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Abstract
In this article, we present a machine learning-based solution for matching the performance of the gold
standard of double-blind human coding when it comes to content analysis in comparative politics. We
combineaquantitative text analysis approachwith supervised learningand limitedhuman resources inorder
to classify the front-pagearticles of a leadingHungariandaily newspaper basedon their full text. Our goalwas
to assign items in our dataset to one of 21 policy topics based on the codebook of the Comparative Agendas
Project. The classification of the imbalanced classes of topics was handled by a hybrid binary snowball
workflow. This relies on limited human resources as well as supervised learning; it simplifies the multiclass
problem to one of binary choice; and it is based on a snowball approach as we augment the training set with
machine-classifiedobservations a�er each successful roundandalsobetweencorpora.Our results show that
our approach provided better precision results (of over 80% formost topic codes) thanwhat is customary for
human coders and most computer-assisted coding projects. Nevertheless, this high precision came at the
expense of a relatively low, below 60%, share of labeled articles.

Keywords: machine learning, statistical analysis of texts, Comparative Agendas Project, multiclass classifica-
tion, automated content analysis

1. Introduction
In the 21st century , machine learning (ML) has become one of the cutting-edge subfields of quan-

titative political science. According to Grimmer (2015, 82), using ML to “make causal inferences is

one of the fastest growing andmost open fields in political methodology.” Besides the prediction

of roll call votes (Bonica 2018) and international conflicts (Colaresi andMahmood 2017), ML is also

widely used for discovery, such as detecting electoral fraud (Levin, Pomares, and Alvarez 2016).

In light of these developments, it is safe to say that ML has become a standard tool in the toolkit

of political analysis. Nevertheless, combined with other fast-developing areas of research, such

as text mining, it also offers new solutions to the methodological problems of the creation of

Big Data datasets which serve as the basis for a swathe of contemporary quantitative political

analysis.

Despite thesemethodological advancements, someof themost important international collab-

orative projects in comparative politics still rely on human effort in creating Big Data databases.

This is true of one of the premier such enterprises, the Comparative Agendas Project (CAP—

Baumgartner, Breunig, andGrossman2019). TheCAPproject assigns 21 “major” policy topics from

education to defense to observations from a number of different data sources such as newspaper

articles (Boydstun 2013) or laws.1 These efforts havemostly relied on double-blind human coding

although a few experimental papers supplanted human coding with a dictionary-based method

1 Although in this articleweusemediadata, forwhich additional codes (such as “Weather” or “Sports”) are available in some
datasets, for the sake of comparability in our analysis of media data we use the original, core set of codes.
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(Albaugh et al. 2013), a mixture of dictionary-based and ML approaches (Albaugh et al. 2014), or

“pure” ML (Burscher, Vliegenthart, and De Vreese 2015; Karan et al. 2016).

What is common in these studies is that precision and/or F1 scores,2 these major metrics of

ML efficiency, surpassing a value of 80% (which is sometimes considered to be the benchmark

of validity), remained elusive. Furthermore, non-English language applications of these methods

remained few and far between (except for the abovementioned Dutch and Croatian cases), and

they mostly rely on a single corpus to demonstrate the ostensible effects (with the notable

exception of Burscher et al. 2015). As a result, the automated or semiautomated classification

of data is still the exception rather than the rule in the CAP and many similar content analysis

endeavors.

In this article, we present an ML-based solution for matching the performance of the gold stan-

dard of double-blind human coding when it comes to the multiclass classification of imbalanced

classes of policy topics in newspaper articles. Such imbalanced database structures are not only

a prevalent feature of CAP, they are also common in comparative politics in general. Therefore,

our solution may have added value to projects beyond the use case presented in this article. Our

primary performance metric is precision as our aim is to arrive at a valid classification of articles.

By churning out true positives, an ML-augmented project may significantly reduce the amount of

items that can only be handled by trained annotators, and, therefore, the success of such a project

immediately benefits large-scale coding undertakings. Hence, the proposed process is inspired by

the need to keep human coding costs as low as possible, while extracting the largest possible gain

per invested human coding hour.

We call our approach a “hybrid binary snowball” (HBS) workflow based on the three defining

characteristics of the proposed solution. Since our aim is to get the biggest return on manpower

we use a hybrid or semiautomatic process (for a similar approach, see Lo�is andMortensen 2020).

Second, our approach simplifies multiclass classification by creating a setup in which each code

is assigned based on a pairwise (“binary”) comparison with all other codes. Third, we apply a

snowball method to augment the training set with machine-classified observations a�er each

successful roundof classification andalso to create a training set for classifying another in-domain

corpus.

We tested the HBS workflow for classifying items in textual databases with unbalanced classes

on Magyar Nemzet (MN), a Hungarian right-wing daily by using a training set generated from the

le�-leaning Népszabadság (abbreviated as NS).3 The input data are the full text of front-page

articles as they appeared on the front-page of the two newspapers. We used our NS corpus to

train amodel for classifying articles in our “virgin” MN corpus. As is clear from this description, no

human coding was applied to this second dataset—only ex post validation entailed manual work

on behalf of our research team.

On the one hand, the output result of over 83% precision is comparable to the intercoder

reliability values of human coding-based projects. On the other hand, the total percentage of

texts classified of around 58.2% of all articles (a proxy for recall, which cannot be calculated for

our sample-based approach) requires further refinements of our research design. Based on these

results, the HBS process offers a viable, scalable, and potentially domain-independent solution to

multiclass classification problems in comparative politics and beyond.

In what follows, we first review the relevant literature. Next, we provide an outline of our

proposed workflow for tackling the task of multiclass classification with unbalanced classes for

our corpora. This is followed by a presentation of the results from our case study of intercorpus

snowballing. Next, we discuss our results in terms of their robustness in light of simulation results

2 Precision is the fraction of relevant instances among the retrieved instances, while recall is the fraction of the total amount
of relevant instances that were actually retrieved. The F1 score is the harmonic mean of the precision and recall.

3 Replication data and code is provided on the Political Analysis Dataverse, see Sebők and Kacsuk (2020).
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and possible improvements over the default version of HBS.We conclude by an assessment of our

contributions to the literature and avenues for further research.

2. Literature Review
Despite recent methodological advancements in the field of ML and text mining, the most impor-

tant international collaborative projects in comparative politics still rely on human effort in

creating Big Data databases. Notwithstanding the criticism (Mikhaylov, Laver, and Benoit 2008)

aimed at some projects, such as the Comparative Manifesto Project/MARPOR (Volkens, Bara, and

Budge 2009), the gold standard of annotation and coding for large-scale endeavors covering

multiple countries and languages remains double-blind human coding. This is true of one of the

premier such enterprises in comparative politics, the CAP as well.

As an international network of scholars studying the dynamics of public policy agendas (Baum-

gartner, Green-Pedersen, and Jones 2013), CAP relies on large-scale databases of textual data

and a codebook which caters to country-specific needs but, at the same time, maintains the

comparability of project-level data (Bevan 2019). The CAP codebook covers 21 “major” policy

topics from education to defense along with a total of over 200 subtopics for each major topic.

The first and most developed country projects (such as the U.S. Policy Agendas Project or the

UK team) predominantly relied on double-blind human coding, and most local teams follow this

methodology to this day. This is certainly feasible for smaller datasets (such as those related to

laws, the number of which usually remains in the range of a few thousand per government cycle).

Furthermore, the need for consistency of coding over time, between agendas andacross countries

and languages, puts a premium on human judgment.4

This is not to say that noprecursors are available for contemporary attempts at using computer-

assisted methods for the multiclass classification task of CAP. Efforts at the “computer-assisted”

(Hillard, Purpura, and Wilkerson 2008; Collingwood and Wilkerson 2012; Lucas et al. 2015), “auto-

mated” (Quinn et al. 2006; Young and Soroka 2012; Flaounas et al. 2013), or “semiautomated”

(Breeman et al. 2009; Jurka 2012) topic/thematic/sentiment classification (or content analysis,

coding) of documents in comparative politics have produced results that speak to the relative

usefulness of these methods.

In agenda research proper, multiple papers presented computer-assisted coding results either

based on a dictionary-based method (Albaugh et al. 2013), a mixture of dictionary-based and ML

approaches (Albaugh et al. 2013), or “pure” ML (Burscher et al.2015; Karan et al. 2016). What is

common in these studies is that precision and/or F1 scores surpassing a rate of 80% (which is

considered to be acceptable for many human coding-based projects) remained elusive. Further-

more, non-English language applications of thesemethods remained fewand far between (except

for the abovementioned Dutch and Croatian cases), and they mostly rely on a single corpus to

demonstrate the ostensible effects (with the notable exception of Burscher et al.2015 and Lo�is

and Mortensen 2020).

As a result, the semiautomated classification of data is still the exception rather than the rule

in CAP and many similar content analysis projects and even if it is used, it plays a support role

besides human coders. A cautious approach is certainly warranted: “while human-based content

analysis is accused of being unreliable, computer-based content analysis is castigated formissing

out in semantic validity” (Volkens et al. 2009, 236). Besides such general reservations, the relative

sparsity of computer-assisted codingmaybepartly due to the relatively lowprecisionand/or recall

results of previous studies, the inefficiencies of purely dictionary-based ormechanicalmethods of

computer-assisted coding that characterized earlier research, or simply a lack of evangelization of

ML in comparative content analysis research.

4 We thank the anonymous reviewer for this comment.
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3. HBS: A Human-Machine Hybrid Workflow for Multiclass Classification
The aim of our project is to match the performance of the gold standard of double-blind human

coding when it comes to the multiclass classification of imbalanced classes of policy topics in

newspaper articles. Such imbalancedclassdistributionsare common in comparativepolitics, and,

therefore, our solution may have added value to projects beyond the use case presented in this

article.

Our primary performance metric is precision as our aim is to arrive at a valid classification

of articles. The proposed process is inspired by the need to keep human coding costs as low as

possible, while extracting the largest possible gain per invested human coding hour. This guiding

principle informs the structure of our process. Table 1 presents an overview of the structural

components, or modules, of the HBS workflow as well as some technical features of the analysis.

The main elements of the proposed workflow for solving unbalanced multiclass classification

problems are the hybrid, the binary, and the snowball aspects (the latter is utilized in twodifferent

ways: as intracorpus and as intercorpus snowballing). First, we offer a hybrid solution that draws

Table 1. Elements of the HBS workflow solution.

Human contributions Machine tasks Technical features of

machine tasks

Hybrid Initial human coding Text preprocessing Stopwords removed

Stemming

Minimum token length:
two characters

Minimum document
frequency for tokens: 5

Weighting: tf-idf

Ex post validation Classification with
supervised
machine learning

Classifier: support
vector machine (SVM)

Default model
parameters changed:
max iterations: 10 and
regularization
parameter: 0.1

Binary Simplified human
validation task (not
multiclass, only
correct/incorrect)

Decomposition of
multiclass
classification
problem into a set
of binary ones

Ensemble classifier:
bagging-type

Treating class
imbalance:
Undersampling of
negatives (without
replacement)

Snowball:
Intracorpus

Human validation of
training set expansion:
Unvalidated results also
added to training set
based on validated
samples’ precision

Ensemble voting
solution for
in-process training
set expansion

Intracorpus
snowballing: moving
nonvalidated classified
elements to the training
set

Snowball:
Intercorpus

Researcher managed
process of using
validated results from
one HBS setup-corpus
as training set for
another

Possibility for
integrated script in
future work
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onhumancodingandML in a strategicway, by exploiting their relative strengths. For samedomain

classification (where language and data sources are given), double-blind human coding is only

needed for a small-scale training set and subsequent sample-based validation. With these limited

efforts—as it is shown in this paper—a research team can undertake the task of content analysis of

multiple newspapers of the same language regardless of the size and time frameof the underlying

dataset. Although all supervised learning approaches that depend on initial human coding for the

creation of a training set could be seen as being already hybrid in nature, our workflow differs in

that we actively prioritize the allocation of human working hours to validation over initial coding

(in line with the work of Lo�is and Mortensen 2020).

Second,ourprocess simplifiesmulticlass classificationbycreatinga setup inwhicheachcode is

contemplated for an observation in a pairwise comparisonwith all other codes. That is, in the first

step, our algorithm assigns either “macroeconomics” (the first policy topic code in the codebook)

or “other” to each observation in the sample. This comparison, then, is repeated for each subse-

quent topic code fromhuman rights to culture. The decomposition of themulticlass classification

problem into a set of binary ones therefore is based on the usage of pairwise comparisons. The

“binary”elementalsocontributesby simplifying thechoice forhumanvalidation fromamulticlass

assignment to one that entails the assignment of the “correct” or “incorrect” label. This setup

provides an easier task for human annotators from a cognitive perspective (see also Lo�is and

Mortensen 2020).

Third, we apply a snowball method to augment the training set withmachine-classified obser-

vations a�er successful rounds of classification. This we call intracorpus snowballing, and in the

following, we detail a setup where the newly labeled elements are added to the training set

automatically. There is a further aspectof thewaywe takeadvantageof snowballing, namelyusing

an already classified corpus to work on another corpus without the need for an initial round of

human coding to create a starting training set for the new corpus. This latter aspect we refer to as

intercorpus snowballing.

Both aspects of snowballing enable a speed up in the performance and savings in invested

humanwork hours for ourworkflow. In thisway,we are leveraging a relatively small human-coded

training set for the computer-assisted creation of a full-scale training set and, then, apply this

latter training set on a virgin corpus, thereby paving our way to an ever growing corpus/corpora of

classified articles.

Thus, the solution we propose for complex, multicorpora projects with limited human

resources is a sequential combination of HBS workflows. The choices for specific HBS setups

(allocating human resources to coding or validation, etc.) and parameters are utilitarian, in the

sense that they depend on the results of experimentation and the budget and other specifics of

the project in which HBS is applied. By linking the workflows for specific HBS setup-corpus pairs

into an overarching intercorpus learning framework (within, at least, the samedomain, in terms of

language or period or substantive classes), one can leverage validated results from one workflow

as a training set for another.

The primary contribution of HBS based on these elements is to provide a workflow solution to

real-life scientific projects with limited budgets and manpower. The key added value of the HBS

process is that it uses concepts andmethods inaparticularway, as elementsof the sameworkflow.

This workflow itself, and not any of its constituent parts, offers a solution to the imbalanced class

classification problem that researchers in the CAP community and beyond face. It also has to be

emphasized that all three elements can be considered to bemoreworkflow-based than statistical

in nature. HBS as a workflow can actually accommodate all sorts of specific ML or preprocessing

(see feature set) solutions and decisions, which can be tested in parallel with an eye toward better

performance.
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4. The Empirical Application of HBS to the Use Case of MN
We tested this HBSmethod of classification by using two Hungarian newspaper corpora: NS5 and

MN. The input data in both cases were the full text of articles as they appeared on the front page

of the two newspapers. As stated above, our research design is geared toward maximizing ML

precision for a virgin corpus (MN) based on a training set created out of an independent corpus

(NS). Intercorpus snowballing refers to using the NS data as an input for the coding process of the

virgin MN corpus. This is a feasible choice given that we remained in the domain of Hungarian

newspaper front pages for the same period.

Our experiments with various feature sets (tf, tf-idf) pointed toward the relative insignificance

of the chosen feature set vis-á-vis other structural choices and parameters such as the utilization

of ensemble learning, bagging, and treating class imbalance (see details in the next sections and

also in technical column of Table 1).

In initial tests, support vector machine (SVM) classifiers outperformed other commonly used

algorithms (such as Naive Bayes, Random Forest, etc.), thus it was decided that our efforts were

to be aimed at enhancing the results of an SVM-based workflow.6 Finally, we decided to employ

a technique related to (but not the same as) active learning, the snowball method, to gradually

increase our training set and thereby achieve better results.

The coding of the MN corpus (34,670 articles) was based on a complex process involving both

intercorpus and intracorpus snowballing (see Figure 1). We used the coded NS corpus as our

training set, with the whole MN corpus acting as the virgin test set to be classified. Since running

a full round of coding for all code categories we were working with would take 3–4 days on the

desktop computer, we used a Spark cluster for which the same process took roughly 30 minutes

long (see Pintye, Kail, and Kacsuk 2019).

During our exploratory analysis, one of the problems that stood out was related to consistently

high precision but very low recall values, especially for smaller topics. This is a common problem

for text classification tasks on highly imbalanced multiclass data (Kumar and Gopal 2010) espe-

cially when using SVM models, which are sensitive to the distribution of positives and negatives

in the training set. The two most common ways of handling this problem are either increasing

the number of positives through oversampling (including multiples of the same elements) or

decreasing the number of negatives by undersampling (Lango and Stefanowski 2018).

We chose to gowith the latter solution, which is also in linewith the results of Kumar andGopal

(2010), who also worked on textual data. The simple rule we implemented checked whether the

ratio of positives to negatives in the training setwas less than 10%, if yes, then the algorithmwould

take a sample (without replacement) from thenegatives7 anduseonly those for the actual training

set.

This approach of using proportional training set sizes had a dramatic positive impact on our

recall values; however, at the same time, our precision started to plummet. We decided to tackle

this problemby introducing a committee votingmethodwithmultiple samples being run for each

topic before a conclusion is reached in relation to the final classification decision. This led to a

bagging-type8 ensemble setup, which is again a very common counterpart to the correction of the

ratio of positives to negatives by sampling; especially effective when combined with undersam-

pling (Kumar and Gopal 2010; Lango and Stefanowski 2018). We added one final component to

5 For a detailed description of this corpus see the research note by Mészáros (2018) and other chapters onmedia and results
in the book edited by Boda and Sebők (2018).

6 Although the decision to work with only SVMs has proved to be fruitful for the MN corpus, future work should revisit the
difference between the outputs for various classification algorithms within the framework of HBS.

7 If the number of positives was less than 1% of the original training set size, then the sample size was equal to 10% of the
original training set size, otherwise it was equal to the number of positives multiplied by 10.

8 The reason we refer to it as a bagging-type ensemble as opposed to just bagging, is because bagging employs sampling
with replacement, whereas our algorithm uses sampling without replacement. We tried both versions of the ensemble,
and sampling without replacement proved to be slightly better, even if only by a very small margin.
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Figure 1. HBS in action: A coding process for a virgin corpus with in-process ensemble voting.

this setup to account for another element of randomness in the process, the way the SVM model

would reach its equilibrium.We decided to also repeat the SVM training and classification for each

sample multiple times.

Based on our experiments, we settled on seven samples with seven iterations of SVM training

and classification (see Figure 2). For each code category, if all 49 SVM results concurred in classi-

fying an article as belonging to that category, the votes of the SVMs would become a verdict. And

for each article that had only one verdict at the end of a coding round, the verdict would become

the code category assigned to the article.

Newly classified articles were automatically added to the training set to be used for the next

round, and by the end of round 3, the number of coded MN articles was 20,194. At this point, a

random sample was drawn from each code category based on the number of classified articles.

For code categories with less than a hundred articles, all were selected. For code categories with a

higher number of articles, a sample sizewas selected that would allow for a−5%/+5% confidence
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Figure 2. The increase of the coded articles for MN by coding rounds.

interval with 95% confidence (we return to this point with Figure 4 below). These samples were

then validated by human experts.

5. Results for the Hungarian Media Corpus Use Case of the HBS Process
As we described in the previous section, we tested our HBS process of ML-based classification on

a use case of Hungarian media corpora. In this section, we present the preliminary results from a

test run of HBS in Apache Spark on a cluster of workers.

Our aim was to classify front-page newspaper articles of MN without resorting to any type of

initial human coding. Furthermore, we set our benchmark for precision at the levels usually asso-

ciated with coding processes based on double-blind human coding (80% precision for intercoder

reliability of labels). Figure 2 shows the increase in the number of coded articles for each major

topic code for the three rounds of our test run.

What is clear from Figure 2 is that, for most codes, each round added new coded articles. The

additions of the secondand third rounds showadecliningmarginal rate. Further tests are required

from a validation perspective to tease out the optimum number of rounds before capping the

process. The optimum number would equal the last round which still adds new articles to the

coded set.

Since the aim of our process was to arrive at a valid classification of articles, the key metric to

consider is precision. Figure 3provides anoverviewof our results by topic codes. This figure shows

results that are significantlyhigher than those reportedby similarprevious studies. Formostmajor

topics, the relevant rate of precision is over 80%,which is in linewith results from “gold-standard”

human coding processes. The confidence interval of our precision estimations surpasses 75% for

the majority of topic codes which speak to the overall validity of this case of the HBS process.

A closer look at the negative outliers also offers promising code-specific solutions for increasing

precision (see Section 7).

The size of individual major topics in terms of their estimated share of the total shows that CAP

coding is also an important aspect of such coding processes. Figure 4 indicates a loose connection

between code size and precision, which indicates that the HBS is not biased toward small or
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Figure 3. Precision of MN corpus coding by CAPmajor topic.

Figure 4. Precision of MN corpus coding by CAPmajor topic.

big code categories. Finally, we calculated estimates for code-specific total percentage of texts

classified (our proxy for recall) scores based on the distributional characteristics of the coded NS

set (see Figure S1 in Supplementary Materials). While we can make no statements with absolute

certainty regarding the relevance of NS topic-recalls for MN topics, the scores related to more

populous categories (such as International affairs or Macroeconomics) may serve the fine tuning

of our case-specific HBS process.
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Figure 5. Representative words of the boundary topics of environment and energy.

6. Discussion
According to our results for many topic codes of a virgin corpus, the HBS process yielded gold-

standard-rate precision valueswith very limited human involvement. In this, our analysis partially

fulfilled the goal set out as the central research problem for this article. However, for many code

categories, such as the environment,macroeconomics, or government operations, precisions rate

lagged behind what is acceptable in most projects. One of the reasons for subpar precision may

be related to the issue of boundary topics.9

The delimitation is more difficult between specific code-pairs than for others. This is both due

to the inherent overlap between certain policy areas (such as taxation and social policy, where the

latter is o�en implemented through the former through tax credits or other forms of reductions)

and also their vocabulary. This grey zone between topics also produces problems specific to the

CAP research agenda as articleswhich covermultiple topics canonly be assigned—asper the rules

of coding—to a single class. One such example would be a piece which covers both international

affairs and international trade with respect to a bilateral country relation. Finally, in some cases,

the CAP codebook itself does not provide clear instructions as to which topic a rare issue would

belong to (such instructions are reserved for more prevalent themes).

Based on our analysis, topic-pairs which would seemingly be linked by a thematic boundary

do not always pose a problem for classification. This may be related to the fact that, more o�en

than not, certain topics are covered from a specific angle in newspapers. Take the example of the

two classes of environment and energy which are clearly related in news reports (think oil spills).

Figure 5 presents the representative words (in translation from Hungarian) for both classes by

using the “keyness” score of the quanteda package in R. This is a metric for features that occur

differentially across different categories.

What is clear from this figure is that the coverage of environment in MN in the given period is

strongly focused on a single event: the tailings catastrophe in Devecser, near the town of Ajka.

Indirectly, this is also indicative of the relatively low share of environmental topics on the front

page of MN given that the overwhelming majority of words associated with this topic are related

9 We thank the anonymous reviewer for the comments regarding boundary issues.
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to this event. This also holds for the other topics in question. Energy is mostly associated with a

single issue as well: the price of gasoline. In sum, this seemingly related topic-pair is in fact fairly

distinct in the articles that got categorized through the HBS process.

This is not to say that boundary topics do not cause a problem for HBS classification, only that

this impact is limited. Let us consider two segments from twodifferent articles (the first from2003,

the second from 2008).

(1) The Constitutional Court will consider the “hospital law.” The Court will start hearing the

case of the hospital law, which was initiated by multiple parties and professional bodies.

(2) Decision on hospitals. Thismorning, the Constitutional Court will hand down a decision on

the hospital law. This piece of legislation concerns the transformation of the health care

system andmultiple organizations petitioned the CC for a hearing on the regulation.

These two segments (and the entire text of the articles in question) were related to the same

issue: the hearing of the hospital law case by the Constitutional Court. Nevertheless, the first

segment was categorized by the HBS process to 3-Health care, while the latter to 20-Government

operations. This is where even trained human coders may produce unreliable results as the

themes of health care and the functioning of the judicial branch of government are both present

in the same article. For each similar case, we would need an in-depth analysis of the word counts

associatedwithmultiple categories. This would allow for inserting dictionary-based rules into the

HBS process with a view toward enhancing reliability and, therefore, better precision.

Another option for clearing up ambiguities is to create more coherent topics in the codebook.

In fact, CAP codebooks utilize more refined minor topics within the general major topic. A case

in point is the sprawling category of macroeconomics which is basically a collection of multiple,

distinct subtopics such as taxation or government debt. Therefore, our initial expectationwas that

it would return lower than average results (which, in fact, it did). In principle, and depending on

project features, the separation ofminor topics fromcertainmajor topics as standalone categories

may produce superior results, but this hunch would have to be tested in future work.

Besides handling the complexities of boundary topics, another way to improve the precision

scores of HBS within a given research design is by testing alternative setups and comparing

their performance. First, our results show that in future iterations of the HBS workflow, it would

make sense to use a more sophisticated active learning approach.10 Second, our data confirms

the superior performance of SVMs vis-á-vis the Naive Bayes algorithm, especially if we consider

recall beyond our key metric of precision. Third, our simulations highlight the effectiveness of

using multiple iterations of sample-algorithm pairs. Here, we found that optimum performance

for precision comes at the expense of recall. In futurework, simulations based on different feature

sets (tf vs. tf-idf vs. word embeddings) as well as grid searches of parameters could contribute to

the fine-tuning of HBS to project-specific needs.

As a final note, it is important to stress that any results of such experiments will be related to

the effectiveness of individual aspects of the complex HBS solution (see Table 1). Furthermore,

parameter choice and othermethodological decisions should be tailored to the needs of the given

project, and simulations should also be run for the adequate corpus and setup for the research

design in question. HBS is a framework for solving imbalancedmulticlass classification problems,

but its specific form should always be dependent on the context in which it is applied.

7. Conclusion
This article presented a new workflow solution for content analysis in comparative politics. We

combined a quantitative text-mining approach with supervised learning methods and limited

10 We thank the anonymous reviewer for extensive comments on how to utilize active learning in the HBS setting.
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human coding in order to classify the front-page articles of a Hungarian daily newspaper. Our

precision results for this virgin corpus surpassed thoseof similar available studies andare compet-

itive with the “gold standard” of double-blind human coding. These exceptionally high-precision

scores came at the expense of an estimated recall (or the number of coded articles as a share of

the total number) of below 60% for the virgin dataset.

In light of these positive results, our process offers a fourfold contribution to the literature.

First, we assign a key but limited role for human coding in our workflow. This hybrid, or semi-

automated, approach brought added value vis-á-vis fully automated approaches. Second, the

snowball method of increasing training set size allows for leveraging a relatively small initial

training set for the computer-assisted creation of a full-scale coded corpus. This latter can then

be applied to a within-domain virgin corpus, in a process called intercorpus snowballing.

Third, our ML process design is built on binary coding (that is, one vs. all) as opposed to

the multiclass setup which in our tests, all other things being equal, significantly improved our

precision results. Finally, the proposed technical environment for implementing the HBS process

offers a solution for projects with limited budgets but which have an access to commercial or

academic cloud infrastructure.

As we stated in the introduction, the aim of our project was to match the performance of

the gold standard of double-blind human coding when it comes to the multiclass classification

of policy topics of newspaper articles. Our performance metric of choice was precision as the

automated and valid coding of even a half of the items in a Big Data size corpus readily creates

direct and tangible benefits for large-scale projects. While the application of HBS to a Hungarian

language newspaper corpus offers promising results, a number of options could still be exploited

beyond optimizing setups and parameters.

One such option is adding a “finishing” step to the coding process that addresses project-

specific needs. The hybrid approach of human and ML-based coding can be extended to

dictionary-based methods as well. Using regular expressions could fill a gap in the process by

correcting the systematic errors of ML. In our case, the relatively inefficient coding for the major

topic of environment is partly caused by associating the word “design” with the topic by our

algorithms.

Future work could also focus on moving beyond the low-hanging fruits and applying a dis-

jointed, topic-specific approach of HBS. In this respect, neural networks may offer superior solu-

tions vis-á-vis standardML algorithms. These could be utilized, for instance, in identifying errors in

the underlying human-coded training sets which lower the quality of intracorpus and intercorpus

snowballing and, therefore, have a significant effect on end results. A potential solution for low-

precision categories would be to adjust the weights of words which are discriminative for each

topic (see Figure 5).11 Another potential solution would be to relax the constraint related to the

assignment of a single code to each item.

Finally, and in reference to a similar project by Lo�is and Mortensen (2020), we believe that

HBS has the potential to solvemulticlass classification problemswith unbalanced classes beyond

the domain of our current corpora and the research task of the CAP. It is our expectation that the

strategic use of human coding for creating limited training sets and for performing ex post valida-

tion will provide a competitive edge for our hybrid process vis-á-vis pure ML-based approaches,

even if these latter utilize ensemble coding relying on different ML algorithms (which may not be

a crucial element of success). The tactics of snowballing and the simplification of the multiclass

problem to a binary one is not specific to the CAP challenge either. These features of HBS position

this approach well for future tests on alternative corpora or even cross-domain classification

tasks.

11 We thank the anonymous reviewer for useful comments regarding this issue.
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