (X))’ F17F2’M e [0700)9 a7ﬁ17ﬁ2 e [0700)9

such that the following conditions are satisfied.

o Forevery0 <ty <t <ty <tz <T, wehave

IE[SAL 12651 F o]l 8y < Tty = 10)™ (63 = t1)PY,  if M(t3 — 1) < t1 — to, (L.7)
164101, (2) < T2(t2 = 10)P2. (1.8)
o We have
Br1>1, Ba> : B > ! (1.9
s -, —a > —. .
1 2> 3 1 3

Then, there exists a unique, up to modifications, R9-valued stochastic process (A;)iejor] with the
Jfollowing properties.

o Ay =0, A; is F;-measurable, and A; belongs to L, (P).
o There exist nonnegative constants Cy, Ca, and Cs, such that

IE[A;, — Ay — Ay ol FolllL,@ < Cilt — ol — 1 |B1’ (1.10)

A, = Ay = Ay i, ) < Calta — 11 1P + G312 — 1112, (1.11)

where ty —t; < M~ (t| — to) is assumed for the inequality (1.10).

In fact, we can choose Cy, C,, and Cs so that
Crsp T, G sapipom kmal't,  C3 Sappo.m Km,al2,

where Ky, q is the constant of the Burkholder-Davis-Gundy inequality (see (1.14)). Furthermore, for
7 € [0,T], if we set

AT = Z Ag:, Where m is a partition of [0, 7],

T
[s,t]en

then the family (A7), converges to A, in Ly, (P) as |r| tends to 0.

Remark 1.2. We discuss the optimality of the condition (1.9). By considering a deterministic (A ),
we see that the condition 8; > 1 is necessary. To see that the conditions 5, > % and 81 —a > % are
necessary, let B' and B? be two independent one-dimensional fractional Brownian motions with Hurst
parameter % (see Definition 3.1), and we set A, ; := B;Bf’,. It is well-known since the work [10] of
Coutin and Qian that the iterated integral f B'dB? does not exist, and, therefore, the Riemann sum
with respect to (A ;) should not converge. In fact, the family (A ), with filtration (F;) generated by

(B!, B?), satisfies (1.7) and (1.8) with
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; —_gl g2
To see this, we observe 6Ay, 1, 1, = =B, , B and

1,13°
1
16As 1215 ||L, (B) S (83 = 11)2.

To compute the conditional expectation, we observe

E[6Ay, 1,61 Fr] = —E[B}, | F4JE[BY, 1,1 F3 ],

0,13

and by the estimate (3.4), we have
3
IE[SAn .15 1 Fto Ml 2y Sim (11— 20)72 (13 — 11)7.

Remark 1.3. The proof shows that if
l+a-p1 <2af—a, (1.12)

then we have C; <o g,.8,,m I'1, and we can omit the factor «,, 4. This is similar to [24], where C; also
does not depend on k, 4. If @ = 0 and M = 0, Theorem 1.1 recovers L&’s stochastic sewing lemma [24,
Theorem 2.1]. If @ = 0 and M > 0, it recovers a lemma [ 16, Lemma 2.2] by Gerencsér.

Recently, Gerencsér’s stochastic sewing lemma is called shifted stochastic sewing lemma. In the
follow-up works, we continue to refer to Theorem 1.1 by the same name.

Remark 1.4. The proof shows that there exists & = &(a, 81, 82) > 0, such that
Az = AZllL,,®) Sapipo.m,mar T1+2)|x|®

forevery T € [0, T] and every partition 7 of [0, 7]. A similar remark holds in the setting of Corollary 2.7.

Remark 1.5. As in another work [26] of Lg, it should be possible to extend Theorem 1.1 so that the
stochastic process (As,;)s re[0,7] takes values in a certain Banach space.

Remark 1.6. A multidimensional version of the sewing lemma is the reconstruction theorem [18,
Theorem 3.10] of Hairer. A stochastic version of the reconstruction theorem was obtained by Kern [21].
It could be possible to extend Theorem 1.1 in the multidimensional setting, but we will not pursue it in

this paper.
The proof of Theorem 1.1 is given in Section 2. If A, ; is given by (1.5), then we can apply Theorem 1.1
with
a=1-H, pB1=2-H, B=1.
However, the application of Theorem 1.1 goes beyond this simple problem of ﬁ—variation of the

fractional Brownian motion. Indeed, in Section 3, we prove the convergence of It6 and Stratonovich
approximations to the stochastic integrals

T T
/ f(By)dBy and / f(By) o dBy
0 0

with H > % in Itd’s case and with H > é in Stratonovich’s case, under rather general assumptions on the
regularity of f, in fact, f € C}% (R4, R¥) works for all H > é. In Section 4, we obtain new representations
of local times of fractional Brownian motions via discretization.

Finally, we remark that one of the most interesting applications of L€’s stochastic sewing lemma lies in
the phenomenon of regularization by noise (see, e.g. [24], Athreya et al. [2], [16], and Anzeletti et al. [1]).
In these works, they consider the stochastic differential equation (SDE)

dX, = b(X,) dt + dY, (1.13)
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with an additive noise Y, which is often a fractional Brownian motion. It is interesting that, although
in absence of noise the coefficient » needs to belong to C! for well-posedness, the presence of noise
enables us to prove the certain well-posedness of (1.13) under much weaker assumption, in fact, b can be
even a distribution; hence the name regularization by noise. In Section 5 of our paper, we are interested
in a related but different problem. Indeed, we are interested in improving the regularity of the diffusion
coefficient rather than the drift coefficient. We consider the Young SDE

dXt = b(X[) dr + O—(Xt) dBt

driven by a fractional Brownian motion B with Hurst parameter H € (%, 1). The pathwise theory of
Young’s differential equation requires that the regularity of o is better than 1/H for uniqueness, and
this condition is sharp for general drivers B of the same regularity as the fractional Brownian motion.
We will improve this regularity assumption for pathwise uniqueness and strong existence. Again, a
stochastic sewing lemma (Lemma 5.5), which is a variant of Theorem 1.1, will play a key role.

Notation

We write Ny = {0,1,2,...} and N := {1,2,...}. Given a function f : [S,T] — R4, we write
fs.t == fr — fs. We denote by «,, 4 the best constant of the discrete Burkholder-Davis-Gundy (BDG)
inequality for R?-valued martingale differences [6]. Namely, if we are given a filtration (Fn),2, and a
sequence (X,,)f;’=1 of R%-valued random variables, such that X,, is F,,-measurable for every n > 1 and
E[X,|Fu-1] = 0 for every n > 2, then

(e8] (o) l
||Zl Xl ey < Km,dnzl Xl o (1.14)
n= n=

Rather than (1.14), we mostly use the inequality

e 00 1
2
1, Xallto@ < kma 2 I%l2, ) (1.15)
n=1 n=1

for m > 2, which follows from (1.14) by Minkowski’s inequality. We write A < B or A = O(B) if
there exists a nonnegative constant C, such that A < CB. To emphasize the dependence of C on some
parameters a, b, . . ., we write A <, ... B.

2. Proof of the main theorem

The overall strategy of the proof is the same as that of the original work [24] of Lé. Namely, we combine
the argument of the deterministic sewing lemma ([17], [13], and Yaskov [40]) with the discrete BDG
inequality [6]. However, the proof of Theorem 1.1 requires more labor at a technical level. Some proofs
will be postponed to Appendix A.

As in [24], the following lemma, which originates from [40], will be needed. It allows us to replace
general partitions by dyadic partitions.

Lemma 2.1 [24, Lemma 2.14]. Under the setting of Theorem 1.1, let
O0<ty<t)<---<tny_1 <ty <T.

Then, we have

271

N
Aty — ZAli—lJi = Z Z Ry, 2.1
i=1

neNy i=0
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where

Rn = 6A n,i n, _n,i +6A n,i n,i n,, (22)

and

i(tn —1o) (i+1)(tn —10)
sl +
n n

1.

nelNy, i€{0,1,...,2" -1}, s’]."ie[t0+

and where R = 0 for all sufficiently large n.

The next two lemmas (Lemmas 2.2 and 2.3) correspond to the estimates [24, (2.50) and (2.51)],
respectively.

Lemma 2.2. Under the setting of Theorem 1.1, let

fo— S
O0<s<ty<tf<---<tny_1 <ty <T, tN—tlﬁo

Then,

N
IE[As.en — ZAti,l,til-Fs]”Lm(]P’) <p1 Tilto = 517l — 1ol

i=1
Proof. In view of the decomposition (2.1), the triangle inequality gives

N 2"-1

B[ Ay = >~ Ayl Fsllney < Y D IBIRMF L, @)

i=1 neNy i=0
By (1.7) and (2.2),
IE[R | Fs]llL,, ) < 201 (to — $)™ (27" |tn — to])P' = 214 27"P1 |ty — 5|7ty — toP'.
Therefore, recalling 8; > 1 from (1.9), the claim follows. ]

The following lemma is the most important technical ingredient for the proof of Theorem 1.1.

Lemma 2.3. Under the setting of Theorem 1.1, let
O0<tg<ti <---<ty_1 <ty <T.

Then,

N
1Asy,en = ZAr,-_l,t,-lle@) Saprpom Kmalilin =10l + K aDalin = 1ol

i=1
Under (1.12), we can replace ky, qI'1 by T'y.

Proof under (1.12). To simplify the proof, here, we assume (1.12), that is, that the additional technical
condition 1 + @ — 81 < 2af3; — a holds. The proof in the general setting will be given in Appendix A.
We, again, use the representation (2.1). We fix a large n € N and set ]—',? = F —to)" Fix an

to+ o (v
integer L = L, € [M + 1,2"], which will be chosen later. We have
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2"-1 L-1 L-

,_‘

n _ n n n . n n
R; = Z (RL;+Z E[RLj+l|]:L(j—l)+l+1]]l{JZI}) + Z RLj+l|]:L(j—l)+l+l]'
i=0 =0 j>0: =0 ;>0
Lj+l<2" Lj+l<2"

(2.3)

We estimate the first term of (2.3). By the BDG inequality together with Minkowski’s inequality
(see (1.15)), we have

2
D% (RE s = BIRE Py et 120 ), o)

j=0:
Lj+i<2"
2 n n 2
< Kna Z IRT i = BIRY j| FL otysre ) L=y Iz,
J=0:
Lj+l<2™
2 2
<4Gg D, IR G, @)
Jj=0:
Lj+l<2™

Using (1.8) and (2.2) and noting that we include more terms in the sum by requiring j < 2"/L only
instead of Lj +1 < 2" — 1, we get

Z IR 17 ) < AT327 R L1y — g2,
Jj=0:

Lj+l<2"
Therefore,

1 _ _1
||Z Z ( Lj+l _E[R2j+l|FZ(j_1)+1+1]l{jzl})“Lm(]P’) S Kpm,alaL227" B2 |1y — 1P

1=0 J>()
Lj+i<2"

We next estimate the second term of (2.3). The triangle inequality yields

L-
nZ D BRI Gl < Z D TBIRE 177 i e o)
=0 j>0: =0 j>0:
Lj+l<2" Lj+l<2"
By (1.7),
”E[ Lj+[|f2(j_1)+l+1]”Lm(P) < FI(L - l)_02_(ﬁl_a)n|tN - tOlﬁ]_a
Therefore,

1D D% BIREF oty i) Sa TILT027 800 1y — o=
=0 j>0:
L;+z<2"

In conclusion,

2" —1
1D R, Sa TILT027 Aoy — gm0 4 gy L227" BBy — g2 (2.4)
i=0
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We wish to choose L = L, so that (2.4) is summable with respect to n. We therefore set L, := [297],
where

as+Bi—a—1>0, 0<6<min{2B,-1,1}. (2.5)
Such a ¢ exists exactly under the additional technical assumption (1.12), namely, if l+a—f8; < 2a8;—«a.
Then, (2.4) yields

2"—1

I D>y D) Rl Sapip Dilin =10l + kmaDalin = 1ol
n:2n8 >M+2 i=0

To estimate the contribution coming from the small 7 with 2% < M + 2, we apply (1.8) which yields

2"-1 2" -1

I Z R, p) < 21 Z 271y — 1) = T2 [ty — g2
i=0 =0

Thus, we conclude

2"—1

1D, D Rl Sapip Tilin =10 + kD2t = 10l
neNy i=0

where the fact ,, 4 > 1 is used. O

Lemma 2.4. Under the setting of Theorem 1.1, let m, n’ be partitions of [0,T], such that n refines n’.
Suppose that we have

7’|

min |s —¢] > (2.6)

[s,t]en’ 3
Then, there exists € € (0, 1), such that
IAF = AF L ®) Saprprmtmar (Tn+T)la'|%.

Sketch of the proof. Here, we give a sketch of the proof under (1.12). The complete proof is given in
Appendix A. The argument is similar to Lemma 2.3.
Write

=I{0=t0<t1 < - <IN- <tN=T}
and
{[s.llenm|tj<s<t<tpa}={tj=1) <t <---<t}\,j_1 <t{\,j=tj+1}.

We set L := | |7’|~¢ |, where § satisfies (2.5). We set

/L+I
L ._
Zj = Ath+lvth+l+l Ath+l th+l

As in Lemma 2.3, we consider the decomposition A}" - A’Tr = A + B, where

A= Z Z { Zl|-7:tu L] } B _Z Z E[le}—t“ i ]

I<L j:Lj<N-l I<L j:Lj<N-l
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We estimate A by using the BDG inequality, Lemma 2.3, and (2.6), to obtain
1 ’ —a-1 ’ _1
IANL,.® Sappommar LIl (P77 + Dy’ [272).

We estimate B by using the triangle inequality, Lemma 2.2, and (2.6), to obtain

IBllL,. &) Sap.mmar DIL™ |/ |Proat,

Asin Lemma 2.3, we choose L := | |z’|~¢ | with ¢ satisfying (2.5). We then obtain the claimed estimate.

Remark 2.5. In the setting of Lemma 2.4, assume that the adapted process (A;);e[o,r] satisfies (1.10)
and (1.11). Then we obtain for some & > 0:

A7 = A7z, ®) Sa.pipom mar (T +T2)|x'|%.

Indeed, it suffices to replace Ay, ;.17 DY Ar;p in the previous proof.

AT L1+

Lemma 2.6. Let 7 be a partition of [0, T]. Then, there exists a partition n’ of [0, T], such that nt refines
', |n'| < 3|n| and

. 7’|
min |t —s| > )
[s,t]en’ 3
Proof. We write m = {0 =1y <t] < --- <ty-1 <ty =T} Weset kg := —1, and for [ € N, we

inductively set
ky:=1inf{j > kj_1 | tj41 — tr,_+1 = ||}, where inf@ = N.

Set L :=sup{/ | k; < N}. Then, we define

o= Tkj+l ifj <L,
T i ifj =L

By construction, 7’ = {sj}f:l satisfies the claimed properties: s;.1 —s; < 2|x| if j < L — 2, and

st —Sp-1 < 3|x|, so |x’| < 3|n|; moreover, min(s sjen |t — 5| = || = 37 . O

Proof of Theorem 1.1. We will not write down dependence on «, 81, B2, M,m,d, T. We first prove the
convergence of (AT),. Without loss of generality, we assume 7 = 7. Let 1, 5 be partitions of [0, T].
By Lemma 2.6, there exist partitions x|, 7}, such that for j € {1,2}, the partition r; refines 71';-,
In;.l < 3|xj| and

min | —s| > 37 |7’).
[s.t]ex’, J

Lemma 2.4 shows that for some € > 0, we have
. VA
IAY = Ap e, ) S (D1 + Do) ] %
Therefore, by the triangle inequality,
JAF = AZ||L, @) < IAF = Al @) + (D1 + D) (Im1]© + 72| ©). 2.7)

Let 7 refine both 7| and 7. Lemma 2.4 implies that

IAF = AL, ) < 1A = AZ L, @) + 1A7? = AF L, S (D + D) (| + |ml®). (2.8)
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The estimates (2.7) and (2.8) show
AT = AP L, e) < (D1 + D) (|| + 72| ®).

Thus, {A7 } . forms a Cauchy net in L,,(P). We denote the limit by &7. We next prove that (S$;),e[0,1]
satisfies (1.10) and (1.11). Letzg < t; < tp be suchthat M (1, —t;) < t;—tg. Letm,, = {t; +k27"(t,-11) :
k =0,...,2"} be the nth dyadic partition of [f{, ;], and we write

t] 13 = E As t-

lenn

‘We have

E[Sh,n — AnnlFil = ,}EEOE[AZ,& — Ay | Fy]  in Ly (P). (2.9)
By Lemma 2.2,

IE[An .5, = AL | FilllLn ey < Tiltn = tol ™|tz — 117

In this estimate, we can replace Ay , by &, 4, in view of (2.9). Similarly, by Lemma 2.3, we obtain

”CS)[l,tz - At1,t2 ”Lm (P) S(Y,ﬁ] B2, M Km,dFI |t2 - tl |Bl_a + Km,dF2|t2 - t] |B2

Under (1.12), we can replace «,,, 4I'1 by I'1.

Finally, let us prove the uniqueness of A. Let (A, )refo,r] be another adapted process satisfying
Ao =0, (1.10) and (1.11). It suffices to show Ay = A almost surely. Let 7, be the nth dyadic partition
of [0,T]. By Remark 2.5, we have

IAr = A7 L8y < 1 AT = AT I, @) + 1AF = ArllL,, @) < 27"°T°.

Since n € N is arbitrary, we must have Ay = Az almost surely. O

As in [2, Theorem 4.1] of Athreya et al., we will give an extension of Theorem 1.1 that allows
singularity at r = 0, which will be needed in Section 4.

Corollary 2.7. Suppose that we have a filtration (F; ) c[o,r | and a family of R9-valued random variables
(As.t)o<s<t<T, suchthat As s = 0 foreverys € [0,T] and such that As ; is F;-measurable. Furthermore,
suppose that there exist constants

me [2,00), T1,I2,13,Me[0,0), a,pBi,B203 71,72 € [0,00),

such that the following conditions are satisfied.

o Forevery0 <ty <t <ty <tz <T, wehave

IE[6 A 10.05) Fro @) < Tut, 7 (01 = 1) ™ (13 — 11)P", (2.10)
16As.01.00 |2y < Taty” (12 = t0)"2, (2.11)
16As.11.0 I, By < T3(t2 = 10)P2, (2.12)
where M (t3 —t1) < t| — ty is assumed for (2.10) and ty > 0 is assumed for (2.11).
o We have
1 1 1
Bl > 13 ﬁ2 > Es Bl —-—a > Es V1,72 < 59 ﬁ3 > O (213)

Then, there exists a unique, up to modifications, R9-valued stochastic process (A;)rejo.r] with the
following properties.
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o Ay =0, A; is F;-measurable and A; belongs to L, (P).

o There exist nonnegative constants C1, . . ., Ce, such that
IE[Ay, — A = Ay | Fi Iz, ) < Cit; "ty = 1ol |12 = 111P, (2.14)
A, = Ay = A I, ) < Cot e = 11 [P + Cat 2 |0 = 1|2, (2.15)
I As, = Ay = Agy oIz, 8) < Calts = 61PN 4 Cslty — 11 1P2772 + Colta — 1112, (2.16)

where ty —t; < M~'(t; — to) is assumed for the inequality (2.14) and t, > 0 is assumed for the
inequality (2.15).

In fact, we can choose Cq, . .., Cg so that

Ci < I, G 2ap pom kmal't,  C3 Sa.8.8,M Km,al 2,
Cs SapiyiM Kmalts  Cs $g, o.M Kmal2,  Ce Sgy.m Km,als.

Furthermore, for T € [0,T], if we set

AT = Z As:, where is a partition of [0, 7],
[s,t]en
then the family (A7), converges to A; in Ly, (P) as |x| — 0.
The proof is given in Appendix A.

3. Integration along fractional Brownian motions

The goal of this section is to prove the convergence of Itd and Stratonovich approximations of

fotf(BS)st and fotf(Bs) o dB,

along a multidimensional fractional Brownian motion B with Hurst parameter H, using Theorem 1.1.
For 1t6’s case, we let H € (%, 1), and for Stratonovich’s case, we let H € (%, % .

Definition 3.1. Let (F),cr be a filtration. We say that a process B is an (F;)-fractional Brownian motion
with Hurst parameterH € (0, 1) if

o atwo-sided d-dimensional (F;)-Brownian motion (W;);cp is given;
o a random variable B(0) is a (not necessarily centered) Fy-measurable R¢-valued Gaussian random
variable and is independent of (W;);cr;

o we set
1

H- H-1
K(t.5) = Ku(t,s) = [(t= )2 = (=92,
then we have the Mandelbrot—Van Ness representation ([31])
B; :B(O)+/KH(t,s)dWS. 3.1
R

If B has the representation (3.1), then

_3)2-H

E[(B! - BL)(B] - B)] = 6ijeult - s/, cn o

B(2-2H,H+1/2),
where we write B = (Bi)l?": | in components and B is the Beta function

1
B(a,pB) :=/0 1N (1 - Pt dr.
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Regarding the expression of the constant ¢y, see [38, Appendix B]. In particular, we have
. . i . c
E[(B{ ~ B(0)')(B} = BO))] = —- (12" + 52 — |1 = sP!). (32)

In this section, we always write B for an (F;)-fractional Brownian motion. An advantage of the
representation (3.1) is that given v < s, we have the decomposition

BS—B(O)=/VK(s,r)dWr+/SK(s,r)dWr,

o v

where the second term fv ‘K (s,r)dW, is independent of F,. Later, we will need to estimate the
correlation of

N
/ K(s,r)dW,, s>v.

v

We note that for s < ¢

E[/SK(S, r) dWﬁ/tK(t, ) dW!] zéij/SK(s,r)K(t, r)dr.

v v

Lemma 3.2. Let H # % LetO <v<s<tbesuchthatt —s <s—v. Then,

s 1 1
/v K(s,r)K(t,r)dr = ﬁ(s - V)ZH + z(s - V)ZH_I(I -5) - CTH(t—s)zH +gg(v,s,1),

where we have
lgr (v, 5,0 Su (s = v)*H (1 - 5)?
uniformly over such v, s, t.

Proof. See Appendix A. O

We apply Theorem 1.1 to construct a stochastic integral

T
[ o, e
0

as the limit of Riemann type approximations. An advantage of the stochastic sewing lemma is that we
do not need any regularity of . We denote by L., (R?, R¥) the space of bounded measurable maps from
R4 to R, We write

d
xoyi= YAty x= (DL y= 00
i=1

for the inner product of R¥.

Proposition 3.3. Let H € (1/2,1) and f € Loo(R?,R?). Then, for any t € [0,T] and m € [2, ), the
sequence

Z f(By) - (B; — By), where n is a partition of [0, 7],

[s,t]en
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converges in L, (P) for every m < oo as || — 0. Furthermore, if we denote the limit by fOT f(B,)dB,
and if we write

t t N
/ f(By)dB, = / f(By)dB, _/ f(By)dB,,
K 0 0
then for every) < s <t <T,
t
[ 5B B ey St 11l =517
A

Remark 3.4. We can replace f(B;) by f(B,) forany u € [s,t]. It is well-known that the sums converge
to the Young integral if f € C?(R) with y > H™'(1 — H). Yaskov [40, Theorem 3.7] proves that the
sums converge in some L, (P)-space if f is of bounded variation.

Proof. We will not write down dependence on d, H, and m. The filtration (F;);cr is generated by
the Brownian motion W appearing in the Mandelbrot—Van Ness representation (3.1). We will apply
Theorem 1.1 with A ; := f(By) - (B: — Bs). Let m > 2. We have

H
IAs. L, @) < Il e = s

To estimate conditional expectations, let 0 < v < s < ¢ be such that f —s < s — v and set

v S
Y, ::/ K(Ssr)dWr’ Bs ::/ K(s,r)dWr.

00 v

We write y, := Y, if conditioned under F,. Namely, we write, for instance

E[g(ys, Bs)] = E[g(Ys, Bs)|Fy] = Elg (v, Bs)ly=y,-

We are going to compute E[A, ;|F,]. Conditionally on F,,, we have the Wiener chaos expansion [34,
Theorem 1.1.1]

d
F(By) = f(ys+By) = aols) + Y ai(s) B} + By,
i=1

where B is orthogonal in L, (P) to the subspace spanned by the constant 1 and
(B))i=1.....dirsv-
Note that
ao(s) =E[f(ys + By)],

ai(s) = E[(B)*]'B[f (ys + By)Bi] ©%™

“2H(s —v) B[ f (y, + By)BL].

Then, by the orthogonality of the Wiener chaos decomposition,

d
E[Ay il Fo] = ao(s) - Yo, + ) ails) - E[BLB 1.

i=1

Hence, for u € (s,1),

d
E[6AsuslFol = AL, + > AL,
i=1
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where

Ag,u,; = aO(S) ' Ys,t - a()(s) ' Ys,u - aO(”) : Yu,t = (aO(S) - ‘10(”)) ' Yu,t,
Ai,u,t = ai(s) . E[Elygv,t] - ai(s) : E[glvgs,u] - ai(u) . E[glugu,t]
= [ai(s) - e/ BIB B 1 — [ai(s) - e BIB B ] - [ai() - e/ ELBLE, ]

uu,t

0

Here, e; is the ith unit vector of RY. We first estimate AS s

ap(s) —ao(u). We set
F(m,o) =E[f(m+0X)], meR?, oe(0,0),
where X has the standard normal distribution in R?. Note that
ao(s) = F(Yy, 2H) ™2 (s =),

and similarly for ag(u), we have

1 o2
am.-F(m,O')zd—/ x'e 207 f(x +m) dx,
(27r)jo—d+2 Rd
—-d _ i 1 5 P
0 F(m,0) = ——— f(m+x)e 202dx+d—/ |x|=f(m +x)e 202 dx.
(Zﬂ)70d+l R (27T)70'd+3 R4
Therefore,
(O (m, )|+ 10 F(m, )] 5 11l o™
This yields

lao(s) — ao(u)| < |F(Ys, (2H) "2 (s = v)) = F(Y,, QH)"3 (s = v)¥)]
+[F (Y, (2H) 2 (s = v)H) = F(Y,, QH) ™2 (u = v) )]
S 1Ny (s =) T Wl + 1l ety (s =) (= v = |5 = v|7)

S ANy (s =) Yol + 1 f I ey (s = v) 7' (2 = 5).

Therefore,
1A il S ey (5 =) Yol Yool + 11 f Il ety (s = )7t = 5)[Yau e
The random variable Y; ,, is Gaussian and
v (o)
E[Ysl?] = d/ (K(s.7r) = K(u,r)) > dr = d/ (u=s+r)H=2 —pH-1)2gp
—o0 s—v

S (u- s)2/ P34 < (s =) 2 (u—-5)2
S—=Vv

We have a similar estimate for Y, ;. Therefore,

2

1A s lim®) S 1 lLgmay (s =021 =5)* ifr—s<v—s.
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Now we move to estimate A*

s.u.t- By Lemma 3.2, we have

E[B.B,] = / K(s,r)K(t,r)dr —/ K(s,r)K(s,r)dr = z(s )21 —5)+0((¢ - 5)*).
v v
Therefore, if we write a!(s) = a;(s) - e;,

Al =

S,u,t =

[ai(s)(s = v)* 71 = ai(u) (u = v)>* ] (2 = w) + O((laj(s)| + a ()] = s ).

N —

If we set
Gi(m,o0) =0 'E[fi(m+0X)X'], meRY o e (0,),

then a!(s) = G;(Ys, (2H)"% (s — v)H) and similarly for al(u). Since

|y—m,\2

Gilm,o) = 2mto 2 [ i) = mhe 5,

we have
. . . X2
(2ﬂ)%0'2(9iji(m, o) = / fiim+ox)[-6;; +x’xf]e’% dx
R4
. . X2
21)2020,Gi(m, o) = / Fim+ o0 [=(d+2) + xPPleF dx.
R4
Therefore,
Gi(m, )| < 11 £l oo™
0mGi(m, )| S 1 fllp@ayo ™ 105Gi(m, )| < 1f L. @ayo >
and thus
lai ()| < 1 lpe ray (s =v) 77,
laj(s) = ai ()] < 11l ray (s =) (Woul + (w =) = (s =)
S Il ey (s =) (Wl + (s =) (u - ).
This yields
JAL tl S Il eay [(s =) 7' (= )yl + (s =72t = 5)°
(s 2=+ (s-v)H(@- s)zH]
and
AL @) S 1 lpay [(s = V)F 2= 9)% + (s =) (2 = )] < 11 fllray (s = v) 7 (1 = 9"
(3.5)
ift—s<s—v.
Therefore, by (3.3) and (3.5),
B8 As .t | Folllim @) S Iz gy (s = v) 7 (£ = )2
if t —s < s — v. Hence, (A ;) satisfies the assumption of Theorem 1.1 with
a=H, B1=2H, B=H, M-=1. O
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Next, we consider the case H € (%, %). The following result reproduces [35, Theorem 3.5], with a
more elementary proof and with improvement of the regularity of f. More precisely, the cited result
requires f € C® while here f € CY withy > ﬁ — 1 is sufficient and thus, in particular, f € C? works
forall H € (%, %) We denote by C” (R?, R?) the space of y-Holder maps from R? to R4, with the norm

lf () = f O

I fller = £z, za) + sup
Leo(RY) X#y lx —y|

if y € (0,1) and
d
flley = 1f gy + D 10 fllers
i=1

ify € (1,2).

Proposition 3.5. Let H € (£,1), y > 55 —1and f € CV(RY,RY). If H < } and d > 1, assume
furthermore that

O ff =0;f", Vije{l,....d}. (3.6)
Then, for every m € [2,00) and 7 € [0,T], the family of Stratonovich approximations

Z f(Bs) + f(B:)

3 - Bst, where n is a partition of [0, 7],

[s,t]en
converges in L,,(P) as |r| — 0. Moreover, if we denote the limit by /01 f(B;) o dB, and if we write
t t N
/ f(B,) o dB, ::/ f(B,) o dB, —/ f(B;) o dB,,
Ky 0 0
then for every 0 < s <t < T, we have

| FB)+1(B)

2 * Dyt
Proof. We will not write down dependence on d, H, m, and vy. The filtration (F;);cr is generated by the
Brownian motion W appearing in the Mandelbrot—Van Ness representation (3.1). We can assume

S|(7+1)H.

/Stf(Br) o dB, -

< r-
L (P) d,H,m,y ”f”C’/|

v < ]1{H>4l}+21{H5§}'
We will apply Theorem 1.1 with
As.i = (f(Bs) + f(B1)) - Bs.s.
We first claim
16As ey S I fller It = s|HDH. 3.7
Observe
0As,ut = f(Blust * Bsu + f(Blu,s - Bu,e-

IfH > }1, the claim (3.7) follows from the estimates

[f(Bluel < 1 fller 1Buel”s  1f (Blu,s| < I flley [Bu,s!”.
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IftH < 3 L ‘then y > 1, and we have

d d
6As,u,t = (f(B)u,t - Z 8jf(Bu)B}£,t) : Bs,u + (f(B)u,s - Z 8jf(Bu)B£,s) : Bu,t’
J=1 =1

where (3.6) is used. Then, the claim (3.7) follows, again, from the Holder estimate of f. Note that the
condition y > ﬁ — 1is equivalent to (y + 1)H > %

The rest of the proof consists of estimating the conditional expectation E[6 A ,, | Fy ]. Lett—s < s—v.
We will use the same notation as in the proof of Proposition 3.3. We have

[6Asut|]: sut+ZDsut’

where

DY, = (ao(s) +ao(t)) - Yo, — (ao(s) +ao(u)) - Yy — (ao(u) + ao()) - Yu,
= (ao(t) —ao(u)) - Y5 u + (ao(s) —ao(u)) - Yz, (3.8)

and

Di

S,u,t

: = E[(ai(s)B} +al(1)B}) B ;| F,]
—E[(ai(s)B, +ai(u)B,) B, ,|F,] — E[(d}(u)B], + di(t) B)) B}, ,| F,].

We first estimate D Suppose that H > %. Recall

s,u, t*
Oy F(m, ) = ——— / e f (4 m) - fm)] dr
(27T)7O'd+2 R4
D F(m,o) = —— / Lf(m+x) - Fm)]e 57 de
( ﬂ.)zo-d+l
I
— / XPLF(m +3) — f(m)]e” 5 d.
(271-) 7 gd+3 JRrd
Therefore,
|0 F(m, )| + 105 F(m, )| < | fllevo? ™.
This yields
DY IS Ufller [(s =) O DY W1Vl + (s =) 1 = ) (Yo ul +1YurD]. 39

Therefore, by (3.4),

IDY ey < N ller (s = v)OFVH2 (1 — )2, (3.10)
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Now suppose that H < }1. To simplify notation, we write I (m, o) := F(m, (ZH)_%O'). Since (3.6) gives
Opi I/ = 0,,; I' for every i, j, we have

DSL,,:[I(Ys,(u—vf’)—1<Yu,(u—v>H)—Zamll(n,(u—v)’f) oY
i=1
+[I(Y,,<u—v>H)—I(Yu,(u—v)H)—ZamJ(Yu,(u—v)H) Yo
i=1
+ (Y, (s =) = 1Y, (u =) Yoy + [T Y2, (1 = )T = 1(Ye, (u=v)T)] - Y.
Since
Ot O F(m, ) = m/ e B [0, F (x4 m) - 0, F(m)] dx
we have
(Y, (= )™) = 1Y, (=) ~ Zamllm,(u—v) Wil S I fller (s =v) =2y 2,
Notice
—d
agF(m,a)sz [f(m+x)—-f(m) - Zaf(m)x e 2<Tzdx
* T LU = o - Zaﬂm)x e d.
Therefore,
100 F (m, )| < |l fllcva ™.
This yields

(Y5, (s =v)™) = 1, (w =))] S I fller (s =v) " (1 - 9).

Hence, we obtain the estimate (3.10) when H < JT'

We move to estimate D', , ;. By using the identity,

E[(B, + B})B, ,1 =E[(B})*] - E[(B})"],
we obtain
Di . = (ai(t) - di(uw)E[B}B, ] + (di(s) — a}(u))E[B,B ;]
— (di(s) — al(u)E[B,B. ] - (al(t) — al(u))E[ BB, ,]. 3.11)

Since the other terms can be estimated similarly, we only estimate (ai:(t) - aﬁ(u))E[B;'Bé,t]. By
Lemma 3.2,

|E[B; By, ]l < It = s

https://doi.org/10.1017/fms.2024.32 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.32

Forum of Mathematics, Sigma 19

Now we estimate |a§(t) - ai:(u)|. Recall af(s) =G;(Ys, (2H)_% (s —v)H),

_xP
2

(274 020, Gi(m, ) = ~63; /R Lfi(m + o) — fi(m)]e™F dx

d

Ix[2
2

+/ [fi(m+a'x)—fi(m)]xixje_ dx,
Rd
21202056 (m, o) = —(d + 2)/ [fi(m +ox) — fi(m)|xie”F dx
Rd
+/ [fi(m +ox) — fi(m)]xi|x|ze_# dx.
Rd

IfH < %, we can replace fi(m + ox) — fi(m) by

d
fi(m +0x)— fi(m) - Zc’)kfi(m)o'xk.
k=1

Therefore,
10 Gi(m, )| +105Gi(m, )| < || fllcra? .
This yields
jai(8) = @l )] < 1 fller (s =) 25 (Y ]+ (s =) (1 = 5))
and hence

llai(t) = ai(WlL,,, &) < I1fller (s =) OVH (1 —s).
Therefore, we obtain
1D} s i) < 1 ller (s = v) 07 DH (1 = 5) 1420 (3.12)
By (3.10) and (3.12), we conclude

B[S A el FulllL, 8y < I fller [(s =) HPH 21 = 5)% 4 (s =) DI (7 — ) 121

S I llev (s = vy D — 5y 142H
if t — s < s — v. Therefore, we can apply Theorem 1.1 with

a=1-(y-1)H, B1=1+42H, Br=(y+1)H, M-=1. O

4. Local times of fractional Brownian motions

In this section, we set d = 1, and we are interested in local times of fractional Brownian motions. In case
of a Brownian motion W, or, more generally, semimartingales as discussed in Lochowski et al. [28],
there are three major methods to construct its local time.

1. Via occupation measure. The local time L;V (+) of W is defined as the density with respect to the
Lebesgue measure of

T
Ar—>/ 14(Wy)ds.
0
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Heuristically,

L;V (a) = ‘/OT 6(Wg —a)ds,

where § is Dirac’s delta function concentrated at 0.
2. Via discretization. The local time L;V (a) is defined by

LY (@)= Tim D IWe = alT amin s, w, ) mas (v, w,0) (),

[s,t]en

where 7 is a partition of [0, 7] and the convergence is in probability. This representation of the local
time is often used in the pathwise stochastic calculus (see Wuermli [39], Perkowski and Promel [36],
Davis et al. [12], Cont and Perkowski [9], and Kim [23]).

3. Via numbers of interval crossing. For n € N, we set 7y := 0 and inductively

o= inf{e > 7 | W, € 272\ (Wan )}
Then, the local time L, () is defined by

Ly (@) := lim 27" Z L g sty (O#(C € No | (W, Wer } = (k27" (k+ D27}, 7, < T),
keZ

where the convergence holds almost surely. See the monograph [32] for the Brownian motion. For
general semimartingales, see El Karoui [22], Lemieux [27], and [28].

In case of a fractional Brownian motion, the construction of its local time via the method 1 is well-
known, see the survey [15] and the monograph [5]. In contrast, there are few results in the literature in
which the local time of a fractional Brownian motion is constructed via the method 2 or 3. Because of
this, the construction of the local time via the method 3 was stated as a conjecture in [9]. We are aware
of only two results in this direction. One is the work [4] of Azais, who proves Corollary 4.8 below. The
other is the work [33] of Mukeru, who proves that the local time Ly (a) of a fractional Brownian motion
with Hurst parameter less than % is represented as

lim 2"(2H-D Z 2|Bgy-n — al]l{(Bkz—n7a)(B(k_1)2—n7a)<0} almost surely.
n—0oo
k<|T2m]

Our goal in this section is to give new representations of the local times of fractional Brownian motions
in the spirit of the method (b) along deterministic partitions. The representation in Corollary 4.9 is
compatible with [9, Definition 3.1].

Theorem 4.1. Let B be an (F;)-fractional Brownian motion with Hurst parameter H # % in the sense
of Definition 3.1. Let m € [2,0), y € [0, ), anda € R. If H > % assume that m satisfies

1 1

—>1-—. 4.1
m g 2H @.1)
O’

Then, as |r| — 0, where 1 is a partition of [0, T], the family of

D, (=9 UHB B

[s,t]en,Bs<a<By
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converges in Ly, (P) to ¢y Lt (a), where Ly (a) is the local time of B at level a and

1+y o e~
2 y+1
CH,y = Cy /0 X

N‘*N

dx.

8

Furthermore, we have
lim E ¢y L — Z _ o 1-U+y)H _ y|™" _
H,yLr (x) (t-s) |B; = Bs|”| dx|=0. (4.2)
R
[

|7t]—0
s,t|en,Bs<x<By
Remark 4.2. A similar result holds for a Brownian motion (H = %). However, we omit a proof since it
is easier but requires a special treatment.

Remark 4.3. We can similarly prove

lim > =" UH B B =y Ly (a).

|7]—0
[s,t]en,Bs>a>B;

Consequently,

lim > (1 =)' "H B, By = 261 L1 (a),
|7|— [s,t]em,min{By,B; }<a<max{Bg,B; }

where the convergence is in L, (P).

Proof. We will not write down dependence on H, y, and m. Without loss of generality, we can assume

E[B(0)] = 0. To apply Theorem 1.1 (for H < %) or Corollary 2.7 (for H > %), respectively, we set
Asi=Agi(a) = (t=9)"""HB — B 15, <a<n,)-

If we set A; := ¢y, L;, it suffices to show that the estimates (1.10) and (1.11) are satisfied for H < %,

and that the estimates (2.14), (2.15), and (2.16) are satisfied for H > % Since the proof is rather long,
we split the main arguments into three lemmas.

Lemma 4.4. We have

|t = s|"H fu (a), forall H € (0,1),

A <
el T{(E[B(W]+s2H>-z‘m|r—s|1-H+7an(a>, H > L,

where in either case there exists a constant ¢ = ¢(H) > 0, such that

ca2

(E[B(0)*] +T%H)

|fu (@) Sexp(—m ) Va € R. (4.3)

Remark 4.5. Due to (4.1), the exponent 1 + % — H is greater than %

Proof. We have

_ i L
1A il @) < (6= )" H B, B P(Bs < a < B

2
. a*
<t - s|1_He amey BIB(0)2+T2H)

Now we consider the case H > %
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Set

1 1
xo = BIBOPT 48 im (= == 5P, G = =P -

Since H > %,,\/1 > 0, and
il s xg TN =sl, 0<xo <t =™,
Then, if X and Y are two independent standard normal distributions on R, we have
(Bs, Bs.1) = Ve (xo¥, x1Y + x2X)  in law.
Therefore, if we set
A= |Br = Bs|"1(p,<a<n,) (4.4)
”AAS,t”Zlm(]p) S XUTEIYT™ L oy <asa—xor <Y +ox ] + Xa BUXI™ Loy <asa—xo¥ <xiY+xaX }-

We first estimate E[|Y | 1{, v <a,a—yoY <x1Y +x.X }]- Using the estimate

2

X

P(X>x)<se 7 forx>0,

we have
_ _1 -1 _ 2
P(X > x;'(a - xo¥ — x1Y)|Y) < esbta (@xo?)" L iy <d(amior))- 4.5)
Then,
Efesba' @) Py pmry 0] = L)ﬁ/m Xy Zal™ iR SR g,
XorY <a -
V2 Xo Jo X0

2

(9] a
_1 - 2 2
<X e ¥, dy < X2, W)

~ xo0 Jo X0

_l/xy=ay
3 ( 0 )

where in the third line we applied

Iz

sup|z|™e” + < oo.

z€R
And,
_% 2
e X1 "u,72
EIV™ Ly et = | Sy s e,
Y <3 (a-xoY)} I — N Yo
Therefore,

m X2 TiG2en2 X1 74,2
E[|Y| 7:l]-{/\/OY<a,a—)(0Y<,\/1Y+/\/2X}] < Ee () 4 Ee 0,

We now estimate E[|X|"™Y 1{, v <a,a—yoY <x1Y+x.Xx}]- Similarly to (4.5), we have

1< e~ 16 X3 (a=xoY) )2

ELXTI™ L x5 51 (amxor -} 1Y Ly <lamxon))
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and similarly
/\/2 _¢ Xl _Lz
m 4(x2+242) a2
E[IXI™ 1oy <a,a-yo¥ <x1Y+y2x}] S e X072 4 =—e ™0 |
X0 X0
Therefore, we conclude
2

1 a 2
+ — -—a _1 1 o _at
X1 Xz)m (le +X;/)e am(Zexd) <r Xo "t — Sl(y+;)He (B0 2H)

A lL, @) < (

which completes the proof of the lemma. m

Recall the Mandelbrot—Van Ness representation (3.1), and recall that W is an (F;);cgr-Brownian
motion.

Lemma 4.6. Let v < s < t, and set

00

Y, = B(O)+[VK(s,r) dw,, o2 := E[(/SK(s,r) dw,)?] = %|s—v|2H.

If =5 is sufficiently small, then

S=v

_(s-a)?
e 2{7'%
E[As,t|]:v] = cH,y—(t - S) +R,
V2nog

where for some ¢ = ¢(H,m) > 0,

S 2, 2my -1 2 (t — s \min{l,2H }-& . H
”R”Lm(]P) < (E[B(O)Z] +S2H) i @ c(E[B(0)]*+T*")"a (_) |l—S|1 H+m.

Nl %

Proof. As in the proof of Proposition 3.3, for s > v, we set

v s
Y == B(0) +/ K(s,r)dW,, B :=/ K(s,r)dW,,
— v

and we write y := Y, under the conditioning of F,,. Then, recalling As,t from (4.4), we have
E[As | Fo] = Bllyss + Bstl" iy sioca, yotBorsamys—Bs})- (4.6)
To compute, we set
o;,=E[B},], o;:=E[Bi]l, ps.:=E[BsB;,].
By Lemma 3.2,

1
ﬁls_VFH

ol =enlt=sP+0(s vl =P, oF
and
1 _ cH _
s =5ls v = sl = =1t = sPP + O (s v = s ).
2 2
We have the decomposition
. o - . o -
Bs,t =0y ps,tBS + (Bs,t — Oy ps,tBs),
where the second term is independent of Bj. If we set

K3, =0, -0 tp, =cult—sPT+O(s — v 21— s + 0(s — v e = s*), @)
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and if we write X and Y for two independent standard normal distributions, then the quantity (4.6)
equals to
E[Iys,t + O—s_lps,tY + Ks,tXIYIL{yS+(rS

Y<a} 1 {)’S,I+O';]PS,IY+KS.IX>’1_ys_0'sY}]
= KZtE“X + plyl{ys+(rsY<a} ]l{X>q}]:
where

4.8)
p=p¥):= Ks_,lt()’s,t + O'S_lps,ty),

q:=q():= K;,lt(a — Vs —0sY — Y51 — U;lps,ty)-
For a while, assume y > 0. Using the estimate

[(1+&)” -1 ge, iflel <1,
we have
E[IX + p|"1ix>qy1Y]

x2

o0 e T ) e
= [ = e gty + O] [ 4 gy + O+ DD L gt
q T q
We set

[S)

S e_xT
Loy = [ e

7 bl \2r
We have fory > 0

2

<

M)

7 e_
L(y) ==yl
and if ¢ > 2|[p| and y € [¢q — |pl, q + |pl], then

1,0 < e-1la-IPD? < o164
Therefore, if ¢ > 2|p|, we have

2
_4q
11,(q) = 1,(p+q)| S e 1 |p|.
Therefore,

E[IX + pl"1ix>q;1Y]

2
_4q”
=1L,(p+q) +O0(Ipll,-1(g) Ligs21p)y + O(lple™ 1) + O((1 + |pD") Lg<21py
2
_4a
=L, (p+q)+O0(lple” 1)+ O((1 + [p)")Lig<2ip|}-
When y = 0, we have

“4.9)
2
E[1(x>)1Y] = Io(q) = Io(p + q) + O(Iple™ ) + O (1)1 (g <211}

and thus (4.9) holds for y = 0. We estimate the expectation (with respect to Y) of each term.
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We have
Kyt ) _(Ks,tZerzs*a)z
BIL (p(Y) + 9L (sor0r0y <ay] = —/ Le e de
Y {ys+o a} \/EO’S o Y
By using the estimate
e | < BlgleF |2 421
= Jlnie z {Im1<2]zl}>
we obtain
E[L,(p(Y)+q(Y)1(y+o,y<0y]
_Us-a)? ,
Ksie 2% (ys—a)? _s-a)

(o)
= —/ I,(z)dz +0(0';2K§,te 16073 )+ O(U;lks,te 85 )
0

V2o

2
s—a
_s-a) 2

/8

V2no

Next, we estimate the second term of (4.9). We have for n € {0, 1},

2
E[Jy[re "] = — L /
Os+0s Ps,;r JR

Kst (Ks,t +la -yl )"

KstZ+ta—Ysr— Vs
-1
Os+ 05 Ps,t

o

n
e 16

1
e
Var

Keie 295 e e _Gs—a)? ~lsea)?
= — / x|+ dx + 0(0';2/(? e 1698 )+ 0(0; kg e PS5,
P s Ks,

Ks,t2+a—Ys,t —ys

(rsﬂr;]ps,z

<
~ -1 -1
Osg+ 05 Ps;r " Os+ 05 Psit
i-a)? (y-a)? _M
_2(0' +{T_lp )2 _16(rr<+n'_1;7 )2 KS,[
X le $TTs Ps.t)” 4 e STTs Ps,t —_l+€ ,
Os 05 Ps,t

where we applied (4.10) to get the last inequality. Therefore, we obtain

Ks,r + ly: — al

(o5 + 05 ps)?

Ellp(M)]e™ 1] < + 0 psal

a(x)? ( [Vs.e
-1
Os+05 Ps,t

Finally, we estimate the third term of (4.9). Suppose that ;%f} is so small that |o7y 2ps.t

then we have

Liysrosy<ayligm<2pmy < Ljamy—o,v |<3lys tostpen¥ 1)
< Lyjo;

Hence,

E[(1+p(Y) 1y roy<a} Ligm)<2p)1}]

S (L + k5 Iyl + 05 ps.0))?

_s—a)?

7 -1 -3
X (€75 4 L gty mal 21205 s 120 o 1e-ay) (05 sl + 05 sl = al),

and

Lo (yema) <1205 ys 141205 s s ys—aly S Llys—al<24lys. 1}

This gives the estimate of the third term.
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In summary, recalling that E[A s.t|Fv] equals to (4.8), we obtain

(Ys-a)?
y+l - 20-52 oo e—%
Bl Ay |F] = 2 / W dx+ Ry,
V2ro 0 V2r

where

_ (s-a)? s—a)?
IR|| < o2 7+2 1603 +0'_1KZJ;1e 850

(r-a)?
y |Ys,el —1 Ks,r +|Y: —al *32(0_“'0,?1“ Ry
+K |\ + 0, | S,t|—_1 5 )e s P,
Os+ 05 Ps,t (o5 + 05 ps,t)
_(%s-a)?

-1 p
W+ (Wl + 05 o) (e 37 + 1y aisoap,

s_a|)-

-1 —
X (o | Ys| + 0y
Let us estimate ||R1]|r,,, »). Recall that

Ks,t < |t_s|H9 Os S |S_V|H7

and

b}

T =
AV

- s — v -1t — s,
|pS,t| ~ 2H
_s| b

|t

D= D=

We have the estimate (3.4) of Y ;. Since
1
E[Y?] = E[B(0)*] + cps* - Y7l vI?H 2 E[B(0)?] + s*H = y2,

there is a constant ¢ = ¢(H) > 0, such that

s-a)? - ca?

E[|Yy —al"e” & | <, x50 e w2, 4.11)

a2

s|e @+t 4.12)

2
_Ur-a
E(|Ys "¢ @ | <o xiloy—s"ED| -

Therefore, for some constant ¢y = c(H,m) > 0,

2 y+2 _(quzz)2 Loyl —(1412 _L m VK NH —#
llos Kzt e % ”Lm(]P’) S Xs MO mKZt nog Xs ]S = Vl_( “m) |t — Sl(y+ H 3 s
Y o (-a)?
”Kz,t%e Rostostoso? || ey
Os+ 05 Ps,t
“moy H-1 ;a1 H_y e ~SE
SXs MK o5 s =v[P Tt =sle 5 S M s — v = s e ¥
2 a2
- Kso+ |V —a| - —2+.L -4
”Kz,to—s 1 ) RAesroslosn? ”L (P) < Xv ZtO'S m|ps,t|e s
(o5 + 05 Ps.t)
<X_%e clfz |S—V| 1+ |t_s|yH+1 H>%
~AS |S—V| —2H+H |t_sl(y+2)H H < %

https://doi.org/10.1017/fms.2024.32 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.32

Forum of Mathematics, Sigma

¥s-a)?
- -1 -3
kY e 373 (o5 Yorl + 05 sl Ys = al)lle,, ey
2

cra

1 1 -
—1 =-] H-1 -2+
S xs Kk (ol s = v = sl oy M psel)e

g2 H _ —
B Ll s
~ H 1
* (Is = vlm =t = s|H + |5 — v| 2 H|p — |1+

T =
AV
ISTE ST

s

(Ys*a)z
- -1 -3
YsclYe 55 (o5 ' Yol + 05 |ps,lIYs = aDlle, )
| 1 _(s-a)? 5 _Ws-a)?
— 2 — 2
Soy W P e 5% . + 05 psiclllYsil’e 575 A,

1 cluz

1
1 1 )
Sxsme & [of T s — |0V ED g0+
o4+l .
+ 0 m|Ps,t||V_S|7(H )|t—s|7]
1 o—ad
SH,m Xxs"e X3
s — v|(7+$)H—(7+1)|t — s, "o %’
(Js = v| O H=0r g et g - y| G20 H Y| g 2H) - < L
v2
1 -5 . 3
(o5 ps.i) Ve 595 (o Yol + 052 s Vs DL, )

1 _cluz

- L—lfy _ —2+L_y
Sxs™"e & [O—sm |ps,t|y|s_V|H ]|t—S|+0's " |ps,t|7+]]

1 _ca

Sxs"e A
s — v|OFmH=OA D | — g+l H> 1,
s — v|(%—y)H—1|t — s|1*2HY 4|5 — v|(—2+#—y)H|t —sPHO+D g o< %

and finally

-1 -1 -3
(k) + (Yool + 05 ps.) ) Lipy,—a) <241y, 13 (05 Yool + 05 s [1YsD | (2)
—1 -
S oy (k) + 0105t s Ly, —a) <241¥s 0 3 | L (P)

-1 !
+ 0 s P Ly, —ar <241vs o 1y 1L (B)
2

_ -1 4z 1 1
S o (K 405 psal s me 3 s — | DR | — 5|1

1 7cla2

-2 1 1
+0—;l)(sme X2 |s_v|(H—l)(l+y+%)|t_s|]+y+ﬁ

_ca?

1
< xs"e X2 [ls_v|%—(l+%)|t_ s|1+#+yH + |S _vl(y+#)H7(]+7+#)|t_s|1+y+$

~

L_)VH-(1+L 1+2H y+-L
+1{H<%}|s—v|(m e T el

After this long calculation, we conclude

1 (.‘1122

IR, ) S xs™e *

— in{1,2H }-&
(t S)mlﬂ{ } m|t—s|(’y+i)H

Nl %

if == is sufficiently small.

https://doi.org/10.1017/fms.2024.32 Published online by Cambridge University Press

27

(4.13)


https://doi.org/10.1017/fms.2024.32

28 T. Matsuda and N. Perkowski

By (4.7), we have

41 (_Vs*‘zl)z
Y 20%
Ks ; € s

2 _(yrczl)z (y+1)H
o0 P e 20% |t—S| v+
|x[7*! dx = ¢y + Ry,
V2rog /0 V2 7 V2ro
where
_(s-a)?
20 t— 2[Hi[1{H,1—H}
Rol s —— (=) £ 5| *D. (4.14)
o2 s—v
Therefore,
1o_ad < |5 = y|GitDH=2|p — 24O-DH g5 1
B 2 27
el o S e {|S —v|GiIH | 5| H H < %
This completes the proof of the lemma O
Lemma 4.7. We have
r—s|'H , IlH € (0,1
1L (@) — Lo(@)ll, e <r |15 Sula) forallHe O, 4.15)
(E[B0)*] + s*7) 2 |t = s| 7w fy (a), ifH> 3,
where fy(a) satisfies the estimate (4.3). Moreover, lf

is sufficiently small, then

M
E[L/(a) - Ls(a)|Fv] =

where for some ¢ = ¢(H,m) > 0

(t—s)+R,
N2nog

. - *+(1—z)
1Rllz,, (21 < (BIB(0)?] + 5273 e (BLBO T (L22 ) 7 o= I (4.16)
s—v
Proof. The estimate in (4.15) follows from [3, (3.38)]. However, since this is not entirely obvious
; )
L:(a) = fo 04(B;)dr, we set

we sketch here an alternative derivation, which is motivated by [7]. In view of the formal expression

__H(Ys-a)?
cpy (r-s)2H
Agi(a) —/ E[64(B,)|Fs] dr _/ ﬂ'CH(r—S)ZH PIGOR T
We note E[5 A, ,(a)| Fy] =

o the estimate

0. By Lé&’s stochastic sewing lemma [24], to prove (4.15), it suffices to show
_ H(Ys-a)?

cp (r-s)2H fH (a)’
lle e, @) <1 {(E[B(O)Z]

H<}
$2H) =3 | — s|m

ful(a), H>1
o and the identity L;(a) = lim|z| 0 X ju,v]ex A,..v(a), where 7 is a partition of [0, ]

The first point is essentially given in Lemma 4.4. The second point follows from the identity

/ Y Aun(@)f@da= Y / [f(By)| Ful dr
[u,v]en

[u,v]ex !
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Thus, we now focus on the estimate (4.16). We have the identity

_ |Yr7a\2
t e 20'%

—F—dr.
s \/ﬂa'r

Indeed, we can convince ourselves of the validity of the identity from the formal expression

E[Lt _le-Fv] =

t
L,—Lsz‘/ 6(B, —a)dr.
S

We have the decomposition

_¥r-al? _I¥s-a? _¥r-al? _¥r-al?
e 207 e 202 [e 202 e 207 ]
Or Ts Or Ts
_Yr-al? _r-af? _Yr-al? _Ws-al?
e 20% e 2% e 207 e 203
+ - + - = R3 + Ry + R5.
Os Os Ts Ts

By (4.11), we obtain

1 o_ea 1 _cd H
IR3llL, ) S xs e 26 ooy =o' s xs e 23 s — v | — Mt
We have
iRl = ¢ 2o 1 = E )| < o2 o2 B
Hence, by (4.11),
ca? 1 c

1+L

“a
-4 — - - 1
IRallL, &) S xs e 2oy (1 =070,7) S xs e 23 s — v ).

To estimate Rs, observe

_ ¥s-al?
0-S|R6| Se so

-1
o Ysrl+ Liy,-a|<2v,,1}-

By (4.12),

Jys—«;\z 5 L o_can 51 Hol -L
e 5 oYl @ S xs™e Moy s =TTt —s| < s "e

ca?

N 1
23 |5 — p| TR HAL ),

To estimate P(|Ys — a| < 2|Ys.,|), consider the decomposition

Yx,r = E[sz]_lE[YsYs,r]Ys + (Ys,r - E[Yg]_lE[YsYs,r]Ys)~

If £=% js sufficiently small, then |E[Y?]'E[Y,Y;. ]| < . Therefore,

2

P(IY, — al <2¥, ) < POxslY = x5'al sa ls = v e = sl1X]) < x5l 23 Is — v — s

This gives an estimate of Rs5. Thus, we conclude

_¥s-al?

20(2

e S
E[L; - Ls|Fv] = ——=—1t = s| + Rs,

V2rog
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where

L cad p g\ ei-b)H "
“m 1-H+-
IR6llL,.p) < xs™e 2"3(s_v) |t — s~

This completes the proof of the lemma. O
Now we can complete the proof of Theorem 4.1. The above lemmas show

<r |t—s|'H, for all H € (0, 1),

¢ L:(a)—L;(a)) —A;;(a
lery (L (@) = Ly(@)) = Ay >||L,,,<p>{ST o L

and if ::—f} is sufficiently small, then

IE[¢r 5 (Li(a) = Ls(a)) = Asi (@) | Fu]llL,. »)

min{2H, L+H}- 1 H |
) s H H< L,

)min{l,$+H}—%

< e—c(E[B<0>21+T2H>-'a2(z;s
~ N

H - H
<5 S—;e—c(E[B(O)ZHTZH) laZ(ﬂ |t _ s|1—H+;, H> %

S—Vv

Noting that the exponents satisfy the assumption of Theorem 1.1 or Corollary 2.7, Remark 1.4 implies

e yLr (@) = D" Agi(@)llL,,z) sr e EEOBTTTC e, (4.17)
[s,t]en
Hence, we complete the proof of Theorem 4.1. O

Corollary 4.8. We have

T\ 1-H
lim (—) #{ke{l,....,n} | Buur <a <Bg}=1/;—HLT(a),
n n T

n—oo \n

where the convergence is in L,,(P) with m satisfying (4.1).

Proof. The claim is a special case of Theorem 4.1 with y = 0. When m = 2, it is proved in [4,
Theorem 5]. O

For applications to pathwise stochastic calculus, a representation of the local time as in (b) above is
more useful. In [9, Theorem 3.2], a pathwise [td6-Tanaka formula is derived under the assumption that

L7 (a) = > B —ali! (4.18)

[s,t]en:Bs<a<By

converges weakly in L,,(R) for some m > 1. But as already suggested by [9, Lemma 3.5], this weak
convergence in L,,(R) follows from our convergence result in Theorem 4.1:

Corollary 4.9. Let B € C([0,T],R), and for any partition 7 of [0,T], let Z,;f (a) be defined as in (4.18).
Assume thatm > 1 and that () is a sequence of partitions of [0, T], such that lim,—co SUp (s ;e r, |Br —
B| = 0 and for a limit Ly € L,,(R):

lim [ | > |B, — B|7~! ¢y, 1 Lr(@)|" da=0. (4.19)

R [s,t]em,:Bs<a<B;
Then

lim L7 () = HcH’%_]LT() weakly in L, (R).

n—oo
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Remark 4.10. If B is a sample path of the fractional Brownian motion with Hurst index H € (0, 1), then
by Theorem 4.1, the convergence (4.19) holds in probability for any sequence of partitions (7,),en,
provided that m satisfies (4.1). Therefore, we can find a subsequence so that the convergence along
the subsequence holds almost surely. In fact, by (4.17), we even control the convergence rate in terms
of the mesh size of the partition, and this easily gives us specific sequences of partitions along which
the convergence holds almost surely and not only in probability. For example, if 7, is the nth dyadic
partition of [0, T], the estimate (4.17) gives

ety Lr(@) = > Asr(@)llL, @) sp e EBORTT b ymne

[s,t]en,

Since the right-hand side is summable with respect to n, the Borel-Cantelli lemma implies the almost
sure convergence. Along any such sequence of partitions, we therefore obtain the almost sure weak
convergence of L7" in L,,(R).

Proof. Set

- 1 1

Asi(@) = (1B: = al7™" ~ H|B, = Bs| 7)1 (5, <ac,)-
It suffices to show that X[ /jexr, Ag . (-) converge weakly to 0 in L,,(R). Since

Pe . 1_
|As,i(a)| < min{H, 1 - H}B; —a|" '1p,cqep,)

and since (5 s1ex, |Br — a|%_l 1(B,<a<B,} is bounded in L,,(PP) by assumption, it suffices to show that

lim R( Z As,,(a))g(a)dazo

n—oo
[s,t]emn

for every compactly supported continuous function g. Since for By < B, we have

B—l

s,t

B;
/ B, — al#" da = H|B,, |7,

s

we obtain

B _ B, 1 B,
/B A (@g(a)da = / 1B, — al# (g(a) - B3 /B g da

K

Therefore,

,/R( Z As,t(a))g(a)da: Z

[s,t]em, [s,t]en,

B:

B;
1 _ _
(15, - alh ‘<g<a>—Bs,‘t/B ¢(x) dv) da

< /RZ’TT” (a) da x sup lg(x) —g(y)l

[x=Y|SSUp[s s1ex |Bi—Bs|
which converges to 0. o

Remark 4.11. As noted in [33], we can use Theorem 4.1 to simulate the local time of a fractional
Brownian motion (see Figures | (H = 0.1) and 2 (H = 0.6))."

Fractional Brownian motions are simulated by the Python package fbm: https://pypi.org/project/fbm/.
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Figure 1. Left: a fractional Brownian motion with H = 0.1, right: its local time at 0.
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Figure 2. Left: a fractional Brownian motion with H = 0.6, right: its local time at 0.

5. Regularization by noise for diffusion coefficients

Lety € C?([0,T],R%) with @ € (%, 1). We consider a Young differential equation
dx; = b(x;)dt + o (x;) dy;,  x0 = x. 5.1

We suppose that the drift coefficient b belongs to C} (R, RY), where C} (R, R?) is the space of
continuously differentiable bounded functions between R¢ with bounded derivatives. If the diffusion
coeflicient o belongs to Cli (Rd , M), where M is the space of d X d matrices, then we can prove the
existence of a solution to (5.1). However, to prove the uniqueness of solutions, the coefficient o needs
to be more regular. The following result is well-known (e.g. [29]), but we give a proof for the sake of
later discussion.
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Proposition 5.1. Let b € Cé (RY,R?) and o € C'*9 (R4, My) with § > I_T“ Then the Young differen-
tial equation (5.1) has a unique solution.

Proof. The argument is very similar to that of [24, Theorem 6.2]. Let xDG=1, 2) be two solutions to

(5.1). Then,
t t t
0= = [l -b6Ppas+ [ ot - oy = [ - e,
where

vy .—/ / Vb(Hx(]) - 0)xg 2))des+‘/ / Vo-(@x(l) —9)x§2))d9dys.

Note that the second term is well-defined as a Young integral since

s V0'(9x(]> (1- 6’)x§2))
is d-Holder continuous and 6a + @ > 1 by our assumption of &. Therefore, x(!) — x(® is a solution of
the Young differential equation

dz; =z;dvs, 20 =0.

The uniqueness of this linear Young differential equation is known. Hence, x(V) — x( = 0. O

Proposition 5.1 is sharp in the sense that for any @ € (1,2) and any § € (0, 1_7”), we can find
o e CY(R?, M3) and y € C?([0,T],R?), such that the Young differential equation

dx; = o (x;) dy;

has more than one solution (see Davie [11, Section 5]). However, if the driver y is random, we could

hope to obtain the uniqueness of solutions in a probabilistic sense even when the regularity of o does

not satisfy the assumption of Proposition 5.1. For instance, if the driver y is a Brownian motion and the

integral is understood in It6’s sense, the condition o € C,L is sufficient to prove pathwise uniqueness.
The goal of this section is to prove the following.

Theorem 5.2. Suppose that B is an (J;)-fractional Brownian motion with Hurst parameter H € (%, 1)
in the sense of Definition 3.1. Let b € CZI) (R, RY) and o € Cll7 (R, My). Assume one of the following.

1. We have b = 0 and o € C'*9 (R4, M) with

(1-H)(2-H)

6> ——————— 52
" THG-H) ©2)

2. Forall x € R, the matrix o (x) is symmetric and satisfies

y-o(x)y>0, VyeR,
and o € C'*%(RY, M) with § satisfying (5.2).
3. We have o € C'*9(R4; My) with

5> w (5.3)

1+H-H?

The graphs of (5.2) and (5.3) can be found in Figure 3.
Then, for every x € R, there exists a unique, up to modifications, process (X1)ie[0,00) With the
Jollowing properties.
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— (1-H)/(H)
— (1-H)2-H)/(1+H-H?
— (1-H)2-H)/H(3-H)

H
Figure 3. Some graphs of H from Theorem 5.2.

o The process (X;) is (Ft)-adapted and is a-Hélder continuous for every a < H.
o The process (X;) solves the Young differential equation

dX, = b(X,)dt + o(X,) dB,, X, = x. (5.4)

Furthermore, in that case the process (X;);e[0,0) IS a strong solution, that is, it is adapted to the natural
filtration generated by the Brownian motion W appearing in the Mandelbrot—Van Ness representation
(3.1).

Remark 5.3. In the case 2, we assume the positive-definiteness of o to ensure that for every x,y € R4
and 6 € [0, 1], the matrix 8o (x) + (1 — 8)o () is invertible.

Remark 5.4. Since the seminal work [8] of Catellier and Gubinelli, many works have appeared to
establish weak or strong existence or uniqueness to the SDE

dXt = b(Xt) dt + dBt

for an irregular drift » and a fractional Brownian motion B. In contrast, there are much fewer works that
attempt to optimize the regularity of the diffusion coefficient . The work [20] by Hinz et al., where
b = 0, considers certain existence and uniqueness for o~ that is merely of bounded variation, at the cost
of additional restrictive assumptions (variability and [20, Assumption 3.15]). It seems that Theorem 5.2
is the first result to improve the regularity of o without any additional assumption (except o being
invertible for the case 2). However, we believe that our assumption of ¢ is not optimal (see Remark 5.9).

The proof of Proposition 5.1 suggests that the pathwise uniqueness holds if, for any two (F;)-adapted
solutions X and X ® to (5.4), we can construct the integral

t 1
/ / voxV + (1 -6)x*)dodB,. (5.5)
0 0

Ifox S( Dy (1-9)X 3(2) is replaced by By, then the integral is constructed in Proposition 3.3. The difficulty
here is that X is not Gaussian and the Wiener chaos decomposition crucially used in the proof of
Proposition 3.3 cannot be applied. Yet, the process X ) is locally controlled by the Gaussian process B
(whose precise meaning will be clarified later), and by taking advantage of this fact, we can still make
sense of the integral (5.5).

As a technical ingredient, we need a variant of Theorem 1.1.
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Lemma 5.5. Let (A, ;)Jo<s<:<1 be a family of two-parameter random variables, and let (F;);cjo.1] be
a filtration, such that As; is F;-measurable for every 0 < s <t < T. Suppose that for some m > 2,
I'1,12.15 € [0, 00) and a, 7, B1, B2, B3 € [0, ), we have for every0 < v <s <u <t <T

IE[6Ag e | FolllL, ey < Tils = v~ = s/P + Dot — v |t — 512, ift—s <s—v,
16 As el ey < Tslt = s|P.

Suppose that

min{B1,2B3} >1, y+B2>1, 1l+a—-p; <amin

{%ﬂ,m - 1}. (5.6)

Finally, suppose that there exists a stochastic process (A;);e[o,r], such that

At = u,vs

lim Z
| 7t|—0;7 is a partition of [0,¢]

[u,v]en
where the convergence is in L,,(P). Then, we have
”At - As - As,t ”Lm (P) Sa,y,ﬁl,ﬁz,ﬁ3 Fl It - S|B]_a + F2|t - S|y+'32 + Km,dr3|t - s|'B3~

Remark 5.6. It should be possible to formulate Lemma 5.5 at the generality of Theorem 1.1. However,
such generality is irrelevant to prove Theorem 5.2, and we do not pursue the generality to simplify the
presentation.

Proof. Here, we consider dyadic partitions. Fix s < ¢, and set

n_]
: Z A3+2,, (t-s5),s+ 5L (1-s) -
Since Ay, = lim,, o A} ,, it suffices to show
AL, = AT L, @) < 270Dt = sP™ + Dot — 51722 + &y a T3t — 51P%)

for some 6 > 0 and all sufficiently large n. As in the proof of Theorem 1.1, we decompose

L
1 7
AL =AW =) D {OALL —BIOAL LI 1>L+1]}+Z D EISAL L IF o]
1=0 j:l+jL<2n-1 1=0 j:l+jL<2n-1
By the BDG inequality,
O LA
Jil+jL<2n—1 "
1 1
2 _ 2
Semal Y0 10ALLIE ) <xmals( D @I-s)¥)
Jil+jL<27-1 Jil+jL<2n-1
Thus,
L 1 1
HZ Z {0AL, ;1 —EIOAL ;L1 F Loy }H S Km, a3 L2727 B2 |1 — |5,

=0 jil+jL<2n—1
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Furthermore,
E[6A" ., |FI . ]H
JLIY I+(j-1)L+1
1=0 j:l+jL<2"—-1 Lo (B)
L
= Z Z “E[6A?+jL|]:lrj-(j—l)L+l]“Lm(P)
=0 j:+jL<2n—1
< L-1 ~a
<T Yy e s) (271 — s)P
=0 jil+jL<2n—1
L
L Y
+Dy Y (Fle-sl) @e-s)P
1=0 j:l+jL<2"-1
<2 7B oy _ g L po OOy g
Therefore,

|AS, — AP I, ) S 2B ey, _ gfime
$ T2 BN LY | B g TR L2271 | g)Bs

We choose L = [2""¢] with & € (0, 1) so that

1+
min{ﬁl—a—1+as,y+,82—1—)/8,,83— s}>().

2
Namely,
l+a- +8 -1
0B [P )
a Y
Such an & exists exactly under our assumption (5.6). O

We mentioned that a solution to (5.4) is controlled by B. Here comes a more precise statement. We
fixa e (%, H) and let X be a solution to (5.4). We have the estimates

t
[ b ar = b = 5)] < bl 1ot - ),

t
/ O—(Xr) dB, - O-(XS)BS,Z
s

Sa lolley |XlicelIBlicer = s/ 5.7
Furthermore, the a priori estimate of the Young differential equation ([14, Proposition 8.1]) gives
IXllcaorny <70 11+ (1Bllcy +lorll [1Blea)(T+ Bl +liellca Bllcs).  (5.8)
Therefore, we have
X; = Xy +0(Xs)Bss + b(Xs)(t — 5) + R 1,

where

Rsil 57,0 (I +1bllct + Il IBllce) (1 +11blle) + llolics 1Bllca)?r = s (5.9
b b b b
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This motivates the following definition. Recall that B is an (F;)-fractional Brownian motion in the sense
of Definition 3.1.

Definition 5.7. Let Z be a random path in C?([0, T],R¢). For 8 € (a, ), we write Z € D(a, ), if for
every s < t, we have

Z =z () + 2P (9)B, + 20 (5)(t = 5) + Ry 1,
where

o the random variables z(V (s5), 2 (s) € R?, and z(? (s) € My are Fy-measurable and
o there exists a (random) constant C € [0, o), such that for all s < ¢

Ryl < Cle = s)P.

We set

[Rs.:
1Zllp(ap) = 1Zlceqory + 2P eaqorn + 120 liaqorn +  sup . 5
0<s<t<T (=)

Furthermore, we set

Do(a,B) :={Z € D(a, ) | 2 =0},

Di(a,B) :={Z € D(a,B) | z'? (s) is invertible for all s € [0,7)},
and (| ZlIp, (a.p) = 1 ZIlp, (a.p) + SuPseqo.r1 (2P ()72 (s)].
Proposition 5.8. Let f € C} (R*;R?) and Z € Dy (a, B). If

1-H 2-3H+H? 3-3
B "~ B+H-H* 2H

max{ —1} <5<, (5.10)

and if a is sufficiently close to H, then for every m € [2, ),

| /lf(zr)dBr—w By,

<t.a,8.m I Flles MZID, (4 s (1 + HIZIID, (@8 2300 (8)]

Ln (P)
t— S|H+aé.

If Z € Do(a, B), a similar estimate holds with || Z||p, (a.p) replaced by || Z||p(a.p)-

Proof. Our tool is Lemma 5.5. Since arguments are similar, we only prove the claim for Z € D) («, ).

We set
Zo) + f(Z,
gy = LEIIE)
‘We have
Z,) - f(Z Z;) - f(Z,
N (AR CA PN AL (CAT
Sty 2 k) 2 £l
Hence
16As i 1) S N llco M ZIEa Ny eyl = 5174, (5.11)

Letv < switht —s < s—v. As Z € Di(a, 8), we write

Z, =z +z22 0B, + 2PV () (r —v) + Ry, ,, relst].
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Then, if we write Z, := z(D(v) + 2@ (V) B, + 23 (V) (r - v),
1f(Zr) = FZ) < W flics 1R 12 < I flles 211D g p I = 71%P

Hence, if we write AS’, = w - B s, then

16As 0 = 6As il @) Sar I Flles MZUD g ) o @ It = vIP e = 5] (5.12)

Next, we will estimate ||E[6AS,M,, |F 1|z, c»)- The rest of the calculation resembles the proof of Propo-
sition 3.5. We write Y, := E[B,|F,] and B, := B, — Y, as before. We can decompose

2, =Y, +22WB,, with? =zV0) +z220Y, +z0 W) (r -v),
where ¥, is F,-measurable and B, is independent of F,,. We set

ay(r) =E[f(, +2P (1)B)IF] = E[f P 0P )T, + B DIF,
al(r) =2H(s - v) B[/ (F, + 2P (v)B,)BLIF,].

Then, as in the proof of Proposition 3.5, we have the decomposition
d .
E[6As | F)] DL
i=1

where, as in (3.8) and (3.11),

DY, . = (ao(1) = do(u)) - Yy + (Ao(s) — do(u)) - Y,
D}, . =E[(ai(s)B +ai(1)B) B, ,| ]
—E[(al(s)B. + al(w)B}) B | F,| - E[(ai(u) B!, + 4i(t) B}) B, ,| F,]
= (al(t) - al(u))E[BIBL ] + (ai(s) — al(u)E[BLBL ]
— (ak(s) - aziw))E[B;B: W) = (@i(1) - al(w)E[BLB], .

The map R? 3 x — f(z® (v)x) € R? belongs to C®(RY) with its norm bounded by
122 W11 fllcs zay-

Therefore, by repeating the argument used to obtain (3.9), we obtain

152 0l < 122 01 flles ey {5 = V)70 = 9) (Woal + Yt

+ G5 =) O (1 ) Pl + 122 @) Faal Vo)
Referring to (3.4), we have
1PN YsullL,@ s (s =" =)+ 1122 )P D)L, @ (- 5).

Therefore,

1D i@ < 1 lesll1z® ()1l ce)
X (s =) T2 — )2 4 122 (1) 2D W)Ly, 8y (5 = v)OH T (2 - 9))
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Similarly as before, we have
i (1) = ai()] < 2P DN fllcs gy (s =) O PHAED ) Houl + (s =) (1 - 9)).
As H > %, by Lemma 3.2, we have
|E[ByBs. 1| s (s —v)*" (1 - s).
Therefore,

1D e ey < 1oz (D1 s, @)
X {(s =) 21— 52 1 122 )T D W)y, ) (5 = )1 - 9)%.

Combining our estimates, we have

B[ As el Fulll, &) <t I1flcslllz® 0)1°1ILy,, )
x (1+ 122 )23 W) Iy, 2) (s = v) VA2 (1 — )2, (5.13)

Hence, combining (5.11), (5.12), and (5.13)
16As i @) S I llcs MZNEallLy,, @) = s17H°,

and

NE[6As | Follln, @ Sa.sx Ifllcslllz® 0)1°]Ls, @)
X (1+ 122 0) 72D D)l 2)) (s = v) CDH2 (2 — )2

1 lcs HZN g gy N ey 2= V1P 12 = 517

To apply Lemma 5.5, we need

1-(1+0)H 0B+H -1
speH 1, LZUHOH {ﬁ+—,2(H+a/6)—l},
2—-(1+06)H o
which, if « is sufficiently close to H, are fulfilled under (5.10). ]

Proof of Theorem 5.2. We first prove the pathwise uniqueness. We suppose that the assumption in the
case 2 mentioned in Theorem 5.2 holds, and the other cases will be discussed later. Let X (M and X®@
be (F;)-adapted solutions. Our strategy is similar to Proposition 5.1, but, here, we must construct the
integral (5.5) stochastically. For each k € N, we set

A= inf inf y-o(x)y,
x:|x|<k y:|ly|=1

we let % € C*9(R?; M) be such that % = o in {x | |x| < k} and
. . k 4
inf inf y.-oc"(x)y >

k
xeR4 y:|y|=1 2’

and we set

o t o t o
x (0K :=x+/0 b(x£‘>)dr+/0 ok (x\"YdB,, i=1,2.
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If we write

Qr={weQ]| sup max{|X"(w).|X? (W)} <k},
t€[0,T]

then in the event Q;, we have Xt(i) = Xt(i)’k, te€[0,T].
Let {0k 1}, be a smooth approximation of o*. In general, we can only guarantee the convergence

in C'*9 (R4, My) for any 6’ < &, which is still sufficient to make the following argument work. To
simplify the notation, we assume that we can take ¢’ = 4.

We have
/ ok (xD)dB, = lim / ok (x\") dB,
0 n—o0 0
and in Qj
! 1 2 tooa 2
/ {o* Xy = ot (x,7)} dB, = / (X~ x Ky avin,
0 0
where

t 1
vhn = / / vokroxV* 4 (1 -0)x?*) dodB,.
0 0

For a fixed 6 € (0, 1), we set
zP* = ox0F + (1-0)x
By the a priori estimate (5.9), for @ € (%, H), we have

z/ -z = (oot (X" + (1= ) (X)) By
H{OD(X) + (1= O)b(X (1 = 5) + Ry
with
IRo.| s1.0 (1+ x| +11Bllcy + llerlley 1Bllca)’ e = s

Note that we have

A
inf v {00 G + (-0t Py 2 T
yAyl=

and hence
{0 (X + (1= o)t (XY < A
Therefore, we have Z?% € D, (a, 2a) with
1Z9 1D, (@20) ST.0 (14 |x] + 1bllc; + ||0'||CIL||B”C“)3 + 1+ UP L, + Nl ll.)-

Since

1-H 2-3H+H? 3—\/5_1}_ 2-3H + H?

0 0 ——<(5
2 2o+ H-H? 2H 20+ H - H?

max {
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if a is sufficiently close to H, by Proposition 5.8,

kn1_0_

k, k s .
”Vs,tnl - nz”Lm(]P’) <T a,8,b,0,k,m ”0- k nz”cHO(Rd’Md)l[ - S|H

By Kolmogorov’s continuity theorem, the sequence (V*"), ey converges to some V¥ in C? ([0, T],R9).
Therefore, we conclude that almost surely in Q, the path z = X(1) — X(® solves the linear Young
equation

t t 1
z,:/ - dUK, Uk = v,’w/ / voex D + (1-0)x2%) dodr,
0 0 0

and hence X = X®@ _Since P(Qx) — 1, we conclude X M = x@ almost surely. Thus, we completed
the proof of the uniqueness under the case 2. The other cases can be handled similarly. Indeed, under
the case 1, we have X©) € Dy(«, 2a), and under the case 3, we have X € Dy(a, 1).

Now, it remains to prove the existence of a strong solution. However, in view of the Yamada-Watanabe
theorem (Proposition B.2), it suffices to show the existence of a weak solution, which will be proved in
Lemma B.3 based on a standard compactness argument. O

Remark 5.9. We believe that our assumption in Theorem 5.2 is not optimal. One possible approach to
relax the assumption is to consider a higher order approximation in (5.7). Yet, we believe that this will
not lead to an optimal assumption, as long as we apply Lemma 5.5. Thus, finding an optimal regularity
of o for the pathwise uniqueness and the strong existence remains an interesting open question that is
likely to require a new idea.

A. Proofs of technical results
Proofs of Lemmas 2.3 and 2.4

Proof of Lemma 2.3 without (1.12). Let us first recall our previous strategy under (1.12). We used
Lemma 2.1 to write

2"—1

N
Apin — ZAti—l,ti = Z Z R?' (A1)
i=1

neNy i=0

Then, we decomposed

21 L-12"/L
Z Rn = Z Z ( Lj+H — R2j+l|f£l(j—1)+l+1]l{jzl})
=0 j=0
L-12"/L
DI IR: LN P (A2)
=0 j=1
where F7! := F, | Ta— We estimated the first term of (A.2) by the BDG inequality and (1.8):
L-12"/L

1 _1
12,2, (sz+1 ‘E[sz+z|ff<j4>+z+1]1{121})IILmaP) S KmaT2 L2277 [ty — o2 (A3)
=0 j=0

In the proof under (1.12), we estimated the second term of (A.2) by the triangle inequality and (1.7):

P‘

Z"/L
[ E[RY F o) S TiL™ @27 Bmabnyy g fime (A.4)
J (Uaa))]
I Jj=1

Il
(=}
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Then, we chose L so that both (A.3) and (A.4) are summable with respect to n, for which to be possible,
we had to assume (1.12).

In order to remove the assumption (1.12), let us think again why we did the decomposition (A.2).
This is because we do not want to apply the simplest estimate, namely, the triangle inequality, since the
condition (1.7) implies that (A ;)[s,.]ex are not so correlated. This point of view teaches us that, to
estimate

2" /L

E[R;l,j+l|‘7:£(j—l)+l+1]’

~
~

l

1l
(=]
1l
—_

J
we should not simply apply the triangle inequality. That is, we should again apply the decomposition as
in (A.2).

To carry out our new strategy, set

.. .
7 Lo 9 = FLGonsen JeN.

For this new strategy, we can set L := max{2, [M]}. In particular, L does not depend on n. We use the
convention E[X|gj(.1)’l] =0 for j < 0. Then,

L-12"/L L-1L""2n L-1L-1L"22"
_ (1,1 (1), l (1),1 (1),1
BIR} 1P} o] = ), D EISYIGE DB (As)

=0 j=I =0 j=1 1,=01,=0 j=0

By setting
)., . (1)1 2,11, . (1),1
Sj o SJL+llz gj v g/ 1;L+lz

the quantity (A.5) equals to

L L L2 L L L2

2),11,1 2),11,1 2),11,1 2),11,1 2),11,1 2),11,1
ZZ Z E[S() 1 2|g](+)1 1 2] —]E[S;-) 1 zlg;) 1 2])+ZZ Z E[S;) 1 zlgj(_) 1 2].
11=0L=0 j=0 11=0L=0 j=0

The L,, (P)-norm of the first term can be estimated by the BDG inequality: it is bounded by
1
2),0,0 |~ (2),0,1 2
Zma y, (Y NBISPIEIGEHEE ) (A6)
<L  j<L[=22n

By (1.7), we have

2),11,1 2),11,1 - — _
IBLSP21G DL, @) < TVL2 ™ ew = t0))™ (27"t = 10])P".

Therefore, the quantity (A.6) is bounded by
2T L= 02 M Bra=2) |y — g |Br=a
As the reader may realize, we will repeat the same argument for
L L L72on

Z Z Z S(z) s lz|g(2) s lz]

L1=01,=0 j=1
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and continue. To state more precisely, set inductively,

S;k)’llw sl S(ij+},z e lie- ' g(k) el gé’z;l)]’)l-:-’l;"lkil’ je [l,L‘kz"] AN. (A7)

We claim that, if L¥ < 2", we have

2" -1
1> R2lliye) < 2emalaL 2" D iy — 1ol
i=0
k-1 ] ]
+2Kkm drl( L%_O_I)Q)L72_"(B'_‘l_§)|tN - tolﬁl—ll
=
K)ol 1 (K)o
+l Z Z E[S;.) 1 klgj( ).0 Nz, @)-
I,..., Ix<L j<L-kon

The proof of the claim is based on induction. The case k = 1 and k = 2 is obtained. Suppose that the
claim is correct for k > 2, and consider the case k + 1. Again, decompose

Z Z (k),l| ..... I |g(‘k),ll,,..,lk]
J

I,k SL j<Lkon
_ (k1)1 seeslie | A (k1) Dl S e (k1) 0yl o (k1) eyl Les
i Z Z (ELS; 1951 "1 -E[S; I9; 1)
li,..., lk’lk'*lSLjSL—(k'*l)zn
+ Z Z E[S§k+1),11 ..... lk|g]('k+1),l],___,[k,lk+l]'
Iseeolis e SLj<L-(k+Don

To prove the claim, it suffices to estimate the first sum in the right-hand side. By the BDG inequality, its
L,,,(P)-norm is bounded by

1/2
k+1),0 i Lt k+1),0 .l ks
Yma (D IELSE gl heayp AT (A

el les1 <L ng-("’*”Z"
By (1.7),
B D fonliolion GOSD-foenliclier )y, o < Ty (K927 ey = 20))7* @7 ew =10 (A9)

Therefore, the quantity (A.8) is bounded by
2Ty L2 LG~ Ok nBi=a=2) |1 g1 (Bi=a)

and the claim follows.
Now let us estimate

T D S -1 e T e T (A.10)

l.oli <L j<rkon

by the triangle inequality:

k). lk k),ly,..., Ik
[ Z Z ] [

k),ly,..., I k), ,...,
Z Z |E[S( ).l klg( )5l ]”Lm(]P)

I,k <L j<L7k2n
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By (1.7) (or essentially the estimate (A.9)),
IBLST 141G, ) < T (LR2 7"t = 10) ™ (27" |t = )P,
and hence, the quantity (A.10) is bounded by
1—\1 L*a/szn([ﬂ*a/*l) |tN _ t0|ﬁ1*(l.

In conclusion, we obtained for L¥ < 27,

-1
1D RENL.@) S KmaDaL227" Pty — ]
i=0
o a D2 "B Dy — g g Ty Lk Bma Dy g, (A
where
k
L2k D100y, ifa <,
fic= { e e (A.12)
(k—-1)L2, ifa> 3.
We recall that L = max{2, [M]}. To respect L* < 2", we set k := L'{(zgfj. We then have
- 1 . 1
P P A LS
< n2nBi—a=3)  ifg > %’
and
LookpntBrmal) ¢ gy 27 AD,
Therefore, we note that the right-hand side of (A.11) is summable with respect to n and
N
||At(),tN - Z Ati,],ti ||Lm (P) Sa/,[ﬁ B2, M Km,dr2|tN - t0|ﬁ2 + Km,dF] |tN - tolﬁl_al . O

i=1
Proof of Lemma 2.4. The proof is similar to Lemma 2.3. Write
7 ={0=tg<ty<-- <ty <ty=T}
and
{[ssden|ty<s<t<timy={t;=1] <t] < < t{;]j_l < t{vj =t}

By (2.6), we have N < 3|7r’|_1T. We fix a parameter L, which will be chosen later, and set

Njr+
(N, ._ _ ) (D, ._
Zj = Ath+leL+l+1 - A,I{f”,;i"*” Hj = ‘Ft(j—l)L+I+1'
k=1

Inductively, we set

(k) lysewnslic o 7 (k=1), 0150001k (k) lseenslic o gy (k=1),11,. 00k
Z; =21 - A =MoL
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As in Lemma 2.3, for each k € N, we consider the decomposition
AT — A7 =A+B,

where

k
A= Z Z {E[Z;P),ll ----- Ip |H(l7)all ----- lp] _ ]E[Zj(-p)’ll ----- Ip |H§P)’ll ----- lp] }

Jj+1

k),li,..., I k), i,k
B = E[ZJ( ).0 k|H; ).0 “.
L,k <L j<N L

45

For this decomposition, we must have L¥ < N. By the BDG inequality and the Cauchy-Schwarz

inequality,

k

)l (P)lisenl (P)l1seennl 2
lAle < oma 3 LE( D, > NBLZP )

=l ..., <Lj<NLP
By Lemma 2.3,
(1),1 -
1Z; " ML, @) Saupip Tiltjrsen — e P + K aDaltjrarer =t P2

For p > 2, by Lemma 2.2 and (2.6),

Jpgeens 1 ey 1 —(p— —
ELZ Pt Dt ) s, DL @D 7o
Therefore, we obtain

1 ol _1 ol
IANL,,®) Sapprmar L2T|a' P07 + Dy’ |P273) + T i P72,

where f is defined by (A.12).
We move to estimate B. By Lemma 2.2 and (2.6),

B[zl (Ol o) g Ty LK P,
Therefore,
IBllL,. ey Spr.r TiL™* |’ Prme!
Combining (A.13) and (A.14), we obtain

IAT = AFlIL,.p)

1 1 1 1
Sapiprmdr LI(Ta P + Doln/[P72) + Ty filn/ P72 + T L% |/ [Pt

log N

As in the proof of Lemma 2.3, we set L := max{2, [M]} and k := | Tox L

estimate.

Proof of Corollary 2.7

(A.13)

(A.14)

|. We then obtain the claimed

]

The argument is similar to that of Theorem 1.1. Therefore, we only prove an analogue of Lemma 2.3.
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Analogue of Lemma 2.3. Given a partition

O0<ty<t; <---<ty_1 <ty <T,

we have
N
_ ) ) < Y1 _ Li—a =2 _ 52
0> i—1-4 m s, s, > ’ 0
1Az, 20 ZAt Lt @) Saprpom Kmal'1ty ' tn = to] +kmalaty " |tn — 10l (A.15)

i=1

N
”AIQ,IN - Z Ati_l,t,j ||Lm (P)

i=1

S(l,ﬁ],ﬁz,ﬁ3,yl,y2,M Km,d(rl |tN - l‘()lﬂl_a/l_y1 + letN - Z‘0|ﬁ2_’y2 + F3|tN - t0|ﬁ3)7 (A16)
where ty > 0 is assumed for (A.15). In fact, the proof of (A.15) is the same as that of Lemma 2.3, since
we can simply replace I'; and I' by #,”'I'; and 7, ”*I,. Therefore, we focus on proving (A.16).

Yet, the proof of (A.16) is similar to that of Lemma 2.3. Recalling the notation therein, namely, (A.1)
and (A.7), we have

N co 2"
A,y — Z Aty = Z Z R?*
o . i=1 n=0 i=0
iy, L, iyeens ) NP 1, iy 1,
i=0 p=11y,. 1, <L j<2"L-P
Y E[§40) 1otk g (0-foelicy (A.17)
I, slk <L j<onp -k

We fix a large n. To estimate the first term of (A.17), we apply the BDG inequality to obtain

(p).li,..., 1 (p).li,-.., 1 (p),li,..., 1 (p).li,..., I,
I3 RISyt ig ety — st gt
j<anLp
1
(P)sltsesslp | A (P)sl1s s Ip 2
< kmal Y IBLST G )
j<onL-r

For p = 1, since Sﬁ.l)’ll = R;'lL+ll s by the Cauchy-SchwarZ inequality,

2n 1

(1,0 2 2 1 2 2

Z( Z IS5 IHL,,,(P)) SLZ(Z||R?||L,"(]P)) :
L<L j<onp-! i=0

Fori > 1, by (2.11), we have

IR 1, 2) < 2Da2(to + 27"ty —to]) > (27"|tw — to])P2
and by (2.12)

IRG |, 8y < 20327 |t — to])P3.
Therefore,

2n 2" 1

2 _ _ —n. _ 2

(DUIRIIZ, )" 5 T2 By =l + T2ty = 1ol ) (10 +2 "l = r0) 272
i=0 i

i=1

https://doi.org/10.1017/fms.2024.32 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.32

Forum of Mathematics, Sigma 47

We observe

2" ltn—to]
Z(lo + 27ty — 1o) 722 < 2"t —to] 7! / s ds =
0

i=1

2ty = 1027

s A.18
2, (A.18)

where the condition y; < % is used. We conclude
1
1,1 2 1 - —n(B—1 _
202 SR ) S L2y =l + T2 B Dy = 1o,
h<L  j<onp-l
For 2 < p < k, the argument is similar but now we use (2.10). By the Cauchy-Schwarz inequality,

Jisenl Aisenlp
> (5 wersP g g )

lyonlp <L j<2ULP

2 Aiseens l ).l » 2
SLZ( Z Z ||E[S;p) 1 plg](fl 1 I]HL (]P)) .

ooy <L j<20L-P

(ST

We note that for each index /1, . . ., /,, and j in the sum, there exists a unique i = i(/y, ..., [p; j), such that

(P)lis-lp
ST = Ry
As p > 2, we know i > L. By (2.10) (as in the estimate (A.9)),

(P)ultsealpy o (P). 1]
IELS, 1G5 P ML o)

<20 (LPT127" |ty — 1o]) ™ (t0 + 27"i(L1, - - - Lps J)|tn — 20]) ™ (27" |t — 1))

Therefore,

1
(P15, I (p)sl1s---s p 2
(> > Es gz )
ho <L j<oiL-r
2"
STLPT27" |ty —tol) ™ (27" |ty — f0|)B‘(Z(fo +27"ty — tol)_zm)

i=1

=

< FIL—tv(P—l)z—n(ﬁl—w—%) ltn — t0|ﬁl_(l_71,

where to obtain the second inequality, we applied the estimate (A.18).
Now we consider the estimate of the second term of (A.17). By the triangle inequality,

k),l,...,1 k).l
Z Z S(. )0, k|gj( ).l ’k]“Lm(]P’)

I, ik <L j<On -k

S D D - e [ PAESS

I,k <L j<On K

But the estimate of the right-hand side was just discussed. In fact, we have

k), ,..., Ik k).L,..., I - - —a— —a—
DR I = E e e [ oY A Y L
lsnlie L j<an =k
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Hence, we obtain the estimate

2"
1 _ _ _1 _
||Z RN\ ®) Syin kmaL? (D327 ey — 1o|P3 4+ Tp2 B2 2) |1y — 1o F2772)
i=0
k 2
+ Km.al'| Z L%—Q(P—l)z—n(ﬁl—a’—%)”N _ t0|,81—af—7|
p=2

+ FlL_akZ_"('B‘_a_l)hN _ t0|ﬁ1—0—71_

By choosing L and k exactly as in the proof of Lemma 2.3, we conclude that there exists an
& =¢&(a, B1, B2, B3) > 0, such that for all large n

on

1) R e ®) Sapi s Kma2 " (Ciltn = 10"~ + Doty = 107 + Talin = 10l),
i=0

from which we obtain (A.16).

Proof of Lemma 3.2

Letd = 1. For u > v, we set

v u
BV = / K(u,r)dW,, B = / K(u,r) dW,

so that B, — B(0) = Bf,l) + B,(Az) and B and B? are independent. Then, we have
2) (2 *
E[B§ )Bt( )] = / K(s,r)K(t,r)dr,
v
and by (3.2), we have

SE w2 - s = B[B" B"] + E[B B,

and thus, we will estimate E[Bgl)Bt(l)]. We have
E[BEI)B,(])] — ‘/Om [(s +r)H—1/2 _ rH—1/2] [(t +r)H—l/2 _ rH—1/2] dr
+‘/Ov(s—r)H_l/Q(t—r)H_lﬂdr. (A.19)
By [38, Theorem 33], the first term of (A.19) equals to
(cw — 2H) ™ Hs*H +/0m [(s+r)H72 = b HA2) [(¢ 4+ )H712 — (54 1)H12] dr (A.20)

Since

(t+r) 12 (54 E 12 = (H=-1/2) (s +N)E32 1 =)+ O((s + VI (1 - 5)?),
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the second term of (A.20) equals to
sPH=1(t — ) (H=1/2) /Ooo [(1 4+ pHA2) (14 ) A532 4+ 0 (52772 (1 - 5)P).
By [38, Theorem 33],
(H-1/2) /OOo [(1+7)H712 = pHA2] (1 4 ) H32 g = —% +Hey.

Similarly, the second term of (A.19) equals to

%(SZH _ (S_V)ZH)_'_I_TS(SZH—I _ (S—V)2H_1)+0((S—V)2H_2(t—s)2).

Therefore, E[Bgl)B,(l)] equals to
1 1
cus™ + Heys™ (1 - ) - ﬁ(v—s)ZH - E(s—v)2H_1(t—s)+0((s—v)2H_2(t—s)2).
Since
CH 2H | 2H |, 2Hy _ 2H 2H-1,, _L_zH
2(s +1 [t —s|”") —cys™ +Hcys (t-1s) 2H(v s)

= —CTH(t - s)zH +0((s— v)ZH_z(t - s)z),

the proof is complete.

B. Yamada-Watanabe theorem for fractional SDEs

We consider a Young differential equation
dX; =b(X,)dt +o(X;)dB;, Xo=ux, (B.1)

where b € Lo, (RY,R%) and Bis an (F;);cr fractional Brownian motion with Hurst parameter H € (%, 1).
We fix @ € (%, H), and we assume that o € cF (R¥; My) so that the integral

/ "o (X,)dB,

is interpreted as a Young integral.

Definition B.1. We say that a quintuple (€, (F;);er,P, B, X) is a weak solution to (B.1) if (B, X)
are random variables defined on the filtered probability space (Q, (F;),R), if B is an (F;)-fractional
Brownian motion, if X € C*([0,T]) is adapted to (F;), and if X solves the Young differential equation
(B.1). Given a filtered probability space (L, (F;);er,P) and an (F;)-fractional Brownian motion B,
we say that a C¥([0, T])-valued random variable X defined on (Q, (F;);er, P) is a strong solution if
it solves (B.1) and if it is adapted to the natural filtration generated by B. We say that the pathwise
uniqueness holds for (B.1) if, for any two adapted C* ([0, T])-valued random process X and Y defined
on a common filtered probability space that solve (B.1) driven by a common (JF;)-Brownian motion,
we have X =Y almost surely.

We will prove a Yamada-Watanabe type theorem for (B.1) based on Kurtz [25]. To this end, we recall
that an (F;)-fractional Brownian motion has the representation (3.1), and we view (B.1) as an equation
of X and the Brownian motion W.
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Proposition B.2. Suppose that a weak solution to (B.1) exists and that the pathwise uniqueness holds
for (B.1). Then, there exists a strong solution to (B.1).

Proof. We would like to apply [25, Theorem 3.14]. For this purpose, we need a setup. We follow
the notation in [25]. We fix 8 > O that is less than but sufficiently close to % As before, we set
_1 _1
Ky (t,r) = (t— r)fl 2 - (—r)f 2, and we set S; := C%([0,T]) and define S, as a subspace of
-1

{weCP®R)| lim w|(-r)""2 =0, / w(r)I(=r)"~2 dr < eo}

—00

that is Polish and the Brownian motion lives in S,. We note that for w € S5, the improper integral

t t
/ Ky (t,r)dw, = lim / Ky (t,r)dw,
oo M —oco M

is well-defined. For r € [0,T], we denote by (Bfl)te[g,]‘] and (BIS *)tejo,r] the filtration generated by
the coordinate maps in S and S, respectively. We set

C:={(B",B") |te[0,T]}

as our compatibility structure in the sense of [25, Definition 3.4]. We denote by Sr.c.w the set of
probability measures p on S| X S, such that

o we have
t t
u{(x,y) € S1 xS | x; =x+/ b(x,) dr+/ o(x,)dly, forallt € [0,T]}) =1,
0 0

where (Iy), = [ Ku(t,r)dy, ;
o u is C-compatible in the sense of [25, Definition 3.6];
o u(S; X -) has the law of the Brownian motion.

By [25, Lemma 3.8], Src.w is convex. In view of [25, Lemma 3.2], the existence of weak solutions
implies Sr,c,w # @.

Therefore, to apply [25, Theorem 3.14], it remains to prove the pointwise uniqueness in the sense
of [25, Definition 3.12]. Suppose that (X, X,, W) are defined on a common probability space, that the
laws of (X1,Y) and (X»,Y) belong to Src.w, and that (X, X») are jointly compatible with W in the
sense of [25, Definition 3.12]. But then, if we denote by (F;) the filtration generated by (X, X, W), by
[25, Lemma 3.2], the joint compatibility implies that W is an (F;)-Brownian motion, and therefore the
pathwise uniqueness implies X; = X, almost surely.

Hence, by [25, Theorem 3.14], there exists a measurable map F : S, — S, such that for a Brownian
motion W, the law of (F (W), W) belongs to Sr¢c.w. Then, [25, Lemma 3.11] implies that F(W) is a
strong solution. O

Lemma B.3. Let b € Cll7 (R and o € Cé (R?). Then, there exists a weak solution to (B.1).

Proof. Let (07""),en be a smooth approximation to o, and let X" be the solution to
t t
X'=x+ / b(X")dr+ / o (X)) dB,.
0 0

Let W be the Brownian motion, such that B; = f_ too Ky (t,r) dW,. Let € be greater than but sufficiently
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close to 0, and let S be a subspace of
1 H-3 -1 H-3
fwe CEER) | tim Jw, (-3 =0, / ()] (=) dr < oo}

—00

that is Polish and where the Brownian motion lives. By the a priori estimate (5.8), we see that a sequence
of the laws of (X", W) is tight in CH=#([0,T]) x S. Thus, replacing it with a subsequence, we suppose
that the sequence (X", W) converges to some limit (X, W) in law.

To see that (X, W) solves (5.4), we write Iw; := /_oo Ky (t,r)dw,, and for 6 > 0, we set

As 1= {(ow) € CH4([0.T]) x S | sup |ys —x - / b(y,) dr - / () d(Iw), | > 6.
1e[0.T] 0 0

Then, we have

P((X,W) € As) < liminf P((X", W) € Ags)
n—oo

< liminf P( sup |/ {o = "}(X)dB,| > 8).

n—eo te[0,T]

However, by the estimate of Young’s integral,

t
| / {o = "HX) dB,| 1. llo = ol I1X" Iy 1Bl
0
Thus, combined with the a priori estimate (5.8), we observe

hmmf]P’( sup |/ {o = "}(X")dB,| > 6) =
te[0,T]

and hence, P((X, W) € As) = 0. Since § is arbitrary, this implies

B(X, =x+/tb()2r)dr+/to'()?r)d(IVV)r Vi € [0.T]) =
0 0

Finally, since W, — Wj is independent of the o--algebra generated by (X)!), <5 and (W), <5, we know
that W, — W; is independent of

Fs =0 (X, Wer < s),

or equivalently, W is an (F;)-Brownian motion. O
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