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ON THE DIOPHANTINE EQUATION z2 = f (x)2 ± f ( y)2, II
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Abstract

Let f ∈Q[X ] and let us consider a Diophantine equation z2
= f (x)2 ± f (y)2. In this paper, we continue

the study of the existence of integer solutions of the equation, when the degree of f is 2 and if f (x) is a
triangular number or a tetrahedral number.
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1. Introduction

Let f ∈Q[X ] and let us consider the Diophantine equation

z2
= f (x)2 ± f (y)2. (1.1)

We are interested in the existence of infinitely many rational solutions (x, y, z) of
Equation (1.1). A similar problem was studied by the third author in [5]. In fact, he
considered the Diophantine equation

f (x) f (y)= f (z)2, (1.2)

where f ∈Q[X ] is a polynomial function and deg f ≤ 3. In [5], he proved that if f is
a quadratic function, then the Diophantine equation f (x) f (y)= f (z)2 has infinitely
many nontrivial solutions in Q(t). Let us recall that a triple (x, y, z) of rational
numbers is a nontrivial solution of Equation (1.2) if f (x) 6= f (y) and f (z) 6= 0. In the
case where f is a cubic polynomial function of the form f (X)= X (X2

+ aX + b),
a, b being nonzero integers such that if p | a, then p2 - b, he showed that for all but
finitely many integers a, b satisfying these conditions, Equation (1.2) has infinitely
many nontrivial solutions in the rational numbers.
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188 B. He, A. Togbé and M. Ulas [2]

In [6], the second and third authors studied Equation (1.1). Equations of this
type have a strong geometric flavour. Indeed, each nontrivial solution (that is, with
f (x) f (y) 6= 0) of the equation z2

= f (x)2 + f (y)2 gives a right triangle with legs
of length f (x), f (y) and hypotenuse z. Similarly, each nontrivial solution (that is,
f (x)2 6= f (y)2) of the equation z2

= f (x)2 − f (y)2 gives a right triangle with legs z,
f (y) and hypotenuse f (x). They considered Equation (1.1) under the assumption
that f is a polynomial of degree two with rational coefficients. It is obvious to
observe that one can consider a polynomial of the form f (X)= X2

+ a, a 6= 0. They
proved that if there exists a rational number t0 such that the set of rational points
on the quartic curve V 2

= (U 2
+ a)2 + (t2

0 + a)2 is infinite then the set of rational
parametric solutions of the equation z2

= (x2
+ a)2 + (y2

+ a)2 is nonempty. In fact,
without much effort it is possible to show that the set of rational parametric solutions
is infinite. Next, they proved that if f is of degree two and has two distinct roots over
the field C then the surface related to the Diophantine equation z2

= f (x)2 − f (y)2

is unirational over the field Q. Moreover, they considered a quadratic polynomial
of the form f (X)= (aX + b)(cX + d) where a, b, c, d ∈ Z and they proved that
if b/a 6= d/c then the quartic equation f (z)2 = f (x)2 + f (y)2 has infinitely many
rational parametric solutions.

They also studied a cubic polynomial of the form f (X)= X (X2
+ aX + b) with

a ∈ Z \ {0}, b ∈ Z and proved that Equation (1.1) has infinitely many solutions in Q(t).
With polynomials of the form f (x)= X3

+ aX2
+ b, a 6= 0, they obtained a similar

result for the equation z2
= f (x)2 − f (y)2. Finally, they considered the equation

z2
= f (x)2 − f (y)2 with f (x)= x4

+ a, a 6= 0. Under some additional assumptions
they proved that the set of rational solutions of this equation is infinite.

In this paper, we study the system of equations

z2
= (x2

+ a)2 ± y2
= x2

± (y2
+ a)2.

We find the solutions in all cases (see Section 2). Then we continue the study
of Equation (1.1) when f (x)= x2

+ a but using properties of Pell equations (see
Section 3). In this case, when a =−τ 2 for example, Equation (1.1) has infinitely
solutions, which are determined explicitly. In general, we do not always have infinitely
many solutions but we give the conditions for the existence of solutions by the means
of Diophantine approximations. We find the solutions to Equation (1.1) for some
particular cases. Finally, in Section 4, we investigate Equation (1.1) when f (x)
is a triangular number tx or a tetrahedral number Tx . Firstly, we prove that the
equation z2

= t2
x + t2

y has infinitely many solutions in polynomials x(u), y(u), z(u) ∈
Z[u] that satisfy the condition GCD(tx(u), ty(u))= 1. In fact, all solutions given by
Sierpiński satisfy the condition GCD(tx , ty) > 1. Secondly, we show that the equation
T 2

x + T 2
y = z2 has infinitely many integer solutions satisfying the condition y − x = 1.

Moreover, we prove that there exists an infinite sequence of solutions (xn, yn, zn) of
the equation T 2

x + T 2
y = z2 such that yn − xn→∞. Finally, we show that the set of

https://doi.org/10.1017/S0004972710000377 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000377


[3] On the Diophantine equation z2
= f (x)2 ± f (y)2, II 189

integer solutions of the system of equations

z2
1 = T 2

x + T 2
y , z2

2 = T 2
x + T 2

y+1

is infinite.

2. The equation z2 = (x2 + a)2 ± y2 = x2 ± ( y2 + a)2

The equations Z2
= f (X)2 ± Y 2 with f (X)= AX2

+ B X + C , A 6= 0, 1 f =

B2
− 4AC 6= 0, can be rewritten in the form

z2
= (x2

+ a)2 ± y2, (2.1)

where
x = 2AX + B, y = 4AY, z = 4AZ , a =−1 f .

Analogously, equations Z2
= X2

± f (Y )2 with x = 4AX and y = 2AY + B instead,
but with other definitions as above, can be rewritten in the form

z2
= x2

± (y2
+ a)2. (2.2)

One can verify that (2.1) or (2.2) has infinitely many positive integer solutions
(x, y, z). To see this, start with the primitive solutions of Z2

= X2
+ Y 2 that are

given by

X = 2mn, Y = m2
− n2, Z = m2

+ n2, GCD(m, n)= 1,

where one of m and n is odd and the other is even. Equations (2.1) and (2.2) have
solutions

x2
+ a = m2

± n2, y2
+ a = m2

− n2.

We only need to consider the first equation. In fact, the result for the weaker
Waring problem for degree two implies that the equation a = m2

± n2
− x2 always

has nonzero solutions m, n, x for any nonzero integer a.
We consider four possibilities for the simultaneous equations

z2
= (x2

+ a)2 ± y2
= x2

± (y2
+ a)2. (2.3)

The first possibility gives us the following result.

THEOREM 2.1. The equations

z2
= (x2

+ a)2 + y2
= x2

+ (y2
+ a)2 (2.4)

have no positive integer solutions with x 6= y, if a ≥−1 or the square-free part of
2a − 1 has a prime divisor of the form 4k + 3.

PROOF. From the second equation of (2.4),

(x2
− y2)(x2

+ y2
+ 2a − 1)= 0.

Suppose that x and y are positive integers such that x 6= y. Then

−(2a − 1)= x2
+ y2. (2.5)
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When a ≥ 0, we get the contradiction 2≤ x2
+ y2

≤ 1. By [3, Theorem 366, p. 299],
we know that if −(2a − 1)= n2

1n2 with n2 square-free, then every prime divisor of n2
is of the form 4k + 1. 2

For which values of a do Equations (2.4) have positive integer solutions? The
answer is given by the following result.

THEOREM 2.2. If

a =−(Q2
2s Q2

2t−1 + 4P2
2s P2

2t−1 − 1)/2

with s, t ≥ 1, then Equations (2.4) have positive integer solutions

(x, y, z)= (Q2s Q2t−1, 2P2s P2t−1, P2
2s + P2

2t−1),

where the kth Pell numbers satisfy Q2
k − 2P2

k = (−1)k .

PROOF. From Equation (2.5),

x2
+ a = x2

−
x2
+ y2

− 1
2

=
x2
− y2

+ 1
2

.

The first equation of (2.4) has solution

x2
+ a = m2

− n2, y = 2mn, z = m2
+ n2.

So
x2
− y2

+ 1= 2m2
− 2n2

gives us
x2
= 4m2n2

+ 2m2
− 2n2

− 1= (2m2
− 1)(2n2

+ 1).

The above equation has positive integer solutions such that

x2
1 − 2m2

=−1, x2
2 − 2n2

= 1, x = x1x2.

The kth Pell numbers satisfy

Q2
k − 2P2

k = (−1)k .

Thus
x1 = Q2t−1, m = P2t−1, x2 = Q2s, n = P2s .

This implies that

x = Q2s Q2t−1, y = 2P2s P2t−1, z = P2
2s + P2

2t−1

with a =−(x2
+ y2

− 1)/2. This completes the proof of the theorem. 2

A special example is obtained by setting s = t = 1 in Theorem 2.2. As P1 = 1,
P2 = 2, Q1 = 1 and Q2 = 3, we have a =−12 and (x, y, z)= (3, 4, 5). The solution
satisfies the system of equations

z2
= (x2

+ a)2 + y2
= x2

+ (y2
+ a)2 = x2

+ y2. (2.6)
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This example leads us to find a for which Equations (2.6) have positive integer
solutions. In fact, letting t = s or t = s + 1, and k =min{2s, 2t − 1}, we obtain the
following result.

THEOREM 2.3. If a =−(Q2
2k+1 − 1)/4 for 1≤ k ∈ N, then Equations (2.6) have

positive integer solutions

(x, y, z)= ((Q2k+1 + 1)/2, (Q2k+1 − 1)/2, P2k+1).

PROOF. Let t = s or s + 1 in Theorem 2.2 and k =min{2s, 2t − 1}. Then

a =−
Q2

k Q2
k+1 + 4P2

k P2
k+1 − 1

2
.

In order to obtain the value of a in the theorem, we need to show that

Q2
2k+1 = 2Q2

k Q2
k+1 + 8P2

k P2
k+1 − 1. (2.7)

By the well-known identities

Qm Qn + 2Pm Pn = Qm+n, Qm Qn − 2Pm Pn = (−1)n Qm−n, (2.8)

if we take m = k + 1, n = k, the left-hand side of (2.7) equals (Qk Qk+1 + 2Pk Pk+1)
2.

So

2Q2
k Q2

k+1 + 8P2
k P2

k+1 − Q2
2k+1 = (Qk Qk+1 − 2Pk Pk+1)

2
= (−1)2k

= 1,

and so the required value of a is established.
On the other hand, from (2.8)

Qk Qk+1 = (Q2k+1 + (−1)k)/2, Pk Pk+1 = (Q2k+1 − (−1)k)/4.

Notice that (2.4) is symmetric in x and y. Now, the solution of (2.4) is

x = (Q2k+1 + 1)/2, y = (Q2k+1 − 1)/2, z = P2
k + P2

k+1 = P2k+1.

So now

x2
+ y2

=
Q2

2k+1 + 1

2
= P2

2k+1 = z2,

which implies that these solutions also satisfy Equations (2.6). 2

By similar arguments, for the equations

z2
= (x2

+ a)2 − y2
= x2

− (y2
+ a)2, (2.9)

the results are as follows.

THEOREM 2.4. If a ≥ 0 or the square-free part of 2a + 1 has a prime divisor of the
form 4k + 3, then Equations (2.9) have no positive integer solutions with x 6= y.

THEOREM 2.5. If a =−(Q2
2s Q2

2t + 4P2
2s P2

2t − 1)/2, then Equations (2.9) have
positive integer solutions

(x, y, z)= (Q2s Q2t , 2P2s P2t , P2
2s + P2

2t ).
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For equations
z2
= (x2

+ a)2 − y2
= x2

+ (y2
+ a)2, (2.10)

we have the following result.

THEOREM 2.6. Equations (2.10) have no positive integer solution.

PROOF. From (2.10), we get

(x2
− y2)(x2

+ y2
+ 2a)= x2

+ y2.

Let k = x2
+ y2

+ 2a; then (k − 1)x2
= (k + 1)y2. This then implies that

(k + 1)(k − 1)= k2
− 1

is a square, which is so only for k = 1, in which case y = 0, contradicting the
requirement that y > 0. 2

Finally, we prove the following theorem.

THEOREM 2.7. Equations

z2
= (x2

+ a)2 + y2
= x2

− (y2
+ a)2

have no positive integer solutions with x 6= y.

PROOF. In order to prove our theorem let us note that if the equation (x2
+ a)2 + y2

=

x2
− (y2

+ a)2 has integer solution (x, y) then a is a root of the quadratic equation
(with parameters x and y)

2a2
+ 2(x2

+ y2)a + x2(x2
− 1)+ y2(y2

+ 1)= 0.

One can see that a is real (not necessarily an integer) if and only if the discriminant

1=−4(y2
− x2)(y2

− x2
+ 2)= 4(1− (y2

− x2
+ 1)2)≥ 0,

that is,
|y2
− x2

+ 1| ≤ 1.

Therefore,
x2
− y2

= 0, 1, 2.

The case x2
− y2

= 0 contradicts x 6= y. If

x2
− y2

= (x + y)(x − y)= 1,

then x + y = x − y = 1, so that y = 0. If

x2
− y2

= (x + y)(x − y)= 2,

then one of x ± y is odd and the another is even. This is impossible. 2

3. The equation z2 = (x2 + a)2 − ( y2 + a)2

We now consider the Diophantine equation

z2
= (x2

+ a)2 − (y2
+ a)2. (3.1)

We wish to know for which integer a we can find an integer t such that the above
equation has infinitely many solutions in the integers.
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3.1. Solutions from Pell equations. A simple case is a =−τ 2 for some integer τ .
This gives us

(z/τ)2 = ((x/τ)2 − 1)2 − ((y/τ)2 − 1)2.

The following result is more general.

THEOREM 3.1. If 2a = (t2
− 1)r2

− (t2
+ 1)s2 for some positive integers t , r , s, then

Equation (3.1) has infinitely many solutions in the polynomials x(r, s, t), y(r, s, t),
z(r, s, t).

PROOF. We put x = t X , y = X , z = XY (t2
− 1) with t > 1. Then for x , y, z defined

in this way,

0= z2
− ((x2

+ a)2 − (y2
+ a)2)= X2(1− t2)(2a + (t2

+ 1)X2
− (t2

− 1)Y 2).

Since x and hence X is a positive integer, we get the Pell equation

(t2
+ 1)X2

− (t2
− 1)Y 2

=−2a, (3.2)

where t a parameter. So when

a = ((t2
− 1)r2

− (t2
+ 1)s2)/2, r, s ∈ Z,

Equation (3.2) has a positive integer solution (X, Y )= (s, r). Without loss of
generality, we assume that r, s are both positive. By a well-known property of Pell
equations, all integer solutions of (3.2) are given by

X
√

t2 + 1+ Y
√

t2 − 1=±(s
√

t2 + 1± r
√

t2 − 1)(t2
+

√
t4 − 1)k, k ∈ Z.

Thus there exist infinitely many positive solutions (X, Y )= (X (r, s, t), Y (r, s, t)) in
polynomials

X0 = s, X1 = st2
+ r t2

− r, Xk+2 = 2t2 Xk+1 − Xk,

Y0 = r, Y1 = st2
+ r t2

+ s, Yk+2 = 2t2Yk+1 − Xk .

Therefore, Equation (3.1) has solutions

x0 = st, x1 = st3
+ r t3

− r t, xk+2 = 2t2xk+1 − xk,

y0 = s, y1 = st2
+ r t2

− r, yk+2 = 2t2 yk+1 − yk,

z0 = sr(t2
− 1), z1 = (st2

+ r t2
− r)(st2

+ r t2
+ s)(t2

− 1),

zk+2 = 2t2zk+1 − zk .

This completes the proof. 2

REMARK 3.2. By choosing s = t = τ in Theorem 3.1, we have a =−τ 2, and
Equation (3.1) has solutions with initial terms

x1 = t2(2t2
− 1), x2 = t2(4t4

− 2t2
− 1),

y1 = t (2t2
− 1), y2 = t (4t4

− 2t2
− 1),

z1 = t2(4t4
− 1)(t2

− 1), z2 = t2(4t4
− 2t2

− 1)(4t4
+ 2t2

− 1)(t2
− 1).
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3.2. The general case. Let us consider the Pell equation

(t2
+ 1)x2

− (t2
− 1)y2

=−2a, a 6= 0. (3.3)

Then ∣∣∣∣
√

t2 + 1

t2 − 1
−

y

x

∣∣∣∣ = ∣∣∣∣ t2
+ 1

t2 − 1
−

y2

x2

∣∣∣∣ · ∣∣∣∣
√

t2 + 1

t2 − 1
+

y

x

∣∣∣∣−1

<

∣∣∣∣ 2a

(t2 − 1)x2

∣∣∣∣ · ∣∣∣∣
√

t2 + 1

t2 − 1

∣∣∣∣−1

<
2a

√
t4 − 1x2

.

Let pn/qn denote the nth convergent of a real number α. The following result of
Worley [7] and Dujella [1] extends classical results of Legendre and Fatou concerning
Diophantine approximations of the form |α − a/b|< 1/(2b2) and |α − a/b|< 1/b2.

Let m be the largest odd integer satisfying

α <
a

b
≤

pm

qm
.

Define the numbers r and s by

a = r pm+1 + spm,

b = rqm+1 + sqm .

THEOREM 3.3 (Worley [7], Dujella [1]). Let α be a real number and a and b co-prime
nonzero integers satisfying the inequality∣∣∣∣α − a

b

∣∣∣∣< M

b2 ,

where M is a positive real number. Then

(a, b)= (r pk+1 ± upk, rqk+1 ± uqk),

for some k ≥−1 and nonnegative integers r and u such that ru < 2M.

The simple continued fraction expansion of a quadratic irrational α = (a +
√

d)/b
is periodic. This expansion can be obtained using the following algorithm. Multiplying
the numerator and denominator by b, if necessary, we may assume that b | (d − a2).
Let s0 = a, t0 = b and

an =

⌊
sn +
√

d

tn

⌋
, sn+1 = antn − sn, tn+1 =

d − s2
n+1

tn
for n ≥ 0. (3.4)

If (s j , t j )= (sk, tk) for j < k, then

α = [a0, . . . , a j−1, a j , . . . , ak−1 ].

We need the following lemma (see Dujella and Jadrijević [2, Lemma 2]).

LEMMA 3.4. Let αβ be a positive integer which is not a perfect square, and let pk/qk
denote the kth convergent of the continued fraction expansion of

√
α/β. Let the
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sequences (sk) and (tk) be defined by (3.4) for the quadratic irrational
√
α/β. Then

α(rqk+1 + uqk)
2
− β(r pk+1 + upk)

2
= (−1)k(u2tk+1 + 2rusk+2 − r2tk+2). (3.5)

Using the above algorithm, one can check that√
t2 + 1

t2 − 1
= [1; t2 − 1, 2]

with

(s0, t0)= (0, t2
− 1), (s2k−1, t2k−1)= (t

2
− 1, 2), (s2k, t2k)= (t

2
− 1, t2

− 1).

Therefore, we get

2a = (−1)k(u2tk+1 + 2rusk+2 − r2tk+2).

Checking the possibilities (we only need to check k =−1, 0, 1),

2a =

{
−((t2

− 1)u2
+ 2(t2

− 1)ru − 2r2) if k odd,

2u2
+ 2ru(t2

− 1)− (t2
− 1)r2 if k even,

where ru < 4|a|/
√

t4 − 1. Therefore, knowing a convergent pk/qk , one can first
determine r, u (if there is any) satisfying ru < 4|a|/

√
t4 − 1 and then one obtains

x, y by
x = rqk+1 ± uqk, y = r pk+1 ± upk .

REMARK 3.5. We firmly believe that for any a the equation z2
= (x2

+ a)2 −
(y2
+ a)2 has a nontrivial solution in the integers. Using a simple computer search,

we find, for given square-free a, with |a|< 100, the smallest integer solution of the
equation z2

= (x2
+ a)2 − (y2

+ a)2 satisfying the conditions 0< y < x , z 6= 0. Our
computations are contained in Tables 1 and 2. Up to the time of writing, we have been
unable to find any integer solution for the Diophantine equation z2

= (x2
+ 37)2 −

(y2
+ 37)2. This equation has no solutions in the range 0< y < x < 2 · 105.

3.3. Some particular cases. In this subsection, we consider some particular values
of a and we obtain the following results.

THEOREM 3.6. If a = s2
− t2(u4

+ v4) or 2a = s2
− t2(u4

+ 6u2v2
+ v4), then

Equation (3.1) has infinitely many integer solutions with two parameters.

PROOF. From Equation (3.1),

z2
= (x2

− y2)(x2
+ y2

+ 2a).

We take
x2
− y2

= z2
1, x2

+ y2
+ 2a = z2

2, z = z1z2. (3.6)

The equation x2
− y2

= z2
1 has solutions of the form

x = t (u2
+ v2), y = t (u2

− v2), z1 = 2tuv.
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TABLE 1. Integer solutions to the Diophantine equation z2
= (x2

+ a)2 − (y2
+ a)2, for a > 0.

a x y z a x y z a x y z

1 5 3 24 34 69 15 4788 69 21 3 504
2 11 5 120 35 2 1 15 70 72 70 1704
3 16 9 245 37 71 2 1 21
5 6 2 40 38 7 5 60 73 85 75 4560
6 8 6 56 39 26 18 616 74 11 1 180
7 29 21 720 41 12 4 176 77 103 97 4920
10 9 5 84 42 25 21 460 78 182 168 17 360
11 2 1 9 43 152 73 22 515 79 9 7 96
13 2445 525 5 971 680 46 10 8 96 82 81 45 6300
14 4 2 24 47 15 9 240 83 18 7 385
15 5 3 32 51 6 3 63 85 54 46 2040
17 153 47 23 320 53 66 34 4240 86 4 2 48
19 4 3 21 55 5 3 48 87 10 1 165
21 22 14 456 57 319 231 86 680 89 12 4 208
22 26 24 360 58 260 240 35 400 91 13 3 240
23 10 2 120 59 3 1 32 93 1346 1246 933 840
26 13 7 180 61 6 2 72 94 10 6 144
29 6 2 56 62 5 1 60 95 3 1 40
30 10 6 112 65 13 5 216 97 409 391 67 920
31 3 1 24 66 20 12 416
33 5 3 40 67 144 69 20 235

The second equation of (3.6) implies that

2a = z2
2 − x2

− y2
= z2

2 − 2t2(u4
+ v4).

So 2 | z2 and we take z2 = 2s. Therefore a = s2
− t2(u4

+ v4), and so, for this choice
of a, the solutions of (3.1) are

x = t (u2
+ v2), y = t (y2

− v2), z = 4stuv.

The equation x2
− y2

= z2
1 also has solutions of the form

x = t (u2
+ v2), y = 2tuv, z1 = t (u2

− v2),

leading to 2a = z2
2 − t2(u4

+ 6u2v2
+ v4). Thus with this value of 2a,

x = t (u2
+ v2), y = 2tuv, z = 2st (u2

− v2)

are solutions of (3.1). 2

In fact, we also get the following result.

THEOREM 3.7. If a = r2
− m4

− n4 for some integers r , m, n, then Equation (3.1)
has infinitely many positive integer solutions (x, y, z).
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TABLE 2. Integer solutions to the Diophantine equation z2
= (x2

+ a)2 − (y2
+ a)2, for a < 0.

a x y z a x y z a x y z

−1 2 1 3 −34 7 5 12 −69 11 7 48
−2 482 418 153 120 −35 18 14 240 −70 11 5 24
−3 381 69 145 080 −37 14 11 135 −71 12 4 48
−5 10 9 57 −38 476 224 220 920 −73 14 10 120
−6 56 16 3120 −39 93 75 6552 −74 10 8 24
−7 133 35 17 640 −41 9 3 24 −77 125 105 11 040
−10 5 1 12 −42 15 3 180 −78 416 384 90 560
−11 6 2 24 −43 37 13 1320 −79 12 4 16
−13 26 25 255 −46 9 5 28 −82 25 5 540
−14 12 8 120 −47 13 5 120 −83 378 322 98 280
−15 5 3 8 −51 11 3 56 −85 54 46 2040
−17 70 25 4845 −53 27 23 480 −86 19 3 264
−19 6 2 8 −55 12 4 80 −87 25 15 520
−21 6 3 9 −57 17 15 160 −89 13 5 48
−22 15 13 140 −58 29 25 540 −91 13 11 72
−23 630 150 396 240 −59 18 6 264 −93 95 81 6160
−26 13 9 132 −61 9 7 16 −94 12 8 40
−29 8 1 21 −62 40 32 1200 −95 13 5 24
−30 20 12 352 −65 13 5 96 −97 30 25 605
−31 9 1 40 −66 10 6 16
−33 25 15 560 −67 55 47 2040

PROOF. From Equation (3.1),

x2
+ a = d(r2

+ s2), y2
+ a = d(r2

− s2), z = 2drs.

Taking d = 1 gives a = r2
+ s2
− x2

= r2
− s2
− y2. It follows that

x2
− y2

= 2s2.

The above equation yields

x = m2
+ 2n2, y = |m2

− 2n2
|, s = 2mn.

Thus, if

a = r2
+ s2
− x2

= r2
+ (2mn)2 − (m2

+ 2n2)2 = r2
− m4

− 4n4,

then Equation (3.1) has the solutions

x = m2
+ 2n2, y = |m2

− 2n2
|, z = 4rmn. (3.7)

This concludes the proof. 2

4. Equations in triangular and tetrahedral numbers

4.1. On triangular numbers. We start with the problem related to the construction
of right triangles with legs which are triangular numbers. Thus, we will be interested
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in integer solutions of the Diophantine equation

z2
= t2

x + t2
y . (4.1)

Sierpiński in [4, p. 34] has shown that the above equation has infinitely many solutions
in the integers. However, all solutions presented by him satisfied the condition
GCD(tx , ty) > 1. In other words, the triple X = tx , Y = ty , Z = z which satisfies
the equation X2

+ Y 2
= Z2 is not a primitive solution. As pointed out by Sierpiński

[4, p. 35], personal communication with A. Schinzel showed that the set of integer
solutions of Equation (4.1) which satisfy the condition GCD(tx , ty)= 1 is infinite.
However, the solution obtained by Schinzel is not parametric. It is natural to ask
whether Equation (4.1) has parametric solutions. In other words: does Equation (4.1)
have solutions in the ring Z[u]?

Generally, these questions are very difficult and we do not have any general
theory that can be used. However, as we will see, for our particular equation it is
possible to construct infinitely many polynomials x(u), y(u), z(u) ∈ Z[u] that satisfy
the condition GCD(tx(u), ty(u))= 1.

It is clear that we can consider the equation

z2
= (x2

− 1)2 + (y2
− 1)2.

Indeed, if the triple (x, y, z)= (p, q, r) satisfies the above equation, then the triple
(2p + 1, 2q + 1, 8r) satisfies the equation z2

= t2
x + t2

y . We then deduce that x2
− 1,

y2
− 1, z must be a solution of Pythagoras’s equation X2

+ Y 2
= Z2. It is well known

that all solutions of this equation are of the form

X = 2dst, Y = d(s2
− t2), Z = d(s2

+ t2),

where s, t , d are certain integers. Let us put d = 1 and consider the system of equations
given by

x2
= 2st + 1, y2

= s2
− t2
+ 1.

The first equation of the above system is satisfied if we put

s = 2u(ku − 1), t = k, x = 2ku − 1.

Putting the above quantities into the equation y2
= s2
− t2
+ 1 yields

y2
= (4u4

− 1)k2
− 8u3k + 4u2

+ 1=: f (k).

This is a Pell equation depending on the parameter u. Let us note that f (1)=
(2u(u − 1))2 and that the following identity holds:

f ((8u4
− 1)k + 4u2 y − 8u3)− (4u2(4u4

− 1)k + (8u4
− 1)y − 16u5)2

= f (k)− y2.
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From the above we can deduce that if we define

k0 = 1, y0 = 2u(u − 1),

kn = (8u4
− 1)kn−1 + 4u2 yn−1 − u3,

yn = 4u2(4u4
− 1)kn−1 + (8u4

− 1)yn−1 − 16u5,

(4.2)

then the polynomials

pn(u)= kn(u)u − 1, qn(u), rn(u)= u2(ukn(u)− 2)2/4+ kn(u)
2

for n = 1, 2, . . . , satisfy the equation

(p2
− 1)2 + (q2

− 1)2 = r2.

Finally, the polynomials

xn(u)= (pn(u)− 1)/2, yn(u)= (qn(u)− 1)/2, zn(u)= rn(u)/8

satisfy the equation t2
x + t2

y = z2. In particular, for n = 1 we get

x1(u)= (u
5
− 2u4

− u − 2)/2,

y1(u)= (u
2
+ 1)(u4

− 2u3
− u2

+ 2u − 2)/4,

z1(u)= (u
12
− 4u11

+ 4u10
+ 2u8

− 16u7
+ 24u6

− 7u4
+ 20u3

+ 4u2
+ 4)/32.

The resultant Res(tx1, ty1) of the polynomials tx1(u), ty1(u) is equal to 2−58. This means
that the polynomials are co-prime. Let us note that the polynomials xn(2u + 1),
yn(2u + 1), zn(2u + 1) belong to Z[u]. It is possible to prove (we will not do this
here) that for each positive integer n the polynomials txn(u), tyn(u) are co-prime. We
have proved the following result.

THEOREM 4.1. The equation z2
= t2

x + t2
y has infinitely many solutions in

polynomials x(u), y(u), z(u) ∈ Z[u] that satisfy the condition GCD(tx(u), ty(u))= 1.

We deduce the following corollary.

COROLLARY 4.2. Let a, b ∈ N+ and f (x)= (x + a)(x + b). The Diophantine
equation z2

= f (x)2 + f (y)2 has infinitely many polynomial solutions.

PROOF. Let us take b′ ∈ Z \ {0}. Note that if the triple (x(u), y(u), z(u)) is a solution
of the equation z2

= t2
x + t2

y , then the triple (b′x(u), b′y(u), 2b′2z(u)) is a solution of
the equation

z2
= (x(x + b′))2 + (y(y + b′))2.

Putting b′ = b − a, we deduce that the triple

((b − a)x(u)+ a, (b − a)y(u)+ a, 2(b − a)2z(u))

is a solution of the Diophantine equation

z2
= ((x + a)(x + b))2 + ((y + a)(y + b))2.

This proves the corollary. 2

https://doi.org/10.1017/S0004972710000377 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000377


200 B. He, A. Togbé and M. Ulas [14]

Numerical investigations suggests the following conjecture.

CONJECTURE 4.3. Let us consider the rational numbers

Rn = Discriminant(txn(u), tyn(u)).

Then Rn = 2−40n−18.

REMARK 4.4. The problem of construction of the right-angled triangles for which
all sides are triangular numbers, t2

x + t2
y = t2

z , was posed by K. Zarankiewicz (see [4,
p. 34]). Only one integer solution of this equation is known so far: x = 132, y =
143, z = 164. We tried to use the parametric solutions of the equation z2

= t2
x + t2

y to
find other integers satisfying the Zarankiewicz equation, but without success.

We conclude this subsection with an interesting theorem.

THEOREM 4.5. Let us take n ∈ N+. Then the Diophantine equation z2
= xn

+ t2
y has

infinitely many positive integer solutions.

PROOF. If we take

x = u12, y = u4n
− 1, z =

u4n(u4n
+ 1)

2
,

then z2
= xn

+ t2
y and our theorem is proved. 2

4.2. On tetrahedral numbers. In this subsection, we will consider the problem of
construction of right-angled triangles with legs that are tetrahedral numbers. Thus, we
are interested in the integer solutions of the Diophantine equation

z2
= T 2

x + T 2
y . (4.3)

Let us note that 912
= T 2

5 + T 2
7 , so this equation has an integer solution. Sierpiński in

[4, p. 57] wrote that it is unclear whether Equation (4.3) has infinitely many solutions
in the integers. However, without much trouble we can construct infinitely many
solutions of this equation which satisfy the condition y − x = 1. Indeed, we have

T 2
6x + T 2

6x+1 = (3x + 1)2(6x + 1)2g(x),

where g(x)= 8x2
+ 4x + 1. Because g(0)= 1 and the identity

g(17x + 6z + 4)− (48x + 17z + 12)2 = g(x)− z2,

holds, we can see that the equation g(x)= z2 has infinitely many solutions xn, zn
given by

x0 = 0, z0 = 1, xn = 17xn−1 + 6zn−1 + 4, zn = 48xn−1 + 17zn−1 + 12.
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From the above, for each n, we get the identity

((3xn + 1)(6xn + 1)zn)
2
= T 2

6xn
+ T 2

6xn+1.

In particular

T 2
60 + T 2

61 = 54 8392, T 2
2088 + T 2

2089 = 2 150 259 9252, . . . .

In the light of the above result, it is interesting to ask whether it is possible to find
an infinite family of solutions xn, yn, zn of Equation (4.3) such that yn − xn→∞.

We will construct two families that satisfy this condition. We are looking for the
solutions of Equation (4.3) of the following form

x = x(u, v)= v2
− u2

− 1,

y = y(u, v)=
3v2
− 2uv + 3u2

− 3
2

,

z = z(u, v)=
(v2
− u2)Z(u, v)

192
,

(4.4)

where u, v have opposite parity and

Z(u, v) = 105v4
− 108uv3

+ (150u2
− 96)v2

− 4u(27u2
− 16)v + 3(u2

− 1)(35u2
+ 3).

For x , y, z defined above we have the identity

T 2
x(u,v) + T 2

y(u,v) − z(u, v)2 =
h(u, v)(h(u, v)+ 2)H(u, v)

36 864
,

where
h(u, v)=−1+ u2

− 6uv + v2

and
H(u, v)= 1663v8

− 4020uv7
+ · · · + 288u2

− 144

is a polynomial of degree eight. We omit the full expansion of the polynomial H since
it is not necessary for our purposes. From this identity we deduce that

T 2
x(u,v) + T 2

y(u,v) − z(u, v)2 = 0

if and only if h(u, v)= 0, or h(u, v)+ 2= 0, or H(u, v)= 0.
We show that the equation h(u, v)= 0 has infinitely many solutions in the positive

integers u, v. From the equation h(u, v)= 0, it is clear that if the pair u, v is a solution
then the numbers u, v are of different parity and for each such pair the number y(u, v)
is an integer, and the same holds for z(u, v).

In order to show that h(u, v)= 0 has infinitely many solutions in the integers we
note the identity

h(u, v)= h(v, 6v − u).
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Now from the equality h(6, 35)= 0 and the above identity we deduce that

0= h(6, 35)= h(35, 6 · 35− 6)= 0,

and more generally, if we define the sequences {un}
∞

n=0, {vn}
∞

n=0 recursively by

u0 = 6, v0 = 35, un = vn−1, vn = 6vn−1 − un−1, for n ≥ 1,

then h(un, vn)= 0 for each n ∈ N. Therefore, we conclude that the numbers

x = x(un, vn), y = y(un, vn), z = z(un, vn)

are integer solutions of the Diophantine equation T 2
x + T 2

y = z2. In particular, for
n = 0 we get

T 2
1188 + T 2

1680 = 839 790 7002,

and for n = 1 we get

T 2
40390 + T 2

57120 = 32 946 833 683 4002.

In order to give the second family of solutions we define

x ′(u, v)= x(u, v),

y′(u, v)= y(u, v)+ 1,

z′(u, v)=
(v2
− u2)Z ′(u, v)

192
,

where

Z ′(u, v) = 105v4
− 108uv3

+ (150u2
+ 96)v2

− 4u(27u2
+ 16)v + 3(u2

+ 1)(35u2
− 3)

and x(u, v), y(u, v) are defined by (4.4). For x ′, y′, z′ defined above, we have an
identity

T 2
x ′(u,v) + T 2

y′(u,v) − z′(u, v)2 =
h(u, v)(h(u, v)+ 2)H ′(u, v)

36 864
,

where h(u, v) is the same polynomial we obtained previously and H ′ is a polynomial
of degree eight. By the same method, one can show that the numbers

x ′ = x(un, vn), y′ = y(un, vn)+ 1, z′ = z′(un, vn)

are integer solutions of the Diophantine equation T 2
x + T 2

y = z2.
Let us note that in fact our reasoning implies that the set of integer solutions of the

system of equations
z2

1 = T 2
x + T 2

y , z2
2 = T 2

x + T 2
y+1

is infinite. These results are quite unexpected and the following natural problem arises.
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PROBLEM 4.6. Find integer-valued polynomials f ∈Q[X ] with the property that the
set of integer solutions of the system of equations

z2
1 = f (x)2 + f (y)2, z2

2 = f (x)2 + f (y + 1)2

is infinite.

Let us gather together what we have proved in the following theorem.

THEOREM 4.7.

(1) The equation T 2
x + T 2

y = z2 has infinitely many integer solutions satisfying the
condition y − x = 1.

(2) There exists an infinite sequence of solutions (xn, yn, zn) of the equation

T 2
x + T 2

y = z2

such that yn − xn→∞.
(3) The set of integer solutions of the system of equations

z2
1 = T 2

x + T 2
y , z2

2 = T 2
x + T 2

y+1

is infinite.

For the families of solutions of Equation (4.3) that we obtained, Tx and Ty are not
co-prime. Thus, it is natural to ask the following question.

PROBLEM 4.8. Does the equation z2
= T 2

x + T 2
y have infinitely many solutions in

integers x , y, z that satisfy the condition GCD(Tx , Ty)= 1?

In the range x < y < 105 there are exactly 39 solutions of our equation, but only
one solution, given by

x = 143, y = 237, z = 2 301 289,

that satisfies the condition GCD(Tx , Ty)= 1.
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