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Abstract

Empirical glacier mass-balance models are commonly used in assessments of glacier and runoff
evolution. Recent satellite-borne geodetic mass-balance observations of global coverage facilitate
large-scale model calibration that previously relied on sparse in situ observations of glacier mass
change. Geodetic observations constitute temporally aggregated mass-balance signals with signifi-
cant uncertainty, raising questions about the role of observations with different temporal resolu-
tions and uncertainties in constraining model parameters. We employ a Bayesian approach and
demonstrate the sensitivity of parameter values to commonly used mass-balance observations of
seasonal, annual and decadal resolution with uncertainties characteristic to in situ and satellite-
borne observations. For glaciers along a continentality gradient in Norway, the use of annual
mass balances results in around 20% lower magnitude of modelled ablation and accumulation
(1960–2020), compared to employing seasonal balances. Decadal mass balance also underesti-
mates magnitudes of ablation and accumulation, but parameter values are strongly influenced
by the prior distribution. The datasets yield similar estimates of annual mass balance with differ-
ent margins of uncertainty. Decadal observations are afflicted with considerable uncertainty in
mass-balance sensitivity due to high parameter uncertainty. Our results highlight the importance
of seasonal observations when model applications require accurate magnitudes of ablation, e.g. to
estimate meltwater runoff.

1. Introduction

Glacier mass-balance models are important tools for assessing glacier evolution and associated
meltwater runoff, and to describe mass and energy exchange between the glacier surface and
the atmosphere. Mass-balance models can be used to analyse past trends and interannual
and seasonal variations in glacier mass change (e.g. Engelhardt and others, 2013; van Pelt
and others, 2019; Eidhammer and others, 2021; Geck and others, 2021), to explore glacier sen-
sitivity to climate perturbations (e.g. Schuler and others, 2005; Andreassen and Oerlemans,
2009; Giesen and Oerlemans, 2010; Engelhardt and others, 2015) and to provide predictions
of glacier and runoff evolution with climate change on local, regional and global scales (e.g.
Huss and Hock, 2018; Zekollari and others, 2019; Rounce and others, 2020a; Compagno
and others, 2021). Temperature index models use empirical relationships to describe accumu-
lation and ablation on the glacier surface. While more complex physically based energy-
balance approaches may require a large amount of temporally and spatially distributed
meteorological data and significant computational resources, temperature index models are
less data intensive, computationally inexpensive and often used in large-scale assessments of
glacier change (e.g. Huss and Hock, 2015; Maussion and others, 2019; Rounce and others,
2020b).

The performance of temperature index models relies on the availability of observations of
glacier mass change to calibrate model parameters. However, in situ observations of glacier
mass change exist for less than 0.3% of the world’s glaciers (WGMS, 2022). Long-term series
are rare, especially of seasonal mass balances. Only 42 glaciers worldwide have ongoing (2019/
2020) long-term reference series (30 years or more) of both annual and seasonal mass-balance
measurements (WGMS, 2021). The scarcity of observations poses a challenge in temperature
index modelling of unmonitored glaciers. Approaches adopted in regional and global models
include calibrating parameters based on regional average mass-balance estimates (Huss and
Hock, 2015) or employing mass-balance observations from a nearby glacier of similar size
(Zekollari and others, 2019). Although neighbouring glaciers experience similar climatic con-
ditions, their mass balances can differ significantly due to topographic controls or
lake-enhanced melt (Andreassen and others, 2020). Another calibration strategy for modelling
unmonitored glaciers is to employ a uniform and constant set of parameters for a large num-
ber of glaciers, constrained by relatively few mass-balance observations (e.g. Engelhardt and
others, 2013). This may be problematic because the transferability of parameter values in
space and time is not necessarily given (e.g. Gabbi and others, 2014).
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In recent years, the increasing availability of multi-temporal
digital elevation models (DEMs) from satellite remote sensing
has enabled regional and global-scale geodetic mapping of glacier
changes (e.g. Brun and others, 2017; Shean and others, 2020;
Hugonnet and others, 2021). For most of the world’s glacier
population, geodetic observations constitute the only source of
information on individual glacier change and have thus been
increasingly applied to determine glacier-specific parameter
values in calibration of large-scale glacier evolution models (e.g.
Zekollari and others, 2019; Rounce and others, 2020a;
Compagno and others, 2021, 2022). Satellite-borne geodetic
observations provide mass-balance estimates over multi-year per-
iods and at higher uncertainties compared to geodetic observa-
tions based on airborne surveys. The relatively high uncertainty
in satellite-borne geodetic observations is mainly attributed to
the glacier-wide extrapolation of variable spatio-temporal sam-
pling and uncertainties in densities used to convert glacier volume
to mass change (Hugonnet and others, 2021).

Temperature index models are known to suffer from equifinal-
ity (Beven, 2006); multiple equally plausible parameter sets pro-
duce results that are in line with observations, due to the
combination of a simple, parameterised model structure that exhi-
bits compensating effects, and a lack of observations to constrain
representations of mass change. The typically low temporal reso-
lutions and high uncertainties of geodetic mass-balance estimates
may hamper constraining model parameters and promote equi-
finality. Although the calibration of parameter values for individ-
ual glaciers using satellite-borne geodetic observations has been
shown to improve the spatial and temporal resolution of mass-
balance estimates in large-scale modelling (Rounce and others,
2020a), it is still unclear how the use of such observations influ-
ences parameter values and thus, model sensitivity.

Various calibration techniques have been employed to determine
equifinal parameter sets that satisfy somemodelperformancecriteria,
e.g. stepwise adjustment of parameter values (e.g. Schuler and others,
2007; Compagno and others, 2021), Monte Carlo simulations (e.g.
Østby and others, 2013; Engelhardt and others, 2014) and automatic
multi-objective optimisation schemes (e.g. Rye and others, 2012;
Zolles and others, 2019). However, these techniques do not provide
a formal quantification of parameter uncertainty in probabilistic
terms, and the effect of thedesignof the calibrationonparameteresti-
mates is largely unexplored (van Tiel and others, 2020).

In recent years, Bayesian approaches have been increasingly
applied in glacier mass-balance studies (e.g. Eckert and others,
2011; Martín-Español and others, 2016, 2017; Zemp and others,
2019; Rounce and others, 2020a, 2020b; Landmann and
others, 2021). Rounce and others (2020b) introduced Bayesian
inference in temperature index mass-balance modelling to per-
form rigorous assessment of parameter uncertainty. A Bayesian
framework allows to infer a joint posterior probability distribution
of parameter values from observations, conditioned on a joint
prior distribution that represents our prior knowledge of plausible
parameter values. The marginal posterior distributions, i.e. the
posterior distributions of each individual parameter, can be esti-
mated from the joint posterior distribution. Comparison of the
statistics of the marginal prior and posterior distributions can
be used to assess the degree to which different datasets and
their uncertainties constrain parameter values. Analysing the
marginal posterior distributions can also give indications of short-
comings in the model structure and bias in the input data, e.g.
through poorly constrained parameters or high correlation
between distributions (Rounce and others, 2020b), or a high prob-
ability of ‘unphysical’ parameter values.

In this work, we apply a Bayesian framework to investigate the
impact of employing different mass-balance observations com-
monly used in calibration of parameters in glacier mass-balance

modelling, each with their characteristic temporal resolution
and uncertainty. We apply a temperature index model to simulate
surface mass balance (SMB) of seven glaciers in Norway that have
long-term series (>30 years) of in situ mass-balance observations
and are situated along a maritime-continental climate gradient.
For each glacier, we estimate three sets of parameters based on
three sets of data derived from in situ observations: (1) glacier-
wide seasonal SMB, (2) glacier-wide annual SMB and (3)
10-year averages of glacier-wide annual SMB. For seasonal and
annual SMB, we employ uncertainties reported in glaciological
records. The 10-year averages of annual SMB represent our ana-
logue to satellite-based decadal geodetic observations, and we
thus assign uncertainties characteristic to such observations to
this dataset. The observational datasets differ in temporal resolu-
tions and uncertainties but maintain a consistent mass-balance
signal. We quantify the uncertainty associated with the para-
meters inferred from the datasets and assess the degree to
which posterior parameter distributions are informed by the
observations in each of the three experiments. Our aim is to assess
how the use of different observational datasets with distinct tem-
poral resolutions and uncertainties affects model performance
and influences modelled seasonal and annual SMB.

2. Study sites

The glaciers selected for mass-balance modelling in this study are
situated along a climate gradient in southern Norway, from the
maritime Ålfotbreen and Hansebreen glaciers in the west to
the continental Gråsubreen glacier in the interior part of the
country (Fig. 1). The glaciers are part of the monitoring program
of the Norwegian Water Resources and Energy Directorate (NVE)
and have long glaciological SMB records (>30 years; Table 1).
We employ the reanalysed SMB series (available at http://
glacier.nve.no/viewer/CI), which are partly homogenised (all
seven glaciers) and partly calibrated (Ålfotbreen, Hansebreen, and
Nigardsbreen) where discrepancies between glaciological and
geodetic balances were significant (Andreassen and others, 2016;
Kjøllmoen, 2022a, 2022b). Over the past 60 years, the SMB records
show large inter-annual and decadal fluctuations. All seven glaciers
gained mass in the early 1990s, a period of particularly high snow
accumulation on maritime glaciers in southern Norway. Since the
early 2000s, all seven glaciers have been experiencing mass loss
and retreat (Andreassen and others, 2020).

3. Glacier mass-balance model

3.1. Model description

The glacier mass-balance model computes SMB bmod,i,t as the sum
of accumulation ai,t, ablation mi,t, and refreezing ri,t in each model

Figure 1. Overview map of the seven study glaciers in southern Norway: Ålfotbreen
(Alf), Hansebreen (Han), Nigardsbreen (Nig), Austdalsbreen (Aus), Storbreen (Sto),
Helstugubreen (Hel) and Gråsubreen (Gra). Glacierized areas are shown in dark grey.
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grid cell i (1 × 1 km in this study) on a daily time step t:

bmod,i,t = ai,t +mi,t + ri,t. (1)
The daily mean temperature Ti,t (◦C) and daily total precipitation
Pi,t (mm) are calculated from the corresponding climate forcing
data Tf,i,t and Pf,i,t as follows:

Ti,t = Tf ,i,t + Tcorr, (2)

Pi,t = Pcorr × P f ,i,t , (3)
where Pcorr (–) is a precipitation correction factor and Tcorr (◦C) is
a temperature bias correction. Daily accumulation ai,t (mm w.e. d−1)
is calculated as the fraction of precipitation falling as snow assum-
ing a linear transition interval ΔT (◦C) around a snow/rain tem-
perature threshold Ts (◦C) as follows:

ai,t =
Pi Ti,t ≤ Ts − DT

2

0 Ti,t ≥ Ts + DT
2

Pi
Ts−Ti,t

DT + 1
2

( )
Ts − DT

2 , Ti,t , Ts + DT
2

.

⎧⎪⎪⎨
⎪⎪⎩ (4)

Daily melt of snow and ice in each grid cellmsnow/ice,i,t (mm w.e. d−1)
is modelled using a temperature index approach:

msnow/ice,i,t = MFsnow/ice(Ti,t − Tm) Ti,t . Tm

0 Ti,t ≤ Tm
,

{
(5)

where MFsnow/ice (mm w.e.◦C−1d−1) are melt factors for snow and
ice, relating the amount of melt of snow and ice to the tempera-
ture difference above the melt threshold temperature Tm (◦C).
Melt factors partly reflect differences in surface albedo of snow
and ice. Since characteristic values of the albedo of firn are
between those of snow and ice (e.g. Cuffey and Paterson, 2010),
daily melt of firn mfirn,i,t (mm w.e. d−1) is estimated as the average
of daily melt of snow and ice:

mfirn,i,t = msnow,i,t +mice,i,t

2
. (6)

At the onset of melt, refreezing of meltwater in a grid cell is
assumed to occur until a maximum refreezing potential in the
cell is reached. Potential refreeze in each cell Rpot,i (mm w.e. d−1)
is calculated based on the study by Woodward and others
(1997) as a function of the mean annual air temperature in the
cell Ta,i (◦C) according to:

Rpot,i = −0.69Ta,i − 0.0096. (7)

Refreezing is assumed to occur in the snowpack, such that
refrozen meltwater is added to the snow reservoir in the given

cell. Refreezing is thus assumed to occur above the summer sur-
face, such that it contributes to SMB and not to internal accumu-
lation within the glacier. Potential refreeze is reset at the end of
each hydrological year (defined as 1 October–30 September). In
each grid cell, the snow/firn reservoir is required to melt away
before melting the underlying firn/ice. At the end of the hydro-
logical year, a fraction (25%, same as in Engelhardt and others
(2014) for glaciers in Norway) of firn is assumed to become ice,
and the remaining snow is added to the firn reservoir. The specific
glacier-wide SMB Bmod (m w.e.) over a time period τ is calculated
over the glacier area A as follows:

Bmod = 1
A

∑
i

bmod,i,tAi, (8)

where Ai is the glacier area in cell i. Glacier-wide annual SMB is
the sum of winter and summer balance, which are calculated from
the maximum and minimum glacier mass over the accumulation
and ablation seasons, respectively.

3.2. Input data

To force the model, we employ gridded daily temperature and
precipitation from seNorge_2018 (Lussana and others, 2019),
provided at 1 km resolution over mainland Norway from 1957
to present. SeNorge (‘see Norway’) is a collection of long-term
observational datasets based on spatial interpolation of in situ
observations from a large network of weather stations and
is developed and maintained by the Norwegian Meteorological
Institute (MET Norway). Since the release of the first seNorge ver-
sion, seNorge1 (Mohr, 2008), several studies have demonstrated
the usefulness of the datasets in glacio-hydrological modelling
in Norway (e.g. Engelhardt and others, 2012, 2013; Li and others,
2015). Engelhardt and others (2012) found good agreement
between modelled and measured winter balance at stake locations
on Ålfotbreen and Nigardsbreen using seNorge1, while results
for Storbreen indicated a 20% underestimation of winter balance.
The latest version (seNorge_2018; Lussana and others (2019))
applies monthly precipitation reference fields derived from a
regional climate simulation based on dynamical downscaling of
ERA-Interim. The use of reference fields allows to better capture
spatial precipitation patterns over data-sparse regions. In addition,
the in situ precipitation measurements used in the interpolation
scheme are corrected for wind-induced undercatch. While pre-
cipitation estimates in seNorge_2018 are expected to be superior
to previous versions, they are still prone to uncertainties in moun-
tainous regions with low station density and complex terrain. For
intense precipitation (observed values greater than 10 mm d−1),
the probability of large errors in data-sparse areas is estimated
to around 30% (Lussana and others, 2019). Winter (October–
April) precipitation in seNorge_2018 is 44%, 32% and 18%

Table 1. Characteristics of glaciers selected for this study and overview of surface mass balance (SMB) records

Glacier name Abbreviation
Area Altitude range Slope

Start year Outlines
Bw Bs Ba

(km2) (m a.s.l.) (◦) (m w.e. a−1) (m w.e. a−1) (m w.e. a−1)

Ålfotbreen Alf 3.5 1000 – 1360 10 1963 1968, −88, −97, 2010, −19 3.74 −4.07 −0.34
Hansebreen Han 2.5 927 – 1303 9 1986 1968, −88, −97, 2010, −19 3.48 −4.12 −0.64
Nigardsbreen Nig 44.9 389 – 1955 8 1962 1964, −74, −84, 2009, −13, −20 2.32 −2.29 0.03
Austdalsbreen Aus 10.1 1200 – 1740 5 1988 1966, −88, 2009, −19 2.17 −2.63 −0.46
Storbreen Sto 4.9 1420 – 2091 14 1949 1951, −68, −84, −97, 2009, −19 1.46 −1.98 −0.52
Hellstugubreen Hel 2.7 1482 – 2229 13 1962 1962, −68, −80, −97, 2009, −19 0.75 −1.30 −0.56
Gråsubreen Gra 1.7 1854 – 2277 12 1962 1968, −84, −97, 2009, −19 1.10 −1.67 −0.57

Glaciers are sorted from west to east along a continentality gradient from maritime towards continental conditions. Area and altitude range are taken from Kjøllmoen and others (2022c), and
slope refers to the latest glacier inventory from 2018/2019 (Andreassen and others, 2022). Start year refers to the start year of SMB measurements. Outline refers to years of glacier outlines
applied in the homogenised SMB record of each glacier (Kjøllmoen, 2022b). Bw , Bs and Ba refer to average winter, summer and annual balance, respectively, over the common period of SMB
measurements 1988–2020 (http://glacier.nve.no/viewer/CI).
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lower than seNorge1 for Ålfotbreen, Nigardsbreen and Storbreen,
respectively (Fig. 2).

The glacier mass-balance model employs the seNorge DEM
(1 km resolution), on which the seNorge_2018 data are provided,
such that no downscaling of the climate data is required. As input
to the mass-balance model, we produce a sequence of glacier
masks for each glacier by intersecting multi-temporal glacier out-
lines with the seNorge DEM. Glacier outlines are provided by
NVE and based on the area employed in reanalysis of glaciological
records (Kjøllmoen, 2022b). Between four and six outlines are
available for each glacier over the period 1957–2020 (Table 1).
In accordance with the procedure applied in reanalysis of the
SMB record, the mass-balance model updates the glacier mask
such that each mask is used for half of the period before and
after each update (Andreassen and others, 2016).

3.3. Model parameters

The mass-balance model contains several parameters that control
accumulation, melt and refreezing: precipitation and temperature
corrections (Pcorr and Tcorr), temperature thresholds for snow and
melt (Ts and Tm) and melt factors for snow and ice (MFsnow and
MFice). In our comparative analysis, the dataset of 10-year average
annual SMB is expected to impose the weakest constraints on par-
ameter values and is thereby the limiting case that determines the
number of parameters that can be reasonably estimated. Rounce
and others (2020b) found that, for most glaciers in High
Mountain Asia, the joint posterior distribution of three para-
meters could be informed by a single 18-year geodetic mass-
balance estimate. Following their findings, we focus our investiga-
tion on the estimation of precipitation and temperature bias cor-
rections, Pcorr and Tcorr, and the melt factor for snow MFsnow and
define MFice =MFsnow/0.7, based on the assumption that the effi-
ciency of snow melt is 70% of that of ice (e.g. Singh and others
(2000), same as assumed by Rounce and others (2020b)). For
each glacier, we define the set of model parameters to be estimated
as θ = {Pcorr, Tcorr, MFsnow}. We assign plausible values for the
remaining parameters based on what is commonly reported in
the literature: Tm = 0◦C, Ts = 1◦C and DT = 2◦C (e.g.
Engelhardt and others, 2013; Huss and Hock, 2015; Rounce
and others, 2020b).

4. Parameter estimation

4.1. Experiment set-up

We estimate parameters for each glacier based on three represen-
tations of the reanalysed glaciological SMB records (Kjøllmoen

and others, 2022c). The three datasets are assigned uncertainties
associated with observations commonly used in calibration of
mass-balance model parameters (Fig. 3). The three experiments,
which we henceforth refer to by their respective abbreviation,
are as follows: (1) glacier-wide seasonal SMB, Bw/s; and (2) glacier-
wide annual SMB, Ba, both with uncertainties characteristic to
glaciological observations; and (3) 10-year averages of glacier-
wide annual SMB, B10yr, with uncertainties characteristic to dec-
adal geodetic observations derived from satellite remote sensing.
The B10yr experiment is thus our analogue to satellite-borne dec-
adal geodetic observations (e.g. Shean and others, 2020; Hugonnet
and others, 2021), but it is derived from the glaciological records
to avoid any influence on parameter estimates that result from
inconsistencies in mass-balance signals between different datasets.
For each glacier, we employ 20 years of the respective SMB
records for parameter estimation and remaining years between
1960 and 2020 (minimum 13 years) for validation of modelled
SMB. We use the period 1990–2009 for parameter estimation
because (1) all seven study glaciers have SMB records that cover
this period, and (2) it spans years of variability in climate and
mass-balance trends (Andreassen and others, 2020), reducing
parameter bias towards specific meteorological conditions. To
summarise, for the 20-year calibration period, the three datasets
contain (1) 40 observations that express seasonal variability in

a b c

Figure 2. Mean monthly precipitation sums (bars) and mean monthly temperature (lines) for Ålfotbreen (a), Nigardsbreen (b), and Storbreen (c) from seNorge1
(light grey bars and dashed lines) and seNorge_2018 (dark grey bars and solid lines) for the period 1960–2019. seNorge_2018 is used as forcing in this study.

Figure 3. Observational record for Ålfotbreen showing winter (blue, top), summer
(red, bottom), annual (black, middle) and 10-year average annual (green, horizontal)
surface mass balance (SMB). Shaded areas represent estimated one standard devi-
ation uncertainties in observations. For the 10-year average annual SMB, uncertain-
ties reflect those of decadal geodetic observations from satellite remote sensing.
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SMB; (2) 20 observations that describe annual variability in SMB
and (3) two observations (1990–99 and 2000–09) that describe
decadal variability in SMB.

4.2. Bayesian inference

We are interested in estimating the probability distributions of the
set of mass-balance model parameters θ = {Pcorr, Tcorr, MFsnow},
given a set of n = 1:N observations of glacier mass change Bobs,1:N.
We assume that the observed SMB Bobs,n over the incremental
time period τ (e.g. season, year, decade) can be explained by the
modelled SMB Bmod,n(Xn, θ) and the error associated with the
observations en:

Bobs,n = Bmod,n(Xn, u)+ en, (9)

where Xn is the set of model input data over τ.
In a Bayesian framework, we can express the joint posterior

distribution of the set of parameters θ, given a set of N observa-
tions, p(θ|Bobs,1:N, X1:N) in terms of Bayes’ theorem (see e.g.
Gelman and others, 2014):

p(u|Bobs,1:N , X1:N ) = p(u)p(Bobs,1:N |u, X1:N )
p(Bobs,1:N )

. (10)

The term p(θ) is the joint prior distribution of θ and represents
the beliefs about the value of the parameters before the observed
data are considered. p(Bobs,1:N|θ, X1:N) is termed the likelihood
and is the probability of observing the data given a particular
set of parameters and p(Bobs,1:N ) is the probability of observing
the data, also called evidence. We can use Markov chain Monte
Carlo (MCMC) simulations that make use of the following
proportionality:

p(u|Bobs,1:N , X1:N )/ p(u)p(Bobs,1:N |u, X1:N ), (11)
to obtain samples from the joint posterior distribution given
appropriate formulations of the joint prior distribution and the
likelihood.

4.3. Likelihood

We assume that errors en in Eqn (9) are independent and nor-
mally distributed (N ) with mean of zero and constant variance
s2
Bobs

, such that the likelihood LBobs = p(Bobs,1:N|u, X1:N ) can be
expressed as follows:

LBobs =
∏N
n=1

N (Bmod,n(Xn, u), s
2
Bobs

). (12)

For computational efficiency and stability, we employ the log like-
lihood function lBobs = ln (LBobs ) which can be expressed as:

lBobs = −N
2
ln (2p)− N

2
ln (sBobs )

− 1
2s2

Bobs

∑N
n=1

(Bobs,n − Bmod,n(Xn, u))
2.

(13)

For the parameter estimation experiments Ba and B10yr, we
express the log likelihood function as defined in Eqn (13). For
Bw/s, we assume that observations of glacier-wide winter and sum-
mer balance (Bw,1:N and Bs,1:N, respectively) are conditionally
independent given the set of parameters θ, such that:

p(Bw,1:N , Bs,1:N |X1:N , u) = p(Bw,1:N |X1:N , u)

× p(Bs,1:N |X1:N , u).
(14)

The full log likelihood function lBw/s can be expressed as the sum
of log likelihood functions for each of the winter (lBw) and sum-
mer (lBs) balance:

lBw/s = lBw + lBs . (15)

Uncertainty in annual SMB (sBa ) for each glacier is assessed in
the reanalysis of the glaciological SMB records (Andreassen and
others, 2016). For each glacier, we assume that the reported
uncertainty is constant throughout their respective period of
observations. We derive uncertainties in winter and summer bal-
ance (sBw and sBs , respectively) given that observations of annual
SMB are the sum of winter and summer balances and under the
assumption that observations of seasonal balances are independ-
ent (Dyurgerov and Meier, 1999) and with normally distributed
errors. The distribution of the error in observed annual SMB
en,a can thus be represented as follows:

en,a � N (0, s2
Bw

+ s2
Bs ), (16)

which entails that the variance in observed annual SMB can be
expressed as the sum of variances in observed seasonal balances:

s2
Ba = s2

Bw
+ s2

Bs . (17)

We derive sBw and sBs from sBa for each glacier (Table 2), assum-
ing that uncertainty in observed summer balance accounts for
two-thirds of the uncertainty in the annual balance based on
experience and typical uncertainty estimates in the SMB records
(e.g. Kjøllmoen and others, 2022c).

Since B10yr represents our analogue to satellite-based geodetic
mass balance, the uncertainty in these observations should reflect
those typical to satellite-based decadal geodetic estimates. We esti-
mate the uncertainty in B10yr for each glacier as the average of the
reported standard deviations in two glacier-specific decadal geo-
detic estimates (2000–09 and 2010–19) from Hugonnet and
others (2021) and assign the resulting uncertainty to each time
period 1990–99 and 2000–09. To illustrate, the uncertainty in
geodetic mass balance for Storbreen is 0.24 m w.e. a−1 and 0.28
m w.e. a−1 for the decades 2000–09 and 2010–19 (Hugonnet
and others, 2021), respectively, and we thus ascribe an uncertainty
of 0.26 m w.e. a−1 to the B10yr estimates (Table 2).

4.4. Prior distributions

The joint posterior distribution represents a belief of the param-
eter values inferred from the data (likelihood), conditioned on
prior knowledge ( joint prior distribution). The chosen form of
the prior, in terms of strength and properties of the distribution,
influences how much information the posterior distribution can
gain from the observations. We choose weakly informative

Table 2. Uncertainties (standard deviation; m w.e. a−1) of observations used in
parameter estimation

Glacier name sa
Bw

sa
Bs

sa
Ba

sb
B10yr

Ålfotbreen 0.18 0.28 0.33 0.31
Hansebreen 0.18 0.28 0.33 0.33
Nigardsbreen 0.19 0.28 0.34 0.19
Austdalsbreen 0.17 0.25 0.30 0.23
Storbreen 0.10 0.15 0.18 0.26
Hellstugubreen 0.08 0.13 0.15 0.28
Gråsubreen 0.06 0.08 0.10 0.31

aDerived from Andreassen and others (2016).
bDerived from Hugonnet and others (2021).
Glaciers are sorted from west to east along a maritime to continental climate gradient.
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(wide) priors since we are interested in the effect of the observa-
tional datasets on the posterior distribution.

Priors are constructed such that they reflect our knowledge of
physically plausible parameter values and prohibit sampling of
nonphysical values. Braithwaite (2008) modelled accumulation
at the equilibrium line altitude for 66 mid-latitude and polar gla-
ciers and found that 76% of the accumulation variance could be
represented by a temperature index model using a melt factor
for snow of 4.1 ± 1.5 mm w.e.◦C−1d−1. This is in line with melt
factors derived for glaciers in southern Norway (Engelhardt and
others, 2012, 2014). Thus, we represent the prior distribution
for the melt factor for snow as a truncated normal distribution
(N T ) with mean 4.1 mmw.e.◦C−1d−1 and standard deviation
1.5 mmw.e.◦C−1d−1, truncated at 0 to ensure positivity (same as
in the study by Rounce and others (2020b)):

p(MFsnow) = N T (4.1, 1.5
2, 0). (18)

To inform our choice of prior distribution for the precipitation
correction factor, we contrast precipitation and temperature in
seNorge1 and seNorge_2018 (Fig. 2) in light of previous compar-
isons of precipitation sums in seNorge1 and winter mass balances
(Engelhardt and others, 2012). We roughly estimate a 25% under-
estimation of precipitation in seNorge_2018 and choose the fol-
lowing truncated normal distribution as prior for the
precipitation correction factor:

p(Pcorr) = N T(1.25, 0.8
2, 0). (19)

Although winter temperature has been highlighted as more
prone to large errors in data-void areas (Lussana and others,
2019), there is no clear indication that seNorge_2018 under- or
overestimates temperatures in mountainous regions. We therefore
choose a normal distribution with mean 0◦C and standard devi-
ation 1.5◦C as the prior for the temperature bias correction:

p(Tcorr) = N (0, 1.52). (20)

We apply the same joint prior distribution in all parameter esti-
mation experiments. We acknowledge that posterior estimates
could be improved by adapting priors to site-specific conditions,
e.g. by adopting different melt factors for maritime and continen-
tal glaciers or including information from alternative data sources
where possible. However, the goal of our analysis is not to pro-
duce the best possible mass-balance estimates for each glacier,
but to investigate data-driven differences in posterior distributions
across glaciers.

4.5. Markov chain Monte Carlo sampling

MCMC methods (see e.g. Gelman and others, 2014, Chapter 11)
provide techniques for generating random samples from the joint
probability distribution of continuous random variables that is
proportional to a known function (Eqn (11)). Through a sequen-
tial process, proposed samples of the joint posterior distribution
are either accepted or rejected, depending on how likely a sample
is to explain the observations. Given enough steps in a Markov
chain, the sample distribution converges towards the joint poster-
ior distribution from which statistics of the marginal posterior
distributions can be estimated.

The Bayesian model is implemented using the probabilistic
programming framework PyMC3 for Python (Salvatier and
others, 2016), which provides a suite of MCMC sampling algo-
rithms. We employ an adaptive Metropolis-type algorithm,
DEMetropolisZ (based on ter Braak and Vrugt (2008)), which

offers increased efficiency compared to a standard random-walk
Metropolis (Metropolis and others, 1953) through an adaptive
mechanism for which proposed samples of the posterior distribu-
tion are produced (ter Braak, 2006). In accordance with the rec-
ommendation of Vehtari and others (2021), we run four
parallel MCMC chains to allow for reliable assessment of conver-
gence. We apply a similar modelling approach to Rounce and
others (2020b) and estimate the same number of parameters.
On the basis of their evaluation of diagnostics and chain conver-
gence, we consider that running four MCMC chains for each gla-
cier with 2000 tune and 10 000 sampling iterations each is
sufficient to ensure chain convergence and an adequate number
of independent samples of the posterior distribution. We assess
convergence and the stability of posterior estimates using the
metrics rank-normalised R̂ and rank-normalised effective sample
size (bulk and tail) recommended by Vehtari and others (2021),
and the Monte Carlo standard error (bulk and tail). Although
we can never conclusively claim convergence, visual and numer-
ical inspection does not indicate nonconvergence in any simula-
tion cases (see Supplementary Material for details). Chains
display good mixing and stationarity, and provide a sufficient
number of independent samples across all quantiles, such that
we are confident that the MCMC simulations provide satisfactory
approximations of the marginal posterior distributions of each
parameter across all experiments.

5. Results

5.1. Posterior distributions of model parameters

The difference between marginal posterior and prior parameter
distributions in each experiment reflects the influence of the
observations (through the likelihood) on the posterior distribu-
tion. In all experiments, the spread of the marginal posterior dis-
tributions of the parameters (hereafter referred to as parameter
uncertainty) is lower than that of the corresponding priors, imply-
ing that posterior distributions are to some degree informed by
the observations (Fig. 4). In the Bw/s and Ba experiments, poster-
iors are well constrained. Posteriors are less constrained in the
B10yr experiment and appear to largely reflect the priors, although
there is some shift in the mode and reduction in the spread of the
posteriors compared to the priors.

Ba generally yields lower values for Pcorr and Tcorr than Bw/s
and B10yr, but MFsnow is on average slightly higher (see Tables
S1–S3 in Supplementary Material for details). The highest values
of Pcorr and MFsnow are inferred for the most maritime glaciers,
Ålfotbreen and Hansebreen. For most glaciers and parameters,
the interquartile range of posterior distributions for B10yr contains
the median of posteriors for Bw/s and Ba (Fig. 4). This reflects that
high probability parameter values for Bw/s and Ba are also consid-
ered likely in the B10yr experiment. The posterior distributions for
Bw/s and Ba, however, do not show agreement. This is especially
visible for Pcorr, for which posterior distributions for Ba yield
lower values than Bw/s across all glaciers. The difference in param-
eter uncertainty between B10yr and Bw/s is typically less than one
order of magnitude for MFsnow and Tcorr and greater than one
order of magnitude for Pcorr. Parameter uncertainty is higher
for Ba than Bw/s, but significantly lower than for B10yr.

5.2. Model performance

We evaluate the performance of posterior distributions in model-
ling seasonal and annual balances in two main ways: (1) in terms
of root mean squared error (RMSE) and mean bias between mod-
elled (posterior predictive median) and observed mass balances
over the calibration and validation years (Fig. 5); and (2) by
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comparing probability density functions (PDFs) of modelled
(posterior predictive) and observed mass balances over the
period of respective observations for each glacier (Bw/s; Fig. 6,
Ba; Fig. A1, and B10yr; Fig. A2). To complement (1), we also eval-
uated the median absolute deviation and median bias between

modelled and observed mass balances (Fig. A3), which gives simi-
lar results.

When considering the ensemble of glaciers, the three experi-
ments display similar performance in modelling annual SMB
over the calibration and validation years in terms of RMSE and

a b c

Figure 4. Marginal posterior probability distributions for Pcorr (a), MFsnow (b) and Tcorr (c) for all glaciers and experiments Bw/s, Ba, and B10yr. Marginal prior distri-
bution for each parameter is shown at the bottom in grey. Markers indicate median of posterior distributions, while bold and thin lines indicate interquartile range
and credible interval (in terms of the 95% highest posterior density interval), respectively. Grey dashed lines indicate prior medians. Glaciers are sorted from west to
east along a maritime to continental climate gradient.

a b

c d

Figure 5. Model performance for each glacier in terms of RMSE (a, b) and mean bias (c, d) between modelled (posterior predictive median) and observed seasonal
(winter in blue, summer in red) and annual (in grey) surface mass balance over calibration (a, c) and validation (b, d) periods for parameter estimation experiments
Bw/s (circle), Ba (triangle) and B10yr (square). Glaciers are sorted from west to east along a maritime to continental climate gradient.
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bias between modelled and observed SMB (Fig. 5). Posterior dis-
tributions for Bw/s give the lowest RMSE and bias for seasonal
SMB. Overall, Ba and B10yr show a bias in the magnitudes of mod-
elled seasonal balances, with higher (less negative) summer bal-
ances and lower (less positive) winter balances than observed.
The underestimation of the magnitudes of seasonal SMB for Ba
and B10yr is in line with parameter values of posterior distribu-
tions that promote lower ablation and accumulation compared
to Bw/s. Ba shows a larger bias in seasonal SMB compared to
B10yr, and higher RMSE for most glaciers. Ba appears to

systematically favour mass-balance scenarios characterised by
low ablation and low accumulation, in line with the lower param-
eter values of the posteriors in this experiment (Fig. 4).

RMSE is typically lower for the calibration period than the val-
idation period (Fig. 5), which is not unexpected given that poster-
iors are informed by observations in the calibration period.
Overall, the lowest RMSE is found for the three most continental
glaciers (Storbreen, Hellstugubreen and Gråsubreen), and the lar-
gest deterioration in RMSE from the calibration to the validation
period is found for the most maritime glaciers (Ålfotbreen and

Figure 6. Probability density functions for mass balances in the Bw/s experiment for 1000 posterior predictive samples (blue lines) and observations (black lines).
Summer, winter and annual mass balance (m w.e.) are shown from left to right for each glacier. Glaciers are sorted from west to east along a maritime to con-
tinental climate gradient.
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Hansebreen). For Ålfotbreen, observed seasonal and annual SMB
is generally within the range of predicted values for the calibration
years, while the correspondence is poor for some years of the val-
idation period (e.g. too low winter balance in 1960s and 70 s, too
negative summer balance in the 1970s and too high winter bal-
ance in the 2010s; Fig. A4).

The PDFs of posterior predictive samples of modelled mass
balances (Figs. 6, A1 and A2) describe the probability distribution
of mass balances over the observational period. For a well-
performing and robust model, the bulk of PDFs of the posterior
predictive samples should reflect the PDF of the observations.
For Bw/s, posterior predictive PDFs encompass the PDF of obser-
vations to a degree for most glaciers and observations, although
discrepancies are visible in all cases (Fig. 6). For some ranges of
mass balance, PDFs of posterior predictive samples do not
encompass the PDF of observations. This implies that the
model under- or overestimates SMB such that the observed
SMB is not within the distribution of modelled SMB (e.g. as for
Ålfotbreen for many years in the 1960s and 70s; Fig. A4). For
instance, winter balance of Nigardsbreen shows predicted values
around 0.5–1 and 3.5–4 m w.e., while the PDF of observations
is constrained between 1–3.5 m w.e. and shows a higher density
than posterior predictive PDFs in this range (Fig. 6h). For
Hansebreen, correspondence between posterior predictive and
observed PDFs is particularly poor, e.g. posterior predictive samples
show a high frequency of large winter balances (>5m w.e.), while
the frequency of winter balances in the range 3.5–4.5 m w.e. is
lower than observed (Fig. 6e). The consequence is that annual
SMB (Fig. 6f) is underrepresented in the range 0-1.5 m w.e. and
overrepresented in the range 1.5–3m w.e., which indicates that
annual SMB for Hansebreen is overestimated in several years.
Generally, Bw/s shows better correspondence for Austdalsbreen
and the continental glaciers (Figs. 6j-l) than for Ålfotbreen,
Hansebreen and Nigardsbreen (Figs. 6a–i).

Ba (Fig. A1) yields similar results as Bw/s in terms of modelled
annual SMB, but with slightly higher spread such that PDFs of

observed annual SMB are to a larger degree encompassed by pos-
terior predictive samples (e.g. Ålfotbreen and Hansebreen).
However, PDFs of posterior predictive samples for winter and
summer balances are shifted towards low magnitudes and do
not show correspondence with observations. This is in line with
the low mass-turnover parameter values for Ba and systematic
bias in modelled seasonal balances (Fig. 5). PDFs of posterior pre-
dictive samples of B10yr (Fig. A2) show an extremely large spread
in comparison to Bw/s and Ba and quite high densities towards low
values of seasonal balances.

We assess the performance improvement achieved through
posterior inference in the three experiments by evaluating the dif-
ference between RMSE of the posterior predictive median (predic-
tions using joint posterior distributions) and RMSE of the prior
predictive median (predictions using joint prior distributions;
Fig. 7). A positive performance improvement indicates that the pos-
terior distribution improves modelled SMB compared to using the
prior distribution and reflects the added benefit of using the obser-
vational data in parameter estimation as opposed to no data at all.
Over the calibration period, all experiments show a performance
improvement (reduction in RMSE) in terms of modelling annual
SMB across all glaciers (Figs. 7a–c). The same is true for the valid-
ation period (Figs. 7d–f), except for Hansebreen. Bw/s is the only
experiment where posterior inference consistently improves model-
ling of seasonal SMB over the calibration period, and largely also
over the validation period. Although both Ba and B10yr give an
overall performance improvement in modelling annual SMB, in
many instances, the performance in modelling underlying seasonal
balances has worsened compared to using the prior distribution.

5.3. Modelled surface mass balance, 1960–2020

The modelled SMB indicates a net mass loss for all glaciers over
the period 1960–2020 (Figs. 8 and 9). Nigardsbreen is the only
glacier that is in near balance. Modelled (in terms of posterior
predictive median) average annual SMB is similar across

a b c

d e f

Figure 7. Performance improvement in terms of percentage reduction in RMSE of posterior predictive median compared to RMSE of prior predictive median for
each glacier and experiments Bw/s (a, d), Ba (b, e) and B10yr (c, f) in calibration (a–c) and validation (d–f ) periods. Positive performance improvement (reduction in
RMSE, up to 100%) reflects improvement in model performance when using posterior compared to prior distributions to model mass balances. Negative perform-
ance improvement (increase in RMSE, up to −∞%) reflects deterioration in model performance.
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experiments (Fig. 8). Ba and B10yr generally give lower magnitudes
of summer and winter balances than Bw/s, with Ba showing the
lowest magnitudes overall. All experiments illustrate a large differ-
ence in mass turnover from the maritime to continental glaciers.

The three experiments give similar results in terms of mod-
elled cumulative SMB, but with different margins of uncertainty
(Fig. 9). Uncertainty in modelled SMB (credible region in
Fig. 9, which is given in terms of the 90% highest posterior density

Figure 8. Average rates of modelled (posterior predictive median) winter, summer and annual mass balance over the period 1960–2020 for each glacier and par-
ameter estimation experiment Bw/s, Ba and B10yr. Glaciers are sorted from west to east along a maritime to continental climate gradient.

a

b e

f

g

c

d

Figure 9. Cumulative annual mass balance for each glacier and experiments Bw/s, Ba and B10yr over their respective period of glaciological mass-balance observa-
tions. Shaded areas represent credible intervals in terms of the 90% highest posterior density interval. Black lines indicate medians. Zero is set to the first year of
the calibration period (1990). Grey vertical lines indicate the start (1990) and end (2009) of the calibration period.
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interval; the shortest interval that spans 90% of the density of the
distribution) from propagation of parameter uncertainty for Bw/s
and Ba is comparable. Considering the glaciers with observation
records beginning in the 1960s, uncertainty in modelled SMB
for Bw/s and Ba is generally higher for Ålfotbreen and
Nigardsbreen, compared to Storbreen, Hellstugubreen and
Gråsubreen. Across glaciers, B10yr gives the highest uncertainty
in modelled SMB. The largest difference between experiments is
found for the small continental glacier Gråsubreen, where the
90% credible interval of cumulative annual SMB is an order of
magnitude larger for B10yr compared to Bw/s and Ba.

Modelled and observed annual SMB correspond well over the
period 1960s–2020 for Storbreen, Hellstugubreen and
Gråsubreen, and over the shorter records (1980s–2020) of
Hansebreen and Austdalsbreen (Fig. 10). The agreement between
modelled and observed annual SMB is more variable over time for
Ålfotbreen and Nigardsbreen, e.g. annual SMB is generally under-
estimated (more negative) for Ålfotbreen from the early 1960s to
the late 1970s but shows better correspondence in the subsequent
decades (Figs. 9a, 10a and A4). Ba shows a more or less consistent
underestimation of the magnitude of summer balance over the
period of available observations (Fig. 10), in line with the system-
atic bias found for modelled seasonal balances (Figs. 5c and d).
A similar underestimation is visible for B10yr for some glaciers

(Nigardsbreen, Storbreen, Hellstugubreen and the shorter
record of Austdalsbreen). For Storbreen, Hellstugubreen and
Austdalsbreen, the magnitudes of seasonal balances for B10yr are
in general higher than for Ba (Fig. 8), such that the underestima-
tion is less severe. However, for Nigardsbreen, B10yr displays a
greater underestimation of modelled ablation than Ba, which is
also reflected in the bias between modelled and observed seasonal
balances over the calibration and validation periods (Figs. 5c and d).
For both Ba and B10yr, underestimation of the magnitude of summer
balance is counteracted by an underestimation of the magnitude of
winter balance, such that the resulting modelled annual SMB is
comparable across experiments (Figs. 8 and 5c and d).

6. Discussion

6.1. Prior and likelihood influence on posterior

Observations influence the posterior distribution through the like-
lihood function. We highlight three aspects that distinguish the
datasets used in each experiment and that influence the effect
of the likelihood (observations) on the posterior distribution:
(1) the number of observations, (2) the mass-balance information
and (3) the observational uncertainty. For Bw/s and Ba, posterior
distributions are strongly constrained compared to B10yr, which
indicates that posteriors are more influenced by the likelihood

a

b e

f

g

c

d

Figure 10. Cumulative difference between median of modelled (posterior predictive) and observed summer (red) and annual (black) mass balance for each glacier
for experiments Bw/s (solid lines), Ba (dashed lines) and B10yr (dotted lines).
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(observations) than in the B10yr experiment. Bw/s and Ba show
lower posterior uncertainty compared to B10yr due to the combin-
ation of the three factors: (1) a larger number of observations
which increases the relative importance of the likelihood in pos-
terior inference (Gelman and others, 2014), (2) lower equifinality
in the mass-balance information and (3) lower observational
uncertainty. In all experiments, accounting for observational
uncertainty aggravates equifinality because we are searching for
parameter values that explain a wider range of probable observa-
tions. Posterior distributions for B10yr show high uncertainty, not
only as a result of the limited number of observations but also due
to the combination of significant equifinality in the mass-balance
information and high observational uncertainty.

Due to the combination of the three mentioned factors, B10yr
posteriors show a wide range of probable parameter values
(Fig. 4). Although posterior distributions for Bw/s and Ba are
more constrained than B10yr, equifinality is still reflected in the
correlation between parameter values (Figs. A5 and A6) and in
the difference in the spread of distributions between parameters.
Overall, posteriors of Pcorr are more constrained than posteriors
of Tcorr and MFsnow. Pcorr alone largely controls accumulation of
snow over the glaciers since winter temperatures are mostly
below the snow/rain threshold (Fig. 2). Ablation, however, is con-
trolled by both Tcorr and MFsnow, such that there is a strong cor-
relation between these two parameters (Figs. A5 and A6) and thus
higher uncertainty in posteriors. For Bw/s, distributions of Pcorr are
especially narrow because the posterior is informed by observa-
tions of winter balance which are assigned lower uncertainties
than summer balance observations.

Since posteriors of Bw/s and Ba seem to be highly constrained
by the likelihood (observations) in our formulation of the
Bayesian model, we would expect that our choice of prior has little
influence in posterior inference in these experiments. We investi-
gate posterior sensitivity to the choice of prior distribution for
three glaciers across the maritime-continental climate gradient
(Ålfotbreen, Nigardsbreen and Gråsubreen) by performing infer-
ence with low and high priors for parameters Pcorr and MFsnow in
each experiment. The sensitivity experiment illustrates the influ-
ence on the posterior for a low or high mass-turnover prior.
The low and high priors were constructed from the original
priors, but with means shifted up or down by one standard
deviation of the original priors, e.g. such that the high (low)
prior for MFsnow was a truncated normal distribution with a
mean of 5.6 (2.6) mm w.e.◦C−1d−1.

For Bw/s and Ba, posteriors display similar properties regardless
of the choice of prior (e.g. for Nigardsbreen in Fig. 11) which
implies that the posterior distribution is highly influenced by
the likelihood (observations). Our choice of weakly informative
priors and the assigned low observational uncertainties for Bw/s
and Ba produce posterior distributions that approach standard
maximum likelihood estimates and thus reflect a narrow range
of values that minimise the difference between observed and
modelled SMB (Eqn (13)). For Ba, the model seemingly achieves
a better fit between observed and modelled annual SMB with
smaller magnitudes of accumulation and ablation. This may be
due to limitations in the model, e.g. simplified process represen-
tation, lack of resolution and changes in hypsometry and incre-
mental updates of glacier areas. Since posteriors for Ba are
largely driven by the likelihood, we could expect that the bias of
Ba towards low mass-turnover parameter values would be similar
in standard maximum likelihood estimation.

In contrast to Bw/s and Ba, prior influence on the posterior for
B10yr is pronounced, with marginal posteriors displaying a shift
towards low or high values depending on the choice of prior.
B10yr could essentially have the same effect of favouring low
mass-turnover parameter values as Ba. This indication is sup-
ported by the results for Nigardsbreen, where posteriors for
B10yr and Ba adopt values in the low range of the prior, in contrast
to the posterior for Bw/s. The low accumulation, low ablation
parameter values for Nigardsbreen achieve a significantly lower
RMSE for annual SMB than in the Bw/s experiment (Figs. 5a
and b), but give a large bias in seasonal balances (Figs. 5c and
d, 10c and A1). However, the tendency to favor low mass-
turnover scenarios is generally less pronounced for B10yr due to
the comparatively stronger prior influence and weaker influence
of the likelihood (observations). The high parameter uncertainty
and sensitivity to choice of prior distribution in the B10yr experi-
ment implies that the number of unknown parameters is at the
upper limit of what can be reliably estimated using decadal reso-
lution satellite-borne geodetic observations with their characteris-
tic uncertainty. Increasing the number of unknown parameters
could aggravate equifinality such that the inferred posterior distri-
butions would largely reflect the priors.

6.2. Parameter values

We compare parameter values for Bw/s across glaciers as this
experiment most correctly represents accumulation and ablation.

a b c

Figure 11. Marginal posterior probability distributions for Pcorr (a), MFsnow (b) and Tcorr (c) for Nigardsbreen for experiments Bw/s, Ba and B10yr using different priors
(high, original and low). Prior distributions for each parameter are shown in grey. Markers indicate medians of posterior distributions, while bold and thin lines
indicate interquartile range and credible interval (in terms of the 95% highest posterior density interval), respectively.
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For all glaciers, values of Pcorr for Bw/s (medians range from 1.06
to 1.55, see Tables S1–S3) indicate that seNorge_2018 may
underestimate winter precipitation. To our knowledge, no formal
evaluation of seNorge_2018 in glacio-hydrological modelling in
remote data-void regions has been performed. However, consider-
ing previous evaluation of winter precipitation in seNorge1
(Engelhardt and others, 2012), our results are in line with lower
precipitations sums in seNorge_2018 compared to seNorge1
(Fig. 2). Pcorr shows a trend from higher to lower values from
coastal (Ålfotbreen and Hansebreen) to more inland glaciers
(Nigardsbreen and Austdalsbreen) across experiments. This indi-
cates that seNorge_2018 may not adequately capture the strong
longitudinal precipitation gradient in southern Norway. A similar
pattern in values of Pcorr from west to east over the continental
glaciers also suggests that orographic effects over the central
mountain ranges may not be accurately represented. Although
parameter values suggest underestimation of precipitation in
seNorge_2018, strong conclusions regarding the magnitude of
underestimation should not be drawn based on these values.
Parameter values are influenced by the model limitations dis-
cussed earlier, as well as potential biases in observations and
choice of calibration period. Other processes that may influence
accumulation, such as redistribution of snow by wind or ava-
lanching, are also not included in the model.

Values of Tcorr for Bw/s indicate a slight overestimation of tem-
perature in seNorge_2018 for maritime glaciers and an underesti-
mation for the westernmost continental glaciers. However, in
addition to the limitations in model structure and potential influ-
ences on parameter values mentioned earlier, general statements
about the quality of seNorge_2018 temperature are even more
precarious due to compensating effects between Tcorr and
MFsnow on modelled ablation. Considering MFsnow, maritime gla-
ciers generally exhibit higher values than continental glaciers, in
agreement with the findings of Zhang and others (2006) for
degree-day factors of maritime and continental glaciers in western
China. Engelhardt and others (2014) found a similar pattern in
parameters controlling melt across Åfotbreen, Nigardsbreen and
Storbreen, but parameter values are not directly comparable to
this study due to differences in the model structure. For
Storbreen and Hellstugubreen, which have lowest values of
MFsnow, we would expect higher values of MFsnow without the
compensating effect of Tcorr.

6.3. Effect of observations on modelled mass balance

The magnitudes of seasonal balances are generally underestimated
(too low) for Ba (Figs. 5, 10 and A1), due to parameter values
promoting lower accumulation and ablation (Fig. 4).
Underestimation of the magnitude of ablation implies that also
summer meltwater runoff would be underestimated for Ba. B10yr
also shows underestimation of magnitudes of summer and winter
balances, which is in line with findings of Rounce and others
(2020a) for glaciers in High Mountain Asia with parameters cali-
brated with 20-year geodetic mass-balance observations. Bw/s is
the only experiment that adequately resolves seasonal balances
(Figs. 5 and 6) and consistently improves modelled seasonal
balances (Fig. 7) because posteriors are informed by winter and
summer balance observations. The overall better performance in
terms of median values of B10yr in modelling seasonal SMB com-
pared to Ba (Figs. 5 and 10) could be attributed to a choice of
priors that produce posteriors centered around the same values
as Bw/s, and thus give decent estimates of accumulation and
ablation.

Ba and B10yr (which is essentially an aggregation of annual
SMB observations) give decent mass-balance estimates (Figs. 5,
A1 and A2) and improvement of annual SMB (Fig. 7) since

posteriors are informed by annual SMB observations. However,
this does not necessarily improve performance in modelling sea-
sonal balances since parameter values that give the best estimates
of annual SMB do not necessarily reproduce seasonal variations.
Nevertheless, due to the equifinality in the mass-balance model,
Ba and B10yr give estimates of annual SMB that are in line with
those achieved by resolving seasonal balances in the Bw/s
experiment.

Overall, all experiments improve estimates of annual SMB
compared to employing parameter values based on prior knowl-
edge (Fig. 7). A performance improvement does not necessarily
imply a good model performance, but rather reflects the added
value of using the observations in calibration for a given prior.
Across experiments and glaciers, deterioration in RMSE reflects
that a posterior centred around the median of the prior distribu-
tion would give lower RMSE than the inferred posterior. The
deterioration in RMSE in seasonal and annual SMB over the val-
idation period for some glaciers (e.g. Hansebreen; Figs. 7d–f)
reflects that posterior parameter values are less representative
over this period than the prior values. B10yr posteriors are clearly
sensitive to the choice of prior (Fig. 11) but improve modelling of
annual SMB for most glaciers and priors we evaluated (Fig. 12).
Although B10yr represents a mass-balance signal of low temporal
resolution and high uncertainty, posterior distributions informed
by such observations yield improved estimation of annual SMB
compared to employing parameter values based on prior knowl-
edge alone. In the low and original prior cases for Ålfotbreen and
Gråsubreen, B10yr also improves modelled seasonal SMB because
posterior parameter values also produce better representations of
accumulation and ablation.

Although B10yr gives decent estimates of annual SMB in terms
of median values, the modelled uncertainty is significantly higher

a

b

Figure 12. Performance improvement for B10yr in terms of percentage reduction in
RMSE of posterior predictive mean compared to RMSE of prior predictive mean for
calibration (a) and validation (b) periods for Ålfotbreen (Alf), Nigardsbreen (Nig)
and Gråsubreen (Gra) using high, original and low priors. Positive performance
improvement (reduction in RMSE, up to 100%) reflects improvement in model per-
formance when using posterior compared to prior distributions to model mass bal-
ances. Negative performance improvement (increase in RMSE, up to −∞%) reflects
deterioration in model performance.
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than for Bw/s and Ba (Fig. 9). The high parameter uncertainty in
the B10yr experiment leads to a considerably higher uncertainty
(standard deviation) in mass-balance sensitivity compared to
the other experiments (by a factor of 1.2–3.1 compared to Bw/s,
see Supplementary Material for details). This uncertainty reflects
the parameter uncertainty, which is again determined by the
influence of the likelihood (given our prior formulations). High
temporal resolution, low uncertainty observations (Bw/s and Ba)
correspond to low uncertainties in modelled SMB, while low tem-
poral resolution, high uncertainty observations (B10yr) yield high
modelled uncertainties. For Bw/s and Ba, uncertainty in modelled
SMB is higher for Ålfotbreen and Nigardsbreen compared to con-
tinental glaciers. This reflects that glaciological observations of
high mass-turnover glaciers are generally associated with higher
uncertainty (Table 2). For B10yr, the difference in uncertainty in
modelled SMB between glaciers generally corresponds to the dif-
ference in magnitudes of observation uncertainties (Table 2 and
Fig. 9). Gråsubreen, which shows the largest difference in mod-
elled uncertainties between Bw/s/Ba and B10yr, has particularly
low uncertainty in glaciological observations and large uncer-
tainty in geodetic observations. For satellite-borne geodetic obser-
vations, uncertainty is in general higher for smaller (e.g.
Gråsubreen) compared to larger (e.g. Nigardsbreen) glaciers due
to the combination of limited spatial coverage of elevation change
estimates, high uncertainty in the temporal evolution of the gla-
cier area, and uncertainty in the volume-to-mass density conver-
sion (Hugonnet and others, 2021).

Modelled mass balances for Hansebreen and Austdalsbreen
are validated on fewer observations than for the other glaciers.
The difference in bias over the validation period between the simi-
lar (in terms of hypsometry and area) neighboring glaciers
Ålfotbreen and Hansebreen (Fig. 5d) could be partly explained
by their validation periods. For these two glaciers, the late
1980s to mid-1990s was a period of predominant mass gain, fol-
lowed by two decades of predominantly large mass losses from
2001 (Fig. 3). While the validation period for Ålfotbreen covers
years of moderate positive and negative balances from 1963 to
1990, Hansebreen is mainly validated on a shorter period of
more extreme mass-balance years (end of 1980s and 2010s).
This could also explain the particularly poor correspondence
between modelled and observed mass-balance distributions for
Hansebreen (Figs. 6d–f) and deterioration of RMSE in the valid-
ation period (Fig. 7).

6.4. Parameter and model robustness

An interesting result of posterior inference with our model is that
posterior distributions of Ba and Bw/s are not equifinal solutions of
each other. We would expect high probability regions of poster-
iors of Bw/s and Ba to show overlap as both posteriors produce
decent estimates of annual SMB (e.g. Figs. 5 and 10). We believe
that the discrepancy is due to a combination of two factors: (1)
limitations in the model structure (e.g. lack of complexity, pro-
cesses representation and limited spatial resolution) and the num-
ber of parameters estimated, such that simultaneous reproduction
of the most accurate representation of annual and inter-annual
variations is not possible; and (2) that the assigned uncertainties
in Bw/s and Ba are too low, such that the influence of the likeli-
hood in our Bayesian model is too strong.

We only estimate three parameters due to the low temporal
resolution and high uncertainty in B10yr, which limits the variabil-
ity in SMB that can be achieved with our simple model. Although
we find decent results in terms of median values, PDFs of Bw/s and
Ba suggest that observed values are in many cases outside the
spread of predictions, which indicates that these models are not
particularly robust. This suggests that the spread in the error

term (Eqn (9)) to which we assign the observation uncertainty
may be too low to produce robust predictions for Bw/s and Ba
given our mass-balance model. Options to increase robustness
of Bw/s and Ba could be to explore the use of larger variance
than the reported observation uncertaintyor whether other distri-
butions than the normal distribution are more appropriate for the
likelihood or prior. We investigated the use of Student’s t distribu-
tions, which are more heavy tailed than the normal distribution,
for the likelihood in the Bw/s and Ba experiments for some glaciers
(see Supplementary Material for details). We found that using
Student’s t distributions for the likelihood gives posterior distribu-
tions centred around the same values, but with larger spread, thus
giving a broader range of posterior predictive samples. However,
we still found the same bias in Ba towards low mass-turnover par-
ameter values in the tests we performed.

Bw/s yields a decent estimation of seasonal and annual SMB,
but the overall reduction in performance from calibration to val-
idation period (Fig. 5) reflects a lack of robustness of parameter
values over time. The deterioration in performance is especially
visible for maritime glaciers that have high mass-balance gradi-
ents (e.g. for Ålfotbreen; Fig. A4). This highlights a general issue
of temperature index models concerning the representativeness
of constant parameter values, e.g. those of melt factors, over
longer time scales where meteorological conditions may vary.
Melt factors implicitly account for the relative contribution of
the various energy-balance components and therefore vary in
both space (e.g. aspect, elevation) and time (e.g. change in albedo
with snow/ice surface properties; Hock, 2003, 2005). Calibrated
melt factors may be representative of climatic conditions specific
for the calibration period, but not necessarily beyond (Gabbi and
others, 2014). Although we attempt to reduce bias in parameter
values to specific climatic conditions by employing a calibration
period that encompasses years of mass-balance variability, results
nevertheless indicate a lack of representativeness of parameter
values in certain time periods. The underestimation of SMB in
the 1960s and 1970 s is not only prominent for Ålfotbreen, but
also visible for the other glaciers with records dating back to
the 1960s (Figs. 9 and 10). This bias could also be due to unre-
solved geometry changes in the model (constant hypsometry
and incremental area updates), but we would not expect this to
be the main influence as all glaciers have outlines from the
1960s (Table 1) and surface elevation changes over the glaciers
are limited (−2.2 m to −15.8 m for Nigardsbreen and
Hellstugubreen, respectively, from the 1960s to the 2010s
Andreassen and others (2020)). Alternatively, there could be
biases in the climate dataset specific to certain time periods, e.g.
due to varying quality of meteorological observations used in
the reanalysis, that are not captured by the constant temperature
and precipitation corrections. Still, we argue that capturing par-
ameter uncertainty from uncertainty in observations is an indirect
way to, at least partly, reflect the variability of parameter values
over time. Employing more robust formulations of the Bayesian
model could make the model predictions more robust to these
variations, at a cost of increased uncertainty in modelled mass
balances.

Our results show that parameter estimation employing annual
observations with low uncertainty or decadal observations with
high uncertainty could produce decent estimates of annual
SMB, and we would thus expect such observations to be useful
in constraining net glacier mass changes, e.g. in determining
future sea-level rise. However, the underlying seasonal mass
changes may not be resolved using these observations. To improve
estimates of accumulation and ablation, annual and decadal mass-
balance observations could be used in combination with observa-
tions that constrain accumulation and/or ablation, e.g by using
independent data on snow distribution (e.g. Geck and others,

1816 Kamilla H. Sjursen and others

https://doi.org/10.1017/jog.2023.62 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2023.62


2021). However, such observations are generally lacking, particu-
larly at the scale of individual glaciers. High-quality, high-
resolution climate data in complex terrain, or widespread, higher
resolution mass-balance observations are needed to properly
resolve interannual and interseasonal variations in mass balance.

7. Conclusions

We modelled SMB of seven glaciers in southern Norway over the
period 1960–2020 using a temperature index model. The glaciers
are located along a maritime-to-continental climate gradient and
have long-term glaciological SMB records. To explore how the use
of distinct mass-balance observations affects model calibration, we
applied a Bayesian framework to estimate three sets of parameters
for each glacier based on three representations of the respective
glaciological records: seasonal, annual and 10-year average SMB.
For seasonal and annual mass balances, we employed associated
uncertainties from the glaciological records. Ten-year average
SMB represented our analogue to geodetic mass balance based
on satellite remote sensing and was thus assigned uncertainties
characteristic to such observations.

Posterior parameter distributions are strongly dependent on
the observations used in parameter estimation and, in the experi-
ment using 10-year average SMB, also on the choice of prior dis-
tribution. The marginal posterior distributions of the
precipitation correction factor indicates that the seNorge_2018
climate dataset may underestimate winter precipitation over the
westernmost glaciers.

All datasets demonstrated decent performance in modelling
annual SMB and generally improved estimates of annual SMB
compared to using parameter values based on prior knowledge.
However, using 10-year average SMB displayed higher uncertainty
in modelled mass balance and in mass-balance sensitivity to
changes in climate forcing due to considerable parameter
uncertainty.

Reliable estimates of the magnitude of accumulation and abla-
tion were only achieved using seasonal balances to constrain para-
meters. However, model performance varied over time due to the
application of constant parameter values and limited robustness
of the Bayesian model. Using annual mass-balance observations
consistently favoured parameter values that promote low accumu-
lation and ablation. Consequently, magnitudes of summer and
winter balances were on average around 20% lower over the per-
iod 1960–2020 using annual compared to seasonal balances in
parameter estimation.

Similar to the use of annual SMB, the use of 10-year average
SMB also tended to underestimate magnitudes of accumulation
and ablation but was restricted by the influence of the prior
distribution. Nevertheless, our results demonstrate that
high-uncertainty geodetic observations, which typically represent
decadal snapshots of glacier mass change, can be used in param-
eter calibration to improve model results of annual mass balance.
Since our representation of decadal mass-balance observations are
constructed from glaciological records, the actual performance of
satellite-borne geodetic observations will depend on the quality of
these observations.

Propagation of parameter uncertainty revealed large differ-
ences in uncertainty in modelled SMB between the observational
datasets, up to an order of magnitude for the small, continental
glacier Gråsubreen. However, for the larger, more maritime gla-
cier Nigardsbreen, uncertainty in modelled SMB was comparable
between datasets due to higher mass-balance variability and simi-
lar observational uncertainty in glaciological and geodetic
observations.

We underline that our findings are based on a limited sample
of glaciers and are conditional on the specific model structure in

this study. Generalisation to other model structures and glaciers
should thus be made with caution. Nevertheless, our findings
highlight that the purpose of modelling should be considered
when choosing the type of mass-balance data to be used in
model calibration. For reliable predictions of the timing and mag-
nitude of runoff, e.g. in assessment of climate change impacts on
freshwater availability, evaluating the performance of models on
seasonal mass balances is important. Therefore, more extensive
and robust seasonal mass-balance data are needed to both
improve and evaluate model performance on seasonal scales.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2023.62.

Data. The source code of the model is available in the GitHub repository
https://github.com/khsjursen/BI_glacier_mb_model. seNorge_2018 is available
for download at https://thredds.met.no/thredds/catalog/senorge/seNorge_
2018/catalog.html. Mass balance observations can be found at http://glacier.
nve.no/glacier/viewer/ci/en/ and time series of glacier outlines used in this
study are available in the model GitHub repository.

Acknowledgements. This study is a contribution to the JOSTICE project
funded by the Norwegian Research Council (RCN grant #302458). We
thank Hallgeir Elvehøy and Bjarne Kjøllmoen at NVE for providing mass-
balance observations and time series of glacier outlines of Ålfotbreen,
Hansebreen, Nigardsbreen and Austdalsbreen, and Markus Engelhardt for
providing MATLAB code that the implementation of the mass-balance
model is partly based upon. We would also like to recognise the Western
Norway University of Applied Sciences (HVL) for providing computational
resources and the managers of the HVL cluster for technical support. In add-
ition, we thank Gregoire Guillet, David Rounce and Lilian Schuster for evalu-
ating our manuscript and providing constructive feedback that has both
improved the quality and clarity of the paper.

Author contribution. KHS developed the code for the mass-balance model
and Bayesian parameter estimation routine, performed the MCMC simulations
and initial analysis, and prepared the figures, tables and initial draft of the art-
icle. TD, AT, TVS and LMA read and edited the article, and provided input for
additional analyses. LMA provided mass-balance observations and time series
of glacier outlines for Storbreen, Hellstugubreen and Gråsubreen.

References

Andreassen LM, Elvehøy H, Kjøllmoen B and Belart JM (2020) Glacier
change in Norway since the 1960s—an overview of mass balance, area,
length and surface elevation changes. Journal of Glaciology 66(256), 313–
328. doi: 10.1017/jog.2020.10

Andreassen LM, Elvehøy H, Kjøllmoen B and Engeset RV (2016) Reanalysis
of long-term series of glaciological and geodetic mass balance for 10
Norwegian glaciers. The Cryosphere 10, 535–552. doi: 10.5194/
tc-10-535-2016

Andreassen LM, Nagy T, Kjøllmoen B and Leigh JR (2022) An inventory of
Norway’s glaciers and ice-marginal lakes from 2018-19 Sentinel-2 data.
Journal of Glaciology 68(272), 1085–1106. doi: 10.1017/jog.2022.20

Andreassen LM and Oerlemans J (2009) Modelling long-term summer and
winter balances and the climate sensitivity of Storbreen, Norway.
Geografiska Annaler: Series A, Physical Geography 91(4), 233–251. doi:
10.1111/j.1468-0459.2009.00366.x

Beven K (2006) A manifesto for the equifinality thesis. Journal of Hydrology
320(1), 18–36. doi: 10.1016/j.jhydrol.2005.07.007

Braithwaite RJ (2008) Temperature and precipitation climate at the
equilibrium-line altitude of glaciers expressed by the degree-day factor for
melting snow. Journal of Glaciology 54(186), 437–444. doi: 10.3189/
002214308785836968

Brun F, Berthier E, Wagnon P, Kääb A and Treichler D (2017) A spatially
resolved estimate of High Mountain Asia glacier mass balances from 2000
to 2016. Nature Geoscience 10(9), 668–673. doi: 10.1038/ngeo2999

Compagno L and 7 others (2022) Modelling supraglacial debris-cover evolu-
tion from the single-glacier to the regional scale: an application to High
Mountain Asia. The Cryosphere 16(5), 1697–1718. doi: 10.5194/
tc-16-1697-2022

Journal of Glaciology 1817

https://doi.org/10.1017/jog.2023.62 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2023.62
https://doi.org/10.1017/jog.2023.62
https://github.com/khsjursen/BI_glacier_mb_model
https://github.com/khsjursen/BI_glacier_mb_model
https://thredds.met.no/thredds/catalog/senorge/seNorge_2018/catalog.html
https://thredds.met.no/thredds/catalog/senorge/seNorge_2018/catalog.html
https://thredds.met.no/thredds/catalog/senorge/seNorge_2018/catalog.html
http://glacier.nve.no/glacier/viewer/ci/en/
http://glacier.nve.no/glacier/viewer/ci/en/
http://glacier.nve.no/glacier/viewer/ci/en/
https://doi.org/10.1017/jog.2020.10
https://doi.org/10.5194/tc-10-535-2016
https://doi.org/10.5194/tc-10-535-2016
https://doi.org/10.5194/tc-10-535-2016
https://doi.org/10.5194/tc-10-535-2016
https://doi.org/10.5194/tc-10-535-2016
https://doi.org/10.1017/jog.2022.20
https://doi.org/10.1111/j.1468-0459.2009.00366.x
https://doi.org/10.1111/j.1468-0459.2009.00366.x
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.3189/002214308785836968
https://doi.org/10.3189/002214308785836968
https://doi.org/10.1038/ngeo2999
https://doi.org/10.5194/tc-16-1697-2022
https://doi.org/10.5194/tc-16-1697-2022
https://doi.org/10.5194/tc-16-1697-2022
https://doi.org/10.5194/tc-16-1697-2022
https://doi.org/10.5194/tc-16-1697-2022
https://doi.org/10.1017/jog.2023.62


Compagno L, Zekollari H, Huss M and Farinotti D (2021) Limited impact of
climate forcing products on future glacier evolution in Scandinavia and
Iceland. Journal of Glaciology 67(264), 727–743. doi: 10.1017/jog.2021.24

Cuffey KM and Paterson WSB (2010) The Physics of Glaciers, 4th Ed.
Burlington (MA): Elsevier.

Dyurgerov M and Meier M (1999) Analysis of winter and summer glacier
mass balances. Geografiska Annaler: Series A, Physical Geography 81(4),
541–554. doi: 10.1111/1468-0459.00082

Eckert N, Baya H, Thibert E and Vincent C (2011) Extracting the temporal
signal from a winter and summer mass-balance series: application to a
six-decade record at Glacier de Sarennes, French Alps. Journal of
Glaciology 57(201), 134–150. doi: 10.3189/002214311795306673

Eidhammer T and 9 others (2021) Mass balance and hydrological modeling
of the Hardangerjøkulen ice cap in south-central Norway. Hydrology and
Earth System Sciences 25(8), 4275–4297. doi: 10.5194/hess-25-4275-2021

Engelhardt M, Schuler T and Andreassen LM (2012) Evaluation of gridded
precipitation for Norway using glacier mass-balance measurements.
Geografiska Annaler: Series A, Physical Geography 94(4), 501–509. doi:
10.2307/23360734

Engelhardt M, Schuler TV and Andreassen LM (2013) Glacier mass balance
of Norway 1961-2010 calculated by a temperature-index model. Annals of
Glaciology 54(63), 32–40. doi: 10.3189/2013AoG63A245

Engelhardt M, Schuler TV and Andreassen LM (2014) Contribution of snow
and glacier melt to discharge for highly glacierised catchments in Norway.
Hydrology and Earth System Sciences 18(2), 511–523. doi: 10.5194/
hess-18-511-2014

Engelhardt M, Schuler TV and Andreassen LM (2015) Sensitivities of glacier
mass balance and runoff to climate perturbations in Norway. Annals of
Glaciology 56(70), 79–88. doi: 10.3189/2015AoG70A004

Gabbi J, Carenzo M, Pellicciotti F, Bauder A and Funk M (2014) A compari-
son of empirical and physically based glacier surface melt models for long-
term simulations of glacier response. Journal of Glaciology 60(224), 1140–
1154. doi: 10.3189/2014JoG14J011

Geck J, Hock R, Loso MG, Ostman J and Dial R (2021) Modeling the
impacts of climate change on mass balance and discharge of Eklutna
Glacier, Alaska, 1985–2019. Journal of Glaciology 67(265), 909–920. doi:
10.1017/jog.2021.41

Gelman A and 5 others (2014) Bayesian Data Analysis, 3rd Ed. Boca Raton
(FL): Chapman and Hall/CRC.

Giesen RH and Oerlemans J (2010) Response of the ice cap
Hardangerjøkulen in southern Norway to the 20th and 21st century
climates. The Cryosphere 4(2), 191–213. doi: 10.5194/tc-4-191-2010

Hock R (2003) Temperature index melt modelling in mountain areas. Journal
of Hydrology 282, 104–115. doi: 10.1016/S0022-1694(03)00257-9

Hock R (2005) Glacier melt: a review of processes and their modelling.
Progress in Physical Geography 29(3), 362–391. doi: 10.1191/
0309133305pp453ra

Hugonnet R and 10 others (2021) Accelerated global glacier mass loss in the
early twenty-first century. Nature 592(7856), 726–731. doi: 10.1038/
s41586-021-03436-z

Huss M and Hock R (2015) A new model for global glacier change and sea-
level rise. Frontiers in Earth Sciences 3(54), 1–22. doi: 10.3389/feart.2015.
00054.

Huss M and Hock R (2018) Global-scale hydrological response to future gla-
cier mass loss. Nature Climate Change 8, 135–140. doi: 10.1038/
s41558-017-0049-x

Kjøllmoen B (2022a) Reanalysing a glacier mass balance measurement series -
Nigardsbreen 2014–2020. NVE Rapport no. 7/2022, Norwegian Water
Resources and Energy Directorate.

Kjøllmoen B (2022b) Reanalysing a glacier mass balance measurement series -
Ålfotbreen 2010–2019. NVE Rapport no. 6/2022, Norwegian Water
Resources and Energy Directorate.

Kjøllmoen B, Andreassen LM, Elvehøy H and Storheil S (2022c)
Glaciological investigations in Norway. NVE Rapport no. 27/2022,
Norwegian Water Resources and Energy Directorate.

Landmann JM and 5 others (2021) Assimilating near-real-time mass balance
stake readings into a model ensemble using a particle filter. The Cryosphere
15(11), 5017–5040. doi: 10.5194/tc-15-5017-2021

Li H and 5 others (2015) Integrating a glacier retreat model into a hydro-
logical model—case studies of three glacierised catchments in Norway
and Himalayan region. Journal of Hydrology 527, 656–667. doi: 10.1016/j.
jhydrol.2015.05.017

Lussana C, Tveito O, Dobler A and Tunheim K (2019) seNorge_2018, daily
precipitation, and temperature datasets over Norway. Earth System Science
Data 11(4), 1531–1551. doi: 10.5194/essd-11-1531-2019

Martín-Español A and 11 others (2016) Spatial and temporal Antarctic Ice
Sheet mass trends, glacio-isostatic adjustment, and surface processes from
a joint inversion of satellite altimeter, gravity, and GPS data. Journal of
Geophysical Research: Earth Surface 121(2), 182–200. doi: 10.1002/
2015JF003550

Martín-Español A, Bamber JL and Zammit-Mangion A (2017) Constraining
the mass balance of East Antarctica. Geophysical Research Letters 44(9),
4168–4175. doi: 10.1002/2017GL072937

Maussion F and 14 others (2019) The open global glacier model (OGGM)
v1.1. Geoscientific Model Development 12(3), 909–931. doi: 10.5194/
gmd-12-909-2019

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH and Teller E
(1953) Equation of state calculations by fast computing machines. The
Journal of Chemical Physics 21(6), 1087–1092. doi: 10.1063/1.
1699114ISSN 0021-9606.

Mohr M (2008) New routines for gridding of temperature and precipitation
observations for ‘seNorge. no’. Technical Report 08/2008, Norwegian
Meteorological Institute, Oslo, Norway.

Østby TI, Schuler TV, Hagen JO, Hock R and Reijmer CH (2013) Parameter
uncertainty, refreezing and surface energy balance modelling at Austfonna
ice cap, Svalbard, 2004–08. Annals of Glaciology 54(63), 229–240. doi: 10.
3189/2013AoG63A280

Rounce DR and 5 others (2020b) Quantifying parameter uncertainty in a
large-scale glacier evolution model using Bayesian inference: application
to High Mountain Asia. Journal of Glaciology 66(256), 175–187. doi: 10.
1017/jog.2019.91

Rounce DR, Hock R and Shean DE (2020a) Glacier mass change in high
mountain Asia through 2100 using the open-source python glacier evolu-
tion model (PyGEM). Frontiers in Earth Science 7, 331. doi: 10.3389/
feart.2019.00331

Rye C, Willis I, Arnold N and Kohler J (2012) On the need for automated
multiobjective optimization and uncertainty estimation of glacier mass bal-
ance models. Journal of Geophysical Research (Earth Surface) 117(F2), 1–21.
doi: 10.1029/2011JF002184.

Salvatier J, Wiecki TV and Fonnesbeck C (2016) Probablistic programming
in Python using PyMC3. PeerJ Computer Science 2(e55), 1–24. doi: 10.
7717/peerj-cs.55.

Schuler T and 6 others (2005) Distributed mass balance modelling on
Engabreen (Norway). Annals of Glaciology 42, 395–401. doi: 10.3189/
172756405781812998

Schuler T and 5 others (2007) Calibrating a surface mass-balance model for
Austfonna ice cap, Svalbard. Annals of Glaciology 46, 241–248. doi: 10.
3189/172756407782871783

Shean DE and 5 others (2020) A systematic, regional assessment of high
mountain Asia glacier mass balance. Frontiers in Earth Science 7(363), 1–19.
doi: 10.3389/feart.2019.00363.

Singh P, Kumar N and Arora M (2000) Degree-day factors for snow and ice
for Dokriani Glacier, Garhwal Himalayas. Journal of Hydrology 235, 1–11.
doi: 10.1016/S0022-1694(00)00249-3

ter Braak CJF (2006) A Markov Chain Monte Carlo version of the genetic
algorithm Differential evolution: easy Bayesian computing for real param-
eter spaces. Statistics and Computing 16(3), 239–249. doi: 10.1007/
s11222-006-8769-1

ter Braak CJF and Vrugt JA (2008) Differential Evolution Markov Chain with
snooker updater and fewer chains. Statistics and Computing 18(4), 435–446.
doi: 10.1007/s11222-008-9104-9

van Pelt W and 10 others (2019) A long-term dataset of climatic mass bal-
ance, snow conditions, and runoff in Svalbard (1957–2018). The
Cryosphere 13(9), 2259–2280. doi: 10.5194/tc-13-2259-2019

van Tiel M, Stahl K, Freudiger D and Seibert J (2020) Glacio-hydrological
model calibration and evaluation. WIREs Water 7(6), 1–51. doi: 10.1002/
wat2.1483.

Vehtari A, Gelman A, Simpson D, Carpenter B and Bürkner PC (2021)
Rank-normalization, folding, and localization: an improved R̂ for assessing
convergence of MCMC (with discussion). Bayesian Analysis 16(2), 667–
718. doi: 10.1214/20-BA1221

WGMS(2021) Global Glacier Change Bulletin No. 4 (2018-2019). ISC(WDS)/
IUGG(IACS)/UNEP/UNESCO/WMO, Zemp M, Nussbaumer SU,
Gärtner-Roer I, Paul F and Hoelzle M (eds.), World Glacier Monitoring

1818 Kamilla H. Sjursen and others

https://doi.org/10.1017/jog.2023.62 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2021.24
https://doi.org/10.1111/1468-0459.00082
https://doi.org/10.1111/1468-0459.00082
https://doi.org/10.3189/002214311795306673
https://doi.org/10.5194/hess-25-4275-2021
https://doi.org/10.5194/hess-25-4275-2021
https://doi.org/10.5194/hess-25-4275-2021
https://doi.org/10.5194/hess-25-4275-2021
https://doi.org/10.2307/23360734
https://doi.org/10.3189/2013AoG63A245
https://doi.org/10.5194/hess-18-511-2014
https://doi.org/10.5194/hess-18-511-2014
https://doi.org/10.5194/hess-18-511-2014
https://doi.org/10.5194/hess-18-511-2014
https://doi.org/10.5194/hess-18-511-2014
https://doi.org/10.3189/2015AoG70A004
https://doi.org/10.3189/2014JoG14J011
https://doi.org/10.1017/jog.2021.41
https://doi.org/10.5194/tc-4-191-2010
https://doi.org/10.5194/tc-4-191-2010
https://doi.org/10.5194/tc-4-191-2010
https://doi.org/10.5194/tc-4-191-2010
https://doi.org/10.1016/S0022-1694(03)00257-9
https://doi.org/10.1016/S0022-1694(03)00257-9
https://doi.org/10.1016/S0022-1694(03)00257-9
https://doi.org/10.1191/0309133305pp453ra
https://doi.org/10.1191/0309133305pp453ra
https://doi.org/10.1038/s41586-021-03436-z
https://doi.org/10.1038/s41586-021-03436-z
https://doi.org/10.1038/s41586-021-03436-z
https://doi.org/10.1038/s41586-021-03436-z
https://doi.org/10.1038/s41586-021-03436-z
https://doi.org/10.3389/feart.2015.00054
https://doi.org/10.3389/feart.2015.00054
https://doi.org/10.1038/s41558-017-0049-x
https://doi.org/10.1038/s41558-017-0049-x
https://doi.org/10.1038/s41558-017-0049-x
https://doi.org/10.1038/s41558-017-0049-x
https://doi.org/10.1038/s41558-017-0049-x
https://doi.org/10.5194/tc-15-5017-2021
https://doi.org/10.5194/tc-15-5017-2021
https://doi.org/10.5194/tc-15-5017-2021
https://doi.org/10.5194/tc-15-5017-2021
https://doi.org/10.1016/j.jhydrol.2015.05.017
https://doi.org/10.1016/j.jhydrol.2015.05.017
https://doi.org/10.5194/essd-11-1531-2019
https://doi.org/10.5194/essd-11-1531-2019
https://doi.org/10.5194/essd-11-1531-2019
https://doi.org/10.5194/essd-11-1531-2019
https://doi.org/10.1002/2015JF003550
https://doi.org/10.1002/2015JF003550
https://doi.org/10.1002/2017GL072937
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.3189/2013AoG63A280
https://doi.org/10.3189/2013AoG63A280
https://doi.org/10.1017/jog.2019.91
https://doi.org/10.1017/jog.2019.91
https://doi.org/10.3389/feart.2019.00331
https://doi.org/10.3389/feart.2019.00331
https://doi.org/10.1029/2011JF002184
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.3189/172756405781812998
https://doi.org/10.3189/172756405781812998
https://doi.org/10.3189/172756407782871783
https://doi.org/10.3189/172756407782871783
https://doi.org/10.3389/feart.2019.00363
https://doi.org/10.1016/S0022-1694(00)00249-3
https://doi.org/10.1016/S0022-1694(00)00249-3
https://doi.org/10.1016/S0022-1694(00)00249-3
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.5194/tc-13-2259-2019
https://doi.org/10.5194/tc-13-2259-2019
https://doi.org/10.5194/tc-13-2259-2019
https://doi.org/10.5194/tc-13-2259-2019
https://doi.org/10.1002/wat2.1483
https://doi.org/10.1002/wat2.1483
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1017/jog.2023.62


Service, Zurich, Switzerland, pp. 1–278, publication based on database ver-
sion: doi:10.5904/wgms-fog-2021-05.

WGMS (2022) Fluctuations of glaciers database. World Glacier Monitoring
Service (WGMS), Zurich, Switzerland.

Woodward J, Sharp M and Arendt A (1997) The influence of superimposed-
ice formation on the sensitivity of glacier mass balance to climate change.
Annals of Glaciology 24, 186–190. doi: 10.3189/S0260305500012155

Zekollari H, Huss M and Farinotti D (2019) Modelling the future evolution
of glaciers in the European Alps under the EURO-CORDEX RCM ensem-
ble. The Cryosphere 13(4), 1125–1146. doi: 10.5194/tc-13-1125-2019

Zemp M and 14 others (2019) Global glacier mass changes and their
contributions to sea-level rise from 1961 to 2016. Nature 568(7752),
382–386.

Zhang Y, Liu S and Ding Y (2006) Observed degree-day factors and their
spatial variation on glaciers in western China. Annals of Glaciology 43,
301–306. doi: 10.3189/172756406781811952

Zolles T, Maussion F, Galos SP, Gurgiser W and Nicholson L (2019) Robust
uncertainty assessment of the spatio-temporal transferability of glacier mass
and energy balance models. The Cryosphere 13(2), 469–489. doi: 10.5194/
tc-13-469-2019

Appendix A. Additional figures

Figure A1. Probability density functions for mass balances in the Ba experiment for 1000 posterior predictive samples (blue lines) and observations (black lines).
Summer, winter and annual mass balance (m w.e.) is shown from left to right for each glacier. Glaciers are sorted from west to east along a maritime to continental
climate gradient.
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Figure A2. Probability density functions for mass balances in the Ba,10yr experiment for 1000 posterior predictive samples (blue lines) and observations (black lines).
Summer, winter and annual mass balance (m w.e.) is shown from left to right for each glacier. Glaciers are sorted from west to east along a maritime to continental
climate gradient.
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Figure A3. Model performance per glacier in terms of median absolute deviation (MAD) (a, b) and median bias (c, d) between modelled (posterior predictive
median) and observed seasonal (winter in blue and summer in red) and annual (grey) surface mass balance over calibration (a, c) and validation (b, d) periods
for experiments Bw/s (circle), Ba (triangle) and B10yr (square). Glaciers are sorted from west to east along a maritime to continental climate gradient.

Figure A4. Posterior predictive samples (100 samples) in Bw/s
experiment of winter (blue), summer (red) and annual (grey)
mass balances for Ålfotbreen 1963–2020. Observations of
winter (dotted line), summer (dashed line) and annual
(solid line) mass balances are shown as black dots. Grey ver-
tical lines indicate the start (1990) and the end (2009) of the
calibration period.
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Figure A6. Joint posterior distributions of pairs of parameters for Gråsubreen for the three experiments Bw/s (a–c), Ba (d–f), and B10yr (g–i). Parameters are melt
factor for snow (MFsnow; mm w.e.◦C−1d−1), temperature correction factor (Tcorr; ◦C) and precipitation correction factor (Pcorr; -). Lines and points indicate medians of
distributions.
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Figure A5. Joint posterior distributions of pairs of parameters for Ålfotbreen for the three experiments Bw/s (a–c), Ba (d–f) and B10yr (g–i). Parameters are melt
factor for snow (MFsnow; mm w.e.◦C−1d−1), temperature correction factor (Tcorr; ◦C) and precipitation correction factor (Pcorr; -). Lines and points indicate medians
of distributions.
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