ON A FORMULA CONCERNING STOCHASTIC
DIFFERENTIALS

KIYOSI ITO

In his previous paper [1]" the author has stated a formula® concering
stochastic differentials with the outline of the proof. The aim of this paper is
to show this formula in details in a little more general form (Theorem 6).

1. Definitions. Throughout this paper we assume that all stochastic pro-
cesses® £(¢, w), 7(t, 0), a(t, w), b(t, w), etc. are measurable in variables ¢ and w.
A system of 7 one-dimensional Brownian motions independent of each other is
called an 7-dimensional Brownian motion.

Given two system of stochastic processes :

(1L.1) £={61(t, 0), &4},  2={n(t, 0), rEM).

We say that ¢ has the property a with regard to » in #<t<v, if, for any ¢,
the following two systems of random variables are independent of one another :

(1 2) {¢t={EA(T, w)s AEA’ 77u(7, (D), /-lEM, uéz‘ét}
(bf:{ﬂv-(o" w)—ﬂu(t, 0)), #EM téaé”)'

Now we shall state an outline® of a stochastic integral of the form:
13
(1.3) (26 0B, 0),  wssstzr,  wee,

where [(f, w) is a one-dimensional Brownian motion and £, is a measurable
subset of 2. We shall set the two conditions on ¢;

(C.1) $(t, w) has the property « concerning B(t, w) in u<t<v,

(C.2) j:&(r, w)idr  for almost all weQ,.

Received April 16, 1951.

! The number in [ ] refers to the Reference at the end of this paper.

2 Theorem 1.1 in [1].

% In the analytical theory of probability any stochastic process is expressed as a function
of the time parameter ¢ and the probability parameter » which runs over a probability
space Q(P), P being the probability distribution.

4+ Cf. [2] concerning the details.
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Case 1. When ¢ is uniformly stepwise, that is when there exists a system
of time-points:

(1.4) U=5<5< . . . <Sp=V
such that

&(r, 0)=£L(Si-1, 0), Sia£1<S8i, i=1,2, ..., n,
we define

1.5 (e 0)dB(r, 0) =51 (i, @) (Blsis 0) =Blsim1s @)

+E(sk—15 (D)(B(Sk, (JJ)"‘B(S, (0))+E(SI—], (D) (B(ta (U)"‘B(Sl_), 0)))
(Sk-]és<sk, Sl-)éi(Sl).
Case 2. When

(1.6) SQSZG(L 0)2dtP(dw) < oo,

there exists a sequence of uniformly stepwise processes &4(t, w), n=1,2, . . .
whose value at any time-point ¢ is a B-measurable function of &(r, w), u=1t<t,

such that
v
(1.7) jgju@"(t, ©)—£(t, ) dtP(dw)<8".
We define
14 N 4
(1.8) 3' 2(z, 0)d3(z, w) =11m5 £.(c, 0)dB(z, o).
) " s

As was proved in our previous paper [2], the sequence:
14
jEn(T, w)dB(r, w), n=1,2, ...,
S

is uniformly convergent in u<s=t=v for almost all w, and the definition is
independent of the special choice of the sequence {&,(Z, 0)}.
Cuse 3. Now we shall consider the general case. Put
1 (|A]gn)
1.9) =/
D=0 (111>m)

and
En(t, w)—“-%(S:‘g‘(n w)"’dt)f(t, w), n=1,2,....

Then £,(¢, w) satisfies the conditions (1.6) and (C.1), and so their stochastic
integrals are well defined. Since 2,(¢, w)=2(!, 0), ust<v. for a sufficiently
large » for almost all w2, by (C.2), we define naturally
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[e(c, 0)aa(z, @) =tim( 8a(s, )d(, o).

2. Preliminary properties of stochastic integrals. In the following Theo-
rems 1, 3, and 4 we shall assume that £(¢, o) satisfies the conditions (C.1)
and (C.2).

THEOREM 1. The stochastic integral (1.3) is continuous in s, t for almost
all vEQ,.

THEOREM 2. If each of £(t, ) and 3(t, w) satisfies (C.1) and (C.2), and
if the system {£(2, w), 7(¢, w)} has the property a with regard to the Brownian
motion B, then (I, w)=at(t, 0)+by(t, w) (a, b being constants) satisfies (C. 1)
and (C.2) and we obtain

@1) j:ms(r, ©)+b7(z, ©))da(r, w):aj:e(r, ©)dB(z, w)+bS:77(r, 0)dB(z, )

Jor ust<s<v for almost all vEQ,.

THEOREM 3. We have
(2.2) §Pe(c 018G, )+ g(r, 0)dB(s, )= 5 0)dB (e, 0)

for u<s,£8,=8;=v for almost all v = 92;.
THEOREM 4. If (1.6) 1s satisfied, then we have

(2. 4) <pr{ sup *j:e(r, w)d8 (s, o) =2c)

U=s=t=v

zcprf sup | ¢(s, 0)dB(r, @) =c)

<[ ((st 0vast, w)) Paw)={ [ 2(t, wyatP(ao).

THEOREM 5. If each of &.(t, w), n=1, 2, . .., satisfies (C.1) and (C.2)
and if the system {§,(t, w), n=1,2, ..., o} has the property a with regard to
B in ust<v, and further if

(2.5) [Leat, 0) =22t w))dt -0

for almost all wE2,, then

(2.6) sup

U= <t=v

(et 083G, 0) = to(s, 0)a3(5, )

tends to 0 in probability over 2i.

Since Theorems 1, 2, 3 and 4 follow at once from the properties of the
stochastic integral established in [2], we shall here prove Theorem 5 only.
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Since we have
v v
[ eatt, wat > { sott, 0y
u u

for almost all w2, by the assumption (2.5) and since there exists M=M(e)
for any ¢>0 such that

Prioga, [ ¢u(t, 0)dt<M}>P(@) ¢
u
by the assumption that £« (¢, ) satisfies (C. 2), there exists N;=N,(¢) for any ¢>0
2.7) Prloe, | t.(t, )dt<M, Ni<ngo)>P(2)~2e.
u
Put
t
£1(t, )=gu( sup | (s, 0)%dt)in(t, 0), m=1,2, ..., =,

N=k=odV U

where ¢y is defined by (1.9). Then it follows from (2.7) that

(2. 8) Pf((DEQ], E%(t, Ll)):'-En(t, (D), uétév, N]<7‘é°0>>P(.Q]) —2e.
Since we have

["cat, oy =gt o)yt eatt, 0)=6c(t, w))at > 0,

(" @xct, @) - e, w)yasa( euct, oya+2f ext, oydt<an,

we obtain
[ §cnct, o) -et, w)yatP(aw) > o.

By Theorem 4 there exists N;=MN,(¢) for any ¢>0 such that

(2.9) Pr{ sup

u=s=t=v

(226, 013Gz, @)= [[82(e, 0)3(s, )| <e}>Proy -3,

which, combined with (2.8), proves our theorem.

3. A formula concerning stochastic differentials. Let f= (B'(¢, 0), =1,
2, ..., r) be an r-dimensiohal Brownian motion, and let the system:

(3.1) {8i(t, w), a'(t, ), b (L, ©), =1, 2, ..., m, j=1,2, ..., 7)
have the property a with regard to 3 in u=<t=v. When we have

. . s . s . .
3.2) §&'(s, w)—£'(t, w)=Sta’(r, w)d:‘+£bj’(r,w)dgl(r’ 0) ust<s<y, 1<izn,

5 . - . L .
> We omit the summation sign 3 according to the usual rule of tensor calculus.
i=1

https://doi.org/10.1017/50027763000012216 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012216

FORMULA CONCERNING STOCHASTIC DIFFERENTIALS 59

for almost all we2;, we write this relation in the differential form as follows:

3.3) (¢, w)=a'(t, )dt+bji(t, w)dRi(2, 0), ust<y, wEL, 1£Lizn.
THEOREM 6. Let &(4, v), i=1, 2, . . ., n, satisfy
(3.4) dgi(t, w)=d'(t, w)dt+bi(t, w)dB/(t, w), =12, ...,mn,

and G be an open subset of the n-space R* which contains all the points (£'(¢, o).
i=1,2, ..., n) for ust<v, vEL,.

Let f(t, x', x°, ..., x™) be @ continuocus function defined in u<t<v, (x.
%% ..., x"EG, such that

‘fo(t, X, ..., &)= %]t:(t’ 2. L3

: _of .
(3-5) f;(t, x, ..., x")——ax—'(t, x', e ey x"), 1—1, 2, PP (A
\fij(t, ..., 2= ﬂa—;f—.—(t, 2, .. .,xM, 4,75=1,2 ..., n
oxioxt

are all continous.
Then (¢, o) =f¢, (¢, 0), . .., ", 0)) satisfies

(3'6) dﬂ(t’ (,0)=(fo(t, $)+fl(t’ E)ai(t, (.0)+ *]2;'/!'1'("" é)bki(t’ U))bkj(t9 ")))”‘[

+fi(t9 E)b]t(ts w)dﬁf(t, U)),
where £=(§'(t, 0), £, 0), . . ., §"(¢, 0)).

LemMMa 1. For any stochastic process £(t, w) satisfying

(3.7) jve(t, o)dt<o,  0E,
u

there exists a sequence of uniformly stepwise stochastic processes £n(t, w), n=1.
2, . .. whose value at any time-point t is a B-measurable function of £(r. w).
v<t, and such that

[ Lentt, 0)=8(t, w) Pt - 0

for almost all wE 2.
This Lemma follows immediately from Lemma 7.1 in [2].

LemMmA 2. Let &(t, 0), 7(t, w) be stochastic processes such that the system
{&(2, w), 3(¢, w)} has the property a with regard to a one-dimensional Brownian
motion B(t, v) in u<t<v and that

D v
j 2(t, w)'dt< oo, j 7(t, w)idt< oo
» 17

for almost all vE=2,. Then we have
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3.8 (et 0dst, of 16 0)d3Gs, 0)
=["st, ) 25, 0)dB(s. )31, )

+{ (s 0 [ 6t, 0@, w)dBGs, @)+ [ £t 0)n(t, w)at

for almost all.

Proof. Firstly we shall prove (3.8) in the case that both £(¢, ») and (%, w)
are uniformly stepwise. Then we may assume that
(3.9) &, 0)=£Ui-y, 0), (, w)=p(Ui-1, ©), Uia£iLui, i=1,2, ..., n,
where
(3.10) u=uw<m< . .. <Up=0.

The left side of (3.8) equals the following: (Mij=ui+%(ui+x—qi))

pq

{%Suﬂ ’E(t, w)dB(t, a))S: 2(s, 0)dB(s, v)

Ui g= Vsq~1

= 5+ 3+ 5 =" o [t 0)dsGs, 018, o

Ugj>Upy Upg>u;j D=1,0=]
v An(S)
+006s, ) [ et 018t )dBGs, 0)
u u

+Z€(ui-1, o) (#i-1, to)gvl(ﬁ(uij, ) = B(si, j1,0))2 =L+ L+ 1,

where A,(t) is the maximum #;; which does not exceed {.
As N-, I, tends to the first term of the right side of (3.8) in probability
by virtue of Theorem 5, since we have

v An(t) t
§.16t o) [ nis, 0)a8(s, 0) -2t o) 2(s, 0)dB(s, o) Pt
=[1et o) (s 0)das, o) Pt

= [ 18t 0)10n(1), 0) (B(t, ) ~B(An(t), @) ['dt - 0

for almost all w. By the same reason we see that I tends to the second term
of the right side of (3.8) in probability.

N
Since }:i(ﬁ(u,-j, ©) =B (ui, j-1, w))? > ui—ui_, (in probability), /; tends to the
=
third term of the right side of (3.8).

Next we shall consider the general case. By Lemma 1 we shall construct
tn(t, w), »=1,2, ..., and (¢, @), n=1,2, ... for (¢, w) and %(¢, ») respec-
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tively. Since our Lemma 2 holds for uniformly stepwise processes as is proved
above, we have

@1 [ ent, a8, o)f watt, 0)as(s, o)

=["2at, 0) [ mals, @)di(s, 0)a8(t, w)
+ " n(s, o[ ealt, @)t )35, 0)+ [ 8att, @Ymalt, ).

Put

enlt, 0) = [ wals, 0)d8Gs, @), <ty w)={ (s, 0)dBGs, ),

z 3
on(t, 0) = 2uls, 0)dB(s, @), olt, @)= 1(s, 0)dB(s, 0).

By taking adequate subsequences we see, by Theorem 5, that ¢,(#, w) and
on(t, w) converge uniformly in ¢ to {({, ) and p(f, w) respectively for almost

all weE82,. Therefore we have

(" 16ntt, 0)entt, @)=, 0)e(t, @) Pt
<2’ 1 6alt, 0)=8(t, @) lenlt, 0) 't
+2{ et @) F12att, 0)=¢(t, 0) Pt > 0
for almost all weE 2,, from which follows by Theorem 5
["2nt, )2at, )dB(t, @) > ("6t @)t 0)d3(E w) (in probability).

Similaly we have

Svﬂn(s, ) pn(s, w)dB(s, w) - jvﬂ(s, w)p(s, w)dB(s, ) (in probability).
Further we have

(et 0yt 0at={ et, 0)n(t, )]

= /(s 0yatf @ntt, ) -5t o)yt

+/[ st o)at] aat, ) =1t, ) ydt >0,

Thus our Lemma 2 is completely proved.
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By the same way as above, we obtain the following Lemmas 3 and 4.

LEmMA 3. Let £(, o) and (&, w) be stochastic processes such that the system
{&(t, ), 7(L, )} has the property « with regard to the two-dimensional Brownian
motion (B(¢, w), (¢, w)) and that

4 v
f §(t, w)'dt <o, S (¢, 0)dt<oo
u u

for almost all vweE2,.

Then we have

v ¢
@12 (et 0)dt of (s, w)dr(s, 0)
=('st, o) [ 9(s, @ar(s, 048, 0)

v S
+§ 16, o et 0)dB(E, w)ar(s, 0)
Jor almost all wE Q).

LemMmA 4. Let a(t,w) and b(t,w) be stochastic processes such that the system
a(t, w), b(t, w) has the property a with regard to a one-dimensional Brownian
motion B(t, w) and that

17 v
o, o 1d@t<es, (166t 0)Pdt<os
Sor almost all we=2,. Then we have
v v
(3.13) S a(t, w)dtj b(s, w)dA(s, o)
v t v S
=La(1‘, w)jub(s, w)d3(s, w)dt+§ub(s, w)g a(t, w)dtda(s, o).

LemMa 5. Let £i(t, w), i=1, 2, ..., n, be determined as in Theorem 6.
Then we have

(3.14) (§(s, @) ~&(2, 0))(§/(s, ©) =/ (2, ©))

=Sj(($'(r, 0)=£it, 0)a (5, 0)+ (§(z, 0) —27(¢, 0))a' (r, ) +bi (1, )b (7, w)}d:

+Sj{(ei(r, )= £, Db (7, 0) + (7 (5, ©) =87 (L ©)b¥ (=, 0)}d34(s, o)

for almost all we=Q2, and for u<t<s<v.
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Proof. By the assumption we have
(8i(s, 0) =£(t, @) (F(s, 0) =&/ (2, 0))
=rai(r w)drSsaf(d w)da+ssbki(r w)d5* (= co)fsa"(a. )ds
t ’ t 2 t . L ‘ e

s s .
+S air, a))drS b (o, ©)dB! (s, 0)
¢ ¢

+j‘jbk"('r, w)dp(r, w)jjbbi(o, 0)dBl (e, 0),

from which follows (3.14) at once by virtue of Lemmas 2, 3 and 4.

LEMMA 6. Let 2(¢, w), i=1, 2. . . ., n, be determined as in Theorem 6.
For the point-system:

d:t=ti<h< ... <tm=s
we put
S(4, ) :§l 5i(tu, w)_si(tu-h 0) | !fj(ius ) "§j(tu—la o).
Then there exists M=DM(e) independent of 4 for any >0 such that
(3.15) Prive 8, Sid, 0)>M)<-..

Proof. We may consider the case that
fgstbﬁ(r, ©)AtP(dw) <o,  p=i j, k=12 ....n

since, if our Lemma is established in this case, we can easily deduce our Lemma
in the general case by the definition of stochastic integral. When there is no
confusion, we omit the time parameter and the probability parametér o in the

following.
(5i(tu)_fi(tu—l))(5j(tu)“5j(tu-1))
’ ) * . ¢ . t .
=" a@ar(" wds+|’ bidg" ads
tu-1 by -3 tu-y by
o . (e i yon, (0 i yo (T .
1 ] kl /. b ]d .
+ Stu-.“ drftu_]bk d3 +jm_lb d3 Szu-, Yda
Since

514, =3 jiz_laidrs (" wdo = max [ aac | 1aiias

-1 t=t=s'=s

for almost all weE82, we may find M,(¢) independent of 4 for any :<0 such
that M>M,(e) implies

(3.16) Prioef,, Si(d, o)>M}<<s/4.

By the same way we may find M::(:) and M:(:) independent of 4 for any
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e<0 such that M>M,(e) or M>M;(c) implies
(3.17) Prio= 2, Su(d, 0)>M)<e/4r  or PrioE2., Su(d, 0)>M}<e/dr

respectively, where

n . it . i
A, = | 1 k i! J :,
Su(d, ) %jm_‘bk a8 ;,j ads |

R T8 |

Su(d, 0)=3| S::_la"drf S:Z_‘bkfdﬂkf.

i

Put
t . Yot . f
Syl 4, w)EEH“ bidgt | (" biagt| =2A,B,.
w tu-1 Hd tp—1 I [rs

fswu, w)P(dw):}Jj {AufﬂP(dw)+Zj | B, 1*P(dw)
nYQ pVveQ
<3f S odvacPan+ 3 " @iyaspao

éSQE(bk")’drP(da)H- | Qﬁ(bzf VidsP(do).

Thus we may find M (e) indepéndent of 4 for any ¢>0 such that M>Mu(e)
implies
Prioe 2, Sii(d, 0)>M)}<c/422
Since
S(4, w)=S,(4, w)+;5:’k(4, ) +st3k(4, w)+k§;54kt(d, @),

we have (3.15) by putting
M=M(e) =M(€)+EkM2k(5)+szsk(€)+klekl(€).

Proof of TueorEM 6. By Taylor expansion of f(t, %, . . ., ") we have (the
probability parameter o being omitted)

7(s, w) —7(¢, w)

=k1§"‘(v(t2", o) =1(E,, 0)) (t;an=t+—:7(s—-t))
—_:kﬁ_,:[f(*k)(t;"‘—t;"_,)-;-é}ﬁ(*k) EUT 8T )
+”§“§f:’i(*k) G - ) E D) -8 (L))

+ 3005 () ~ U )) E U =),
where

Y=ty S5, - s FPUD).
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Since fij(t, %', ..., x") are continuous and &'(¢, w), i=1, 2, ..., n are all
continuous in ¢ for almost all wE2,, 07 ; ; tends to 0 uniformly in m and k as
n- o for almost all wE®,. Therefore we have

gﬂf}k (") (") = 0 (in probability on 2,)
J

by virtue of Lemma 6.
By Lemma 5 the remainder equals the following expression:

3.18) [ i)+ @)+ 5 LB (OB () et [ 114)b ()8 (2)
L f L) = 0m() @)+ E(5) =87 () () 1
+%5ifij(*)[(5f(r)—Si(/\m(r)))bkf(r)+ (&7(0) =87 (Am(2))) b4 (7) JdB* (<),

where Am(r) denotes the maximum #; which dose not exceed r and * denotes
Am()s E'(Am(7)), -« oy §M(Am(7)))-

But &' (is(7), 0)~& (r, w) uniformly in r for almost all wEL2, ds n-co.
Therefore, by letting #—>« in (3.18) we obtain

n(s)—v(t)=_ﬁ(fo(r, &) +fi(z, 5)ai(7)+%‘fij(f, )bt (v) b (r))dx

s .
+( 716, 00 ()dp ),
which proves our Theorem 5.
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