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ALMOST THEOREMS OF HYPERARITHMETIC ANALYSIS

RICHARD A. SHORE

Abstract. Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the
realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive)
iterations of the Turing Jump but below ATR0 (and so Π1

1-CA0 or the hyperjump). There is a long
history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array
of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In
this paper we introduce a new neighborhood of theorems which are almost theorems of hyperarithmetic
analysis (ATHAs). When combined with ACA0 they are THAs but on their own they are very weak. We
generalize several conservativity classes (Π1

1, r-Π1
2, and Tanaka) and show that all our examples (and many

others) are conservative over RCA0 in all these senses and weak in other recursion theoretic ways as well.
We provide denizens, both mathematical and logical. These results answer a question raised by Hirschfeldt
and reported in Montalbán [2011] by providing a long list of pairs of principles one of which is very weak
over RCA0 but over ACA0 is equivalent to the other which may be strong (THA) or very strong going up
a standard hierarchy and at the end being stronger than full second order arithmetic.

§1. Introduction. The general project of calibrating the complexity of mathe-
matical theorems and constructions has two important and interrelated classes of
measuring rods. One, embodied in what is now called reverse mathematics, is proof
theoretic and attempts to determine what axioms are sufficient and even necessary
to prove a given theorem. The other is recursion theoretic and attempts to determine
how hard (in terms of computational complexity) it is to construct a desired object
or how complicated must an object be to satisfy given specifications. Each approach
has its standard yardsticks of complexity. For reverse mathematics these are axiom
systems in second order arithmetic. For the computational approach they are ones
measured by specific constructions. Most prominently, they are calibrated in terms
of the Turing jump and its iterates and generalizations. (Standard texts are [12, 28]
which emphasize the first and second approaches, respectively.)

The early decades of this subject were marked by a large variety of results
characterizing a wide array of theorems and constructions as being one of five or
so specific levels of complexity. (These are Simpson’s “big five” axioms systems
and the corresponding recursion theoretic construction principles.) They begin
with RCA0 which is the standard weak base theory for reverse mathematics. It
includes the usual simple first order axioms about +,×,≤,∈, 0, 1 and induction
for sets X as a free variable. The defining additional axiom scheme is Δ0

1-CA,
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comprehension for sets defined by both Σ0
1 and Π0

1 formulas. This system corresponds
to recursive constructions. We assume that it is included in every theory we consider.
(For formal definitions and detailed information on all the systems see [28].) In
more recent decades, there has been a proliferation of results placing theorems
and constructions outside the big five. Sometimes inserted linearly and sometimes
with incomparabilities. They are now collectively often called the “zoo” of reverse
mathematics. (For pictures, see https://rmzoo.math.uconn.edu/diagrams/.) The
bulk of these interpolations have been at the lower end of these hierarchies.
(Technically, this means below ACA0, the proof theoretic system whose defining
axiom scheme is comprehension for arithmetic formulas. The recursion theoretic
analog is the class of constructions which can be done effectively in finitely many
iterations of the Turing jump.)

The next systems of reverse mathematics are ATR0 and Π1
1-CA0 which are defined,

respectively, by transfinite iterations of arithmetic comprehension and compre-
hension for formulas with one second order quantifier followed by an arithmetic
formula. Recursion theoretically these roughly correspond to transfinite effective
iterations of the Turing jump (hyperarithmetic sets) and Kleene’s hyperjump. A fair
number of mathematical theorems and constructions have turned up at precisely
these levels but very few between them or above them.

As in Barnes, Goh, and Shore [1] (hereafter BGS) which led to this work, our
concerns here are with a particularly unusual area of these hierarchies lying recursion
theoretically above each fixed bounded countable iteration of the Turing jump but
proof theoretically below the system ATR0. It has a precise recursion theoretic
definition (Definition 2.9) but, as the definition relies on using only the standard
model of arithmetic and only true well orderings, it lacks a good proof theoretic
definition (at least in first order logic). (See [31, Theorem 2.2.2] and also [20,
remarks after Definition 1.1].) Theorems and theories at this level are called ones of
hyperarithmetic analysis (so THAs).

There are quite a number of logical theories including ones about choice (Σ1
1-

AC0) and comprehension (Δ1
1-CA0) that fall in this realm. Many were well studied

in the 60s and 70s both before and after the introduction of the program of reverse
mathematics [6, 7]. Until BGS, however, there was only one mathematical but not
logical example, i.e., one not mentioning classes of first order formulas or their
syntactic complexity. It was a result (INDEC) about indecomposability of linear
orderings in Jullien’s [17] thesis (see [25, Lemma 10.3]). It was shown to be a THA
by Montalbán [20] who investigated its place among the older systems as well as
several other logical ones using variations of Steel forcing. In 2008 he included Π1

1-
Separation and new forcing variations. More analysis was provided by Neeman [23,
24].

This situation provoked the question as to whether there are other results
from the mathematical literature that are THAs. The issue was raised explicitly
in Montalbán’s “Open Questions in Reverse Mathematics” [22, Q30]. It was
answered by BGS who provide a host of such examples and study the relations
among them and to previously known systems. (See also [9].) These were all
variations and generalizations of a classical theorem of [10] in graph theory
(Definition 2.5). (See also [11] and, for a contemporary treatment and references,
[5, Chapter 8].)
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666 RICHARD A. SHORE

This paper grew out of a proof of what we would call a reduction (actually
providing an equivalence) between two of these principles in Bowler, Carmesin, and
Pott [2] (hereafter BCP). While BGS provide a number of such results in RCA0,
the reduction in BCP did not seem to fit the mold. The proof sketch provided there
appeared to be elementary. However, a closer look showed that underneath it seemed
to use methods that were themselves THAs and about as strong as the principles
being proven equivalent. Our expectation was that these methods, like most of the
ones studied in BGS, would also prove to be THAs. That turned out not to be
the case. Rather, the graph theoretic principle (Definition 3.5) that they used (that
allowed one to restrict attention to locally finite graphs) implied (over ACA0) some
known THAs. The unusual aspect of the situation was that we could prove that it
was not possible to show that they implied any known THA in RCA0. In particular
they did not even imply ACA0. We call such principles/theorems/theories almost
theorems/theories of hyperarithmetic analysis (ATHAs; Definition 2.10).

Indeed, the one that was used in BCP and several variants are very weak over
ACA0. They are Π1

1, r-Π1
2 (Definitions 4.8–4.10), and Tanaka (Definition 7.1)

conservative over RCA0 (and more). We extend all our conservation results to what
seem to be new classes of formulas by allowing, in addition to the basic formulas in
these classes, closure under conjunctions, disjunctions, first order quantifiers, and
universal second order quantifiers (see Definitions 4.9, 4.10, and 7.1). These results
also provide extended conservation results for many previously studied theories. In
addition, given any countable model N of RCA 0 and any countable collection of
subtrees of the treeN<N (ofN ) (even ones which are not themselves sets in N) which
have no branches in N , we can construct an extension N ′ with the same first order
part satisfying these principles which adds no branch to any of these subtrees. So,
in particular, given any countable collection of subsets of N, one can avoid adding
any of them not already in N to the extension N ′. (An interesting example here is
the collection of all subsets of N definable over N .) Moreover, one can construct
such extensions N0 and N1 of N so that the intersection of their second order parts
is that part of N .

We also show that many simple variations of known THAs such as Σ1
1-AC are

also ATHAs with all these weakness properties over RCA0. We prove these results
by showing that all the principles studied here can be made true by iterating forcings
from a quite general class of forcings that can be implemented to guarantee the
conservation and branch or set omitting properties just described. On the other
hand, when combined with ACA 0 each of these principles is equivalent to an already
studied one known to be a THA. We then point out various known separation results
for the old principles that also distinguishing among some of these new theories over
RCA0.

Finally, we extend our methods to prove similar results for hierarchies of variations
of choice principles that are much stronger than Σ1

1 -AC and so well beyond THAs. At
the end of these hierarchies, we provide principles that have all the same conservation
and branch/set omitting properties over RCA0 but when combined with ACA0 are
strictly stronger than full second order arithmetic. We also discuss another type of
conservation result for sentences of the form ∀X∃!YΦ(X,Y ) conjectured by Tanaka
for WKL0 and proved for it in Simpson, Tanaka, and Yamazaki [29] (hereafter STY)
as well as strengthenings to include larger classes of sentences (see Definition 7.1).

https://doi.org/10.1017/jsl.2022.58 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.58


ALMOST THEOREMS OF HYPERARITHMETIC ANALYSIS 667

Thus, we view this paper not only as introducing a new interesting realm of the
reverse mathematics/recursion theoretic universe but as also answering the question
raised in [22, 6.1.1] immediately after the one about the existence of mathematical
THA. Attributing the question to Hirschfeldt, Montalbán points out that there are
very few examples where natural equivalences are known to hold over strong theories
but not over RCA0 particularly if one excludes the cases where the only additional
axioms needed are forms of induction. Hirschfeldt asked for more. We would say
that this paper provides a whole array of pairs of principles which are equivalent
over ACA0 but not over RCA0 and so evidence that in some settings it would make
sense to take ACA0 as the base theory for reverse mathematical investigations rather
than RCA0.

1.1. Outline of the paper. We provide the needed basic graph theoretic notions
and principles in Section 2. The next section (Section 3) presents the principles used
in BCP as mentioned above as well as some related graph theoretic principles and
analyzes their strength over ACA0. In particular, we show that, over ACA0, each of
them implies some known THAs. In Section 4, we define a large class of forcings
that include many well-known ones such as Cohen, Laver, Mathias, Sacks, and
Silver forcing and many variations. We then show that generic extensions by any
such forcing have all the preservation properties suggested above. Thus any principle
that can be made true by iterating such forcings have the conservation and other
weakness properties already mentioned. In particular, if the principles are Π1

2 (see
Definition 4.7), and for any instance of the principle there is a forcing in our class
that adds a solution, a standard �-length iteration of such forcings guarantees the
truth of the principle in the limit model. This supplies all the conservation results
for such Π1

2 principles and includes many previously known theorems as well as
strengthenings of conservation results to larger classes of formulas.

However, the ATHAs in which we are mainly interested are not Π1
2 principles so

some additional twists are needed in addition to supplying the appropriate forcing
notions. We analyze the argument of BCP mentioned above as the first (and in many
ways the most interesting) of our examples. The definition of the forcing notion and
the proof that it supplies solutions to the relevant principles are in Theorem 5.1. To
get an iteration that solves all instances of the principle and so provides the desired
conservation and weakness properties, we use one of length �1 (Theorem 5.2). We
then turn our attention to various weaker versions or instances of Σ1

1-AC for our
next source of ATHAs. Some of these (mathematical as well as logical) appeared
naturally in BGS. Others are variations of well-studied classes of choice principles
weaker than Σ1

1-AC. They are all weak over RCA0 but equivalent to one of the known
THAs over ACA0. Examples here include unique and finite choice versions of Σ1

1-
AC. (The former is generally known as weak Σ1

1-AC. The latter is a consequence of
the Halin type theorems studied and proven to be THAs in BGS and placed with
respect to other studied versions of Σ1

1-AC in [9].)
In Section 6 we move beyond Σ1

1-AC and study weak version of higher order
axioms of choice. The appropriate forcing notions in our class are not hard to come
by. As the principles are of arbitrary syntactic complexity, it is not immediate, for
example, that adding something that may look like a solution during the construction
will actually be a solution at the end of even an �1 length iteration. In the strongest
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case, we modify what it means to provide solutions (Theorem 6.1). We then use
the fact that there is a closed unbounded set of ordinals α such that the models
Nα are elementary submodels (in the second order language) of our limit model
N�1 to show that it has the desired properties (Theorem 6.2). A short argument
(Theorem 6.3) shows that the whole hierarchies of weak principles are equivalent
to the standard choice axioms (Σ1

n+1-AC) over ACA0. At the end, we have two
principles with all our conservation and preservation properties which over ACA0

are equivalent to the union of all the Σ1
n+1-AC and so strictly stronger than full

second order arithmetic.
The last section is devoted first to a description of about 10-year-old but

unpublished work by Tanaka, Montalbán, and primarily Yamazaki getting some of
our conservation results for what they call the collection axioms Π1

n and Π1
∞ (in our

terminology Σ1
n+1-AC– and Σ1

∞-AC–). They also extend even earlier work on WKL0

in STY to get Tanaka conservation (Definition 7.1) for the collection axioms and
a couple of other principles. Motivated by this work, we have proven the same and
stronger conservation results for all the ATHA principles we consider in this paper
for which we use forcing constructions to show that they are very weak over RCA0

and, in particular, do not imply ACA0. The basic conservation result (over RCA0)
they prove is for sentences of the form ∀X∃!YΦ(X,Y ) with Φ arithmetic. We get
the same results for all of our principles and most of theirs by what seem to be much
simpler constructions. In addition, we extend the class of sentences covered by our
methods analogously to the extensions made for Π1

1 and r-Π1
2 in previous sections.

While handling the basic Tanaka conservativity requires some additional notions,
the extensions are dealt with as in the Π1

1 and r-Π1
2 conservation results mentioned

above.

§2. Basic notions. Formally, we are working in a model N = (N,S(N ),+,×,
≤,∈, 0, 1) of second order arithmetic. (The first order quantifiers range over N. The
second order ones over S(N ) which is a collection of subset of N.) We generally
abbreviate the structures as N = (N,S(N )). We are interested in ones which are
models of RCA0. When we define semantics or forcing we expand the formal
language to include constants for each element of N and S(N ) and possibly some
recursive (Δ0

1) predicates. (See Remark 4.4.) Informally, one can think of N as the
standard natural numbers N with the usual operations and relations (and constants
for every n and some class of subsets of N as well, perhaps, the predicate representing
the universal Turing machine as in Remark 4.4). We use standard recursive codings
of finite sequences, functions, relations, and structures to represent all such objects
as elements of N or S(N ) and abuse notation by saying that such objects are in N
or S(N ), or even just by saying that they are in N , to mean that the corresponding
codes are in N or S(N ). Unless otherwise specified, all sets and structures we
consider are countable.

Definition 2.1. A graph H is a pair 〈V,E〉 consisting of a set V (of vertices) and
a set E of unordered pairs {u, v} with u �= v from V (called edges). These structures
are also called undirected graphs (or here U-graphs). A structure H of the form 〈V,E〉
as above is a directed graph (or here D-graphs) if E consists of ordered pairs 〈u, v〉 of
vertices with u �= v. To handle both cases simultaneously, we often use X to stand
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for undirected (U) or directed (D). We then use (u, v) to stand for the appropriate
kind of edge, i.e., {u, v} or 〈u.v〉. Any such H is locally finite if, for each u ∈ V , the
set {v|(u, v) ∈ E ∨ (v, u) ∈ E} of neighbors of u is finite.

An X -subgraphof the X -graph H is an X -graphH ′ = 〈V ′, E ′〉 such that V ′ ⊆ V
and E ′ ⊆ E.

Definition 2.2. An X -ray in H is pair consisting of an X -subgraphH ′ = 〈V ′, E ′〉
and an isomorphism fH ′ from N with edges (n, n + 1) for n ∈ N to H ′. We also
describe this situation by saying that H contains the X -ray 〈H ′, fH ′〉. We sometimes
abuse notation by saying that the sequence 〈f(n)〉 of vertices is an X -ray in H.

H contains k many X -rays for k ∈ N if there is a sequence 〈Hi, fi〉i<k such that
each 〈Hi, fi〉 is an X -ray in H (with Hi = 〈Vi , Ei〉).

H contains k many disjoint (or vertex-disjoint) rays if the Vi are pairwise disjoint.
H contains k many edge-disjoint rays if the Ei are pairwise disjoint. We often use Y
to stand for either vertex (V) or edge (E) as in the following definitions.

An X -graph H contains arbitrarily many Y-disjoint X-rays if it contains k many
such rays for every k ∈ N .

An X -graph H contains infinitely many Y-disjoint rays if there is an X -subgraph
H ′ = 〈V ′, E ′〉 of H and a sequence 〈Hi, fi〉i∈N such that each 〈Hi, fi〉 is an X -ray
in H (with Hi = 〈Vi , Ei〉) such that the Vi or Ei , respectively for Y = V,E, are
pairwise disjoint and V ′ = ∪Vi and E ′ = ∪Ei . (The requirement here that the set
of rays 〈Hi〉i∈N form or be contained in a subgraph is missing from the case of a
finite sequence of rays 〈Hi〉i<k above. The reason is that it is automatic in the finite
case but not the infinite one. In the former, the unions V ′ and E ′ of the Vi and
Ei are always sets in the model as, e.g., v ∈ V ′ ⇔ (∃i < k)(〈i, v〉 ∈ 〈Hi〉i<k). If the
index set, however, is N, then the quantifier is unbounded and the union may not
exist in a model of RCA0. Of course, it always exists in models of ACA0.)

Definition 2.3. An X-path P in an X-graph H is defined similarly to single rays
except that the domain of f is a proper initial segment of N instead of N itself. Thus
they are finite sequences of distinct vertices with edges between successive vertices
in the sequence. If P = 〈x0, ... , xn〉 is a path, we say it is a path of length n from x0

to xn.

Definition 2.4. A tree is a graph T with a designated element r called its root
such that for each vertex v �= r there is a unique path from r to v. A branch in a tree
T is a ray in T starting at its root. The set of all branches in T is denoted by [T ].
Note, however, we are restricting ourselves to what would (in set theory) be called
countable trees with all nodes of finite rank. Thus, we typically think of trees as
subtrees ofN<N , i.e., the downward closed (under extension) sets of finite strings of
numbers (as vertices) with an edge between � and � if and only if they differ by one
being an extension of the other by one element, e.g., �ˆk = � and with root ∅. We
call the longest � which is comparable (under extension) with every element of such
a tree its stem.

The starting point of the work in BGS and this paper is a theorem of Halin [10]
that we call the infinite ray theorem as expressed in [5, Theorem 8.2.5(i)].
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Definition 2.5 (Halin’s theorem). IRT, the infinite ray theorem,is the principle
that every graph H which contains arbitrarily many disjoint rays contains infinitely
many.

The versions of Halin’s theorem which we consider in this paper allow for H to be
an undirected or a directed graph and for the disjointness requirement to be vertex
or edge. They are labeled along the lines of BGS as IRTXY to indicate whether the
graphs are undirected or directed (X = U or D) and whether the disjointness refers
to the vertices or edges (Y = V or E) in the obvious way. We often state a theorem
for all XY and then in the proof use “graph,” “edge,” and “disjoint” unmodified
with the intention that the proof can be read for any of the four cases.

Remark 2.6. We point out that unlike BGS (except in Remark 5.11) we do not
consider the analogs of IRT for double rays (isomorphic to Z rather than N). Halin
[11] proved the basic case here (UV) and BCP did the UE version. The other two
(DE and DV) remain open. Some relevant results about the strength of special cases
are in BGS. However, the local finiteness property that originally motivated this
paper (Definition 3.5) fails for double rays in the DE and UE cases as can be seen by
considering the star graph consisting of countably many copies of Z with one vertex
common to all the copies. Thus these versions seemed less relevant to our concerns
in this paper.

We now move on to the recursion theoretic notions needed to define THAs. Here
we are working with the usual set N of natural numbers and understand notions
such as well-orderings in the usual way—there simply are no descending chains. (As
opposed to thinking of some model of arithmetic N with perhaps a nonstandard
first order part or even a standard model, i.e., N = N but one in which the notion
of well-foundedness for linear orderings as no descending chain in S(N ) is the not
the same as no descending chain (possibly outside of S(N ).) A standard reference
for hyperarithmetic theory is [26]. We give a brief list of the notions we need.

Definition 2.7. We represent ordinals α as well-ordered relations on N. Typically
such ordinal notations are endowed with various additional structures such as
identifying 0, successor, and limit ordinals and specifying cofinal �-sequences for
the limit ordinals. An ordinal is recursive (in a set X) if it has a recursive (in X)
representation. For a set X and ordinal (notation) α recursive in X , we define
the transfinite iterations Xα of the Turing jump of X by induction: X (0) = X ;
X (α+1) = (Xα)′ and for a limit ordinal �, X (�) = ⊕{X (α)|α < �} (or as the sum
over the X (α) in the specified cofinal sequence).

Definition 2.8. HYP(X ), the collection of all sets hyperarithmetic inX consists
of those sets recursive in some X (α) for α an ordinal recursive in X. These are also
the sets Δ1

1 in X.

Definition 2.9. A sentence (theory) T is a theorem (theory) of hyperarithmetic
analysis (THA) if:

1. for every X ⊆ N, (N, HYP(X )) � T and
2. for every S ⊆ 2N, if (N, S) � T and X ∈ S thenHYP(X ) ⊆ S.

Definition 2.10. A theorem or theory T is an almost theorem (theory) of
hyperarithmetic analysis (ATHA), if T �ACA0 but T + ACA0 is a THA.
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We now turn to defining and analyzing some mathematical and logical theorems
that turn out to be ATHAs.

§3. ATHA principles. We wish to consider the argument in BCP [top of page 2]
that IRTUE follows from IRTUV . We fill in their sketch to bring out the use of
instances of Σ1

1-AC. They analyze only undirected graphs but the same arguments
apply to directed ones so we present the two cases together.

Their proof can be presented as two lemmas:

Lemma 3.1. IRTXE restricted to locally finite graphs implies IRTXE .

Lemma 3.2. IRTXV implies IRTXE restricted to locally finite graphs. In fact, IRTXV
restricted to locally finite graphs implies IRTXE restricted to locally finite graphs.

The natural proof of Lemma 3.2 takes place in ACA0.

Proof of Lemma 3.2 (ACA0). Let G = 〈V,E〉 be a locally finite graph with
arbitrarily many E-disjoint rays. Consider the line graph L(G) of G, i.e., the graph
whose vertices are the edges of G and whose edges are the ((x, y), (y, z)) for (x, y) �=
(y, z) ∈ E. As G is locally finite so is L(G). (The only way a given (u, v) can have
an (x, y) as a neighbor is if they have a vertex in common. So if (u, v) had infinitely
many neighbors, one of u or v would also have such in G.)

A set of k many E-disjoint raysRi = 〈Vi , Ei〉 in G with isomorphismsfi produces
k many V-disjoint rays R̄i with vertices (xi,n, xi,n+1) in L(G) where we write xi,n for
fi(n). Applying the hypothesis of the lemma gives us infinitely many V -disjoint rays
Ti with vertices (xi,j , xi,j+1) in L(G).

Now we use the local finiteness of G to construct the required infinitely many
E-disjoint raysQi in G. Fix i and T = Ti and xj = xi,j . By the local finiteness of G,
for every v ∈ V there are only finitely many n such that v ∈ {xn, xn+1}. (Otherwise,
say v is xn for infinitely many n and then (v, xn+1) is a vertex in the L(G) ray for
all of these n. That means, however, that these edges are all distinct and so v has
infinitely many neighbors in G for a contradiction.)

We build Q = Qi by recursion starting with a0 = x0 and let n0 be the largest n
such that a0 = xn. Let a1 = xn0+1 so (a0, a1) ∈ E. Inductively, take nk+1 (> nk) the
largest n such that ak = xn and set ak+1 = xnk+1. (We can find this n by ACA0.) This
recursion produces sequences nk, ak+1 with Q = 〈ak〉 a ray in G and (an, an+1) ∈ T
for every n. Let this Q be Qi .

Claim: The Qi are E-disjoint in G as required. If not, we have (ai,n, ai,n+1) =
(aj,m, aj,m+1) for some i �= j and n and m. However, (ai,n, ai,n+1) ∈ Ti and
(aj,m, aj,m+1) ∈ Tj contradicting the V-disjointness of the Ti in L(G). �

On the other hand, while the proof of Lemma 3.1 seems to also take place in
ACA0, it, like that of IRT itself (BGS [Theorem 4.1]), relies on a use of Σ1

1-AC to
get started.

Proof of Lemma 3.1 (Σ1
1-AC0). We are given a graphG = 〈V,E〉 with arbitrarily

many E-disjoint rays. By Σ1
1-AC0 choose a sequence Sk = 〈Rk,1, ... , Rk,k〉 which

consists, for each k, of k many E-disjoint rays in G. Now we construct the desired
subgraph G ′ of G. It has the same set of vertices V = {vi |i ∈ N} as G. We specify
its edges by providing a recursive construction of sets Ei of edges putting in a set of
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edges at each step. We guarantee that each Ei is a union of finitely many finite sets
of E-disjoint rays in G and that after stage s no edge with a vertex vi for i < s is ever
put into E after stage s.

Begin at stage 0 by putting all the edges in R1,1 into E1. Proceeding recursively at
stage k we have Ek and consider Sk = 〈Rk,1, ... , Rk,k〉. Each vj for j < k appears in
Rk,i at most once for each i < k as Rk,i is a ray. As we have the whole sequence of
the Sk we can find (using only RCA0) the i, j such that vj ∈ Rk,i and the location
n in the sequence where it occurs, say as xk,i,nj . We now put into Ek+1 all the edges
appearing in anyRk,i after all the xk,i,nj for j < k which are defined. Let E ′ = ∪Ek .
As, for every k, we have put in a tail of eachRk,i for i < k into Ek we have guaranteed
that G ′ = 〈V,E ′〉 contains arbitrarily many E-disjoint rays.

Thus we only need to show that G ′ is locally finite. Consider any vertex vk . No
edge containing vk as a vertex is put in after stage k. On the other hand, Ek is the
union of finitely many finite sets of E-disjoint rays (all of which have been computed
uniformly). Each set of E-disjoint rays in this union has vk appearing at most once in
each of its rays. Thus at most two edges containing vk appear in each of the finitely
many rays in this set. Thus there are only finitely many edges containing vk in each
of the finite sets of E-disjoint making upEk . All in all, this makes only finitely many
edges containing vk get put into G ′. (In fact, we can compute the number of such
edges in N .) �

Now we study the crucial Lemma 3.1 that reduces the problem to locally finite
graphs. We first prove that the IRTXY theorems for locally finite graphs are strictly
weaker than the full theorems. Indeed, they are theorems of ACA0.

Proposition 3.3 (ACA0). If G is a locally finite X-graph with arbitrarily many
Y-disjoint rays then there is a sequence 〈Hn〉 of subgraphs of G with eachHn consisting
of n many disjoint rays. (This statement is SCRXY of Definition 5.5 for locally finite
graphs.)

Proof. Let G = 〈V,E〉 and V = {vi |i ∈ N}. For each n and n-tuple
〈
vij |j < n

〉

of distinct vertices of G consider the tree Ti,n whose nodes are n-tuples of disjoint

paths in G all of the length the height of the node inTi,n. The root ofTi,n is
〈
vij |j < n

〉
.

If � = 〈�j |j < n〉 ∈ Ti,n then its immediate successors are all � = 〈�j |j < n〉 such
that for each j, �j is an extension of �j by one of the finitely many vertices v such
that there is an edge from the last vertex in �j to v and the �j are disjoint paths in G.
As G is locally finite, the Ti,n are finitely branching trees (recursive in G ′). Thus by
ACA0 (recursively in a few jumps of G) we can get the set of 〈i, n〉 such that Ti,n
has a branch and, indeed, a sequence Si,n each a branch in Ti,n for each such 〈i, n〉.
Every such branch provides a subgraph Gi,n of G which consists of n disjoint rays.
We can now just take the desired Hn to be Gi,n for the least i such that Ti,n has a
branch. �

Indeed we now have some equivalences.

Proposition 3.4. ACA0 is equivalent to each IRTXY for locally finite graphs.

Proof. To prove the implication from left to right, suppose G is a locally finite
X-graph with arbitrarily many Y-disjoint rays. By Proposition 3.3 and BGS
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[Theorem 8.2], G has infinitely many Y-disjoint rays. For the other direction, note
that the graphs used in BGS [Theorems 4.1, 4.2, and 5.9] to deduce ACA0 from
IRTXY are disjoint unions of finitely branching trees and so locally finite. �

Now we formulate a principle expressing the idea that one can reduce the problem
of finding solutions to IRT to considering only the class of locally finite graphs. Of
course, as the IRTXY are THAs and their restrictions to locally finite graphs are
provable in ACA0, this reduction must be strong.

Definition 3.5. LFXY is the principle that every X -graph which contains
arbitrarily many Y -disjoint rays contains a locally finite subgraph which also
contains arbitrarily many Y -disjoint rays.

We now work towards analyzing the complexity of the LFXY .

Proposition 3.6. In ACA0, LFXY →IRTXY .

Proof. Suppose we are given a graph H with arbitrarily many disjoint rays. Let
H ′ be a locally finite subgraph with arbitrarily many rays. Again, Proposition 3.3
and Theorem 8.2 of BGS give us IRTXY .

In fact, over ACA0 we have equivalences. �
Proposition 3.7. IRTXY→LFXY and so they are equivalent over ACA0.

Proof. We are given a graph G with arbitrarily many disjoint rays and want to
build a locally finite subgraph with the same property. We begin with the subgraph
of the given graph consisting of infinitely many disjoint rays asserted to exist by
IRTXY . As IRTXY →ACA0 (BGS [Theorem 5.1]), we can use ACA0 to thin out this
subgraph so that our new nth ray is simply the nth given ray above the last time any
vertex less than n appears in it. (Any vertex appears at most once in any ray.) Thus
every vertex less than n appears in at most n many of these new rays. In each one
it has edges to at most two other vertices. Thus it is a locally finite subgraph of the
original graph and also contains infinitely many disjoint rays. The equivalence now
follows from Proposition 3.6. �

Proposition 3.8. LFXY+ACA0 is a THA.

Proof. Each IRTXY is a THA by BGS [Theorem 5.1] and so we have the result
by Proposition 3.7. �

We will see in Section 5 that none of the LFXY imply ACA0 and so all are ATHAs.

§4. A class of forcings for satisfying Π1
2 principles. We define a class C of notions

of forcing P such that forcing with any one of them over a model N = (N,S(N ))
of RCA0 has several preservation type properties. (Our forcing language is flexible
as to what else it might include for convenience but it does always include constants
(as usual denoted by) n (or A) for each element of N (or S(N )). Note that these
include class forcings in the sense that while each condition is (coded as) a set in
N , the collection of conditions need not be (coded as) a set in N nor even be
definable over N . Similarly, the dense sets we employ do not need to be definable
over N . The requirement that the conditions themselves in be N serves a couple of
purposes. One is that it guarantees that when considering a countable model there
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are only countably many conditions which are used in the proof or Theorem 4.5
and elsewhere. It is also needed to see that many standard tree forcings are effective
(Definition 4.2).

Definition 4.1. A notion of forcingP = 〈P,≤〉 is a tree forcing (t-forcing) overN
if the following hold:

1. Conditions in P are of the form 〈�, T 〉 where T ∈ S(N ) is a subtree of N<N

(i.e., a subset ofN<N in S(N ) closed under initial segments with respect to ⊆)
and � is an element of T which is comparable with every � ∈ T .

2. If 〈�′, T ′〉 ≤ 〈�, T 〉 then �′ ⊇ � and T ′ ⊆ T ,
3. For every n ∈ N the class {〈�, T 〉 ||�| ≥ n} is dense in P , i.e., (∀ 〈�, T 〉 ∈

P)(∃ 〈�′, T ′〉)(〈�′, T ′〉 ≤ 〈�, T 〉 & |�′| ≥ n).

Definition 4.2. A tree notion of forcing P is an effective tree forcing (et-forcing)
if for every 〈�, T 〉 ∈ P the class Ext(〈�, T 〉) = {�′|(∃T ′)(〈�′, T ′〉 ≤ 〈�, T 〉)} is Σ0

1,
i.e., there is an A ∈ S(N ) such that Ext(〈�, T 〉) is Σ0

1(A) (over N).

Notation 4.3. If G is a filter on a t-forcing P which is generic for a class D of
dense sets containing at least the Dn = {〈�, T 〉 ||�| ≥ n}, then the generic function
G : N→N associated with G is ∪{�|∃T (〈�, T 〉 ∈ G}. We then say that G is D-generic
onP . (Note that this G is always a function from N to N by the definitions ofP being
a t-forcing and of G being a D -generic filter on P .) We also say that a G : N → N
is on 〈�, T 〉 if G ∈ [T ], i.e., ∀n(G � n ∈ T ). So if G is {Dn}-generic it is on every
〈�, T 〉 ∈ G.

We denote by N [G ] the structure for second-order arithmetic with first order part
the same as N (i.e., N) and second order part the closure of S(N ) ∪ {G} under
Δ0

1-CA.
For � ∈ T , T� = {	 ∈ T | � ⊇ 	 ∨ 	 ⊇ �} is what we call the tree T above �.

Remark 4.4. There are a variety of ways to define forcing for models of second
order arithmetic. Until the very last section of this paper we only need to consider
forcing sentences of the form ∃kΦ(k, n̄, A,G) where Φ is formula with, if, one wants,
bounded but certainly no unbounded quantifiers, n̄ ∈ N , A ∈ S(N ) (and ∃k as its
only unbounded quantifier) and perhaps some additional fixed recursive predicates.
As usual we say 〈�, T 〉 � ∃kΦ(k, n̄, A,G) if and only if there is a k < |�| such that �
contains all the information about G needed to guarantee the truth of Φ(k, n̄, A,G)
(even from the viewpoint of N ). Guarantee here means that N [G ] � Φ(k, n̄, A,G)
for everyG ⊇ �. Thus we also write this as � � ∃kΦ(k, n̄, A,G). Note that if P is an
et-forcing then {〈�′, n̄〉 |�′ ∈ Ext(〈�, T 〉) & �′ � ∃kΦ(k, n̄, A,G)} is Σ0

1 over N and
all Σ0

1 formulas over N [G ] (with free variables) are equivalent to formulas of this
form (with added free variables).

Personally, we like the recursion theoretic view that includes in the language
a recursive predicates (with Δ0

1 definitions independent of N ) for the pairing
functions and a coding of finite strings � with their length, the relation � ⊆ X
and the universal Turing functional Φ(e, �, x, y). Intuitively Φ(e, �, x, y) says that
machine e with input x and using as an oracle only the finite sequence � converges
with output y in at most |�| many steps. This, or any other similar coding
procedure, provides a universal Σ0

1 predicate, i.e., every Σ0
1 predicate with set variable

X0, ... , Xk and number variables n0, ... , nl is equivalent to ∃�0, ... , �k(�0 ⊆ X0 ∧
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··· ∧ �k ⊆ Xk ∧ Φ(e, 〈�o, ... , �k〉 , 〈n0, ... , nl 〉 , 1)) where e ∈ N can be calculated
recursively from the given Σ0

1 formula. As is common, we often write this as
ΦX0,...,Xk
e (n0, ... , nl ) = 1. In this notation, for example, every set in N [G ] has its

characteristic function of the form ΦA⊕Ge for an A ∈ S(N ). Similarly, � forcing a Σ0
1

sentence of the forcing language (with, e.g., set parameter A ∈ S(N ) and number
parameter n ∈ N ) is equivalent to N � Φ(e, A � |�|, �, n, 1). These are essentially the
only types of sentences we deal with until Section 7.

We note that many common notions of forcing used to produce reals are et-
forcings or easily seen to be equivalent to such. These include Cohen, Laver, Mathias,
Sacks, and Silver forcing and many variations. Note that we need the fact that the
conditions (trees) considered in any particular instance of one of these forcings are
elements of the model to see that the forcings are effective. In this paper we use some
of these as well as more specialized et-forcings in Section 5 to prove the conservation
results that show, in particular, that the principles considered in Section 3 do not
imply ACA0.

Theorem 4.5. If P is an et-forcing over a countable model N of RCA0 there is
a countable collection D of dense sets (including the ones specified in Definition 4.1)
such that:

1. If G is P-generic for D, then N [G ] � RCA0.
2. If R is a subtree of N<N (not necessarily in N ) with no branch in N , then there

is a countable collection D′ ⊇ D of dense sets such that for every G which is
P-generic for D′ there is no branch of R in N [G ]. We say that forcings with this
property omit branches.

3. If a forcing omits branches then for any countable collection Ri of trees as in 2
(such as all those in N ) there is a single D′ as in 2 which works for every Ri . In
particular, for a set {Ci |i ∈ �} with Ci ⊆ N and Ci /∈ S(N ) for every i ∈ �,
there is a D′ ⊇ D such that, for any D′-generic G , no Ci ∈ N [G ]. We say that
forcings with this last property avoid cones.

Proof. The third clause follows immediately from the second by the countability
of S(N ) and then by taking Ri = {	 ∈ N<N |	 ⊂ Ci}. We prove each of the first
two assertions by specifying the appropriate collections of dense sets.

1. By a classic result of Friedman [8], it suffices to show that for any Σ0
1 formula

∃kΦ(k,m,A,G) with A ∈ S(N ) such that N [G ] � ∃kΦ(k,m,A,G) there is an
N -least m′ such that N [G ] � ∃kΦ(k,m′, A,G). By the definition of G there is a
condition 〈�, T 〉 ∈ G such that � � ∃kΦ(k,m,A,G). We show that the conditions
that guarantee that there is an N -minimal such m are dense below 〈�, T 〉 and
so we can extend D to guarantee that N [G ] �RCA0 as there are only countably
many Σ0

1 formulas ∃kΦ(k,m,A,G) and conditions 〈�, T 〉. As P is an et-forcing the
set {m′ ≤ m|(∃�′ ∈ Ext(〈�, T 〉)(�′ � ∃kΦ(k,m′, A,G))} is Σ0

1 in N and so as N �
RCA0, there is an N -least such m′ with an associated 〈�′, T ′〉. If D includes the
corresponding dense set consisting of such 〈�′, T ′〉 for each 〈�, T 〉, it is clear thatm′

is the least m such that N [G ′] � ∃kΦ(k,m,A,G ′) for any D-generic G ′ as desired.
(Otherwise, there would be a 〈�′′, T ′′〉 ≤ 〈�′, T ′〉 , a k′ ∈ N , and anm′′ <N m

′ such
that �′′ � Φ(k′, m′′, A,G).)
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2. Consider any R as in the claim. We again want to specify the additional dense
sets needed. Consider an arbitrary function in some N [G ]. By the definition of
N [G ] (and basic facts of about recursive functions true in RCA0), it is of the form
ΦA⊕Ge for some e ∈ N and A ∈ S(N ).

If for every 〈�, T 〉 ∈ G there is a 	 /∈ R (	 ∈ N<N ) and a �′ ∈ Ext(〈�, T 〉) such
that �′ � ΦA⊕Ge (l) = 	(l) for every l < |	| then the set of conditions guaranteeing
that ΦA⊕Ge is not on R is dense. Thus we may assume that we have a 〈�, T 〉 ∈ G
such that for every �′ ∈ Ext(〈�, T 〉) and every 	, if �′ � ΦA⊕Ge (l) = 	(l) for every
l < |	|, then 	 ∈ R.

Next, if there is a �′ ∈ Ext(〈�, T 〉) and an l ∈ N such that there is no m ∈ N
and �′′ ∈ Ext(〈�, T 〉) with �′′ ⊇ �′ such that �′′ � ΦA⊕Ge (l) = m then the associated
〈�′, T ′〉 ≤ 〈�, T 〉 guarantees that ΦA⊕Ge (l) ↑ and so ΦA⊕Ge is again not a branch on
R. Thus we may assume that for every l ∈ N and �′ ∈ Ext(〈�, T 〉) there is anm ∈ N
and �′′ ∈ Ext(〈�, T 〉) with �′′ ⊇ �′ such that �′′ � ΦA⊕Ge (l) = m.

We now prove that there is a branch f on R which is in S(N ) for a contradiction:
By our last assumption on 〈�, T 〉, we can define an f : N→N by recursion in N
starting with our 〈�, T 〉 and �–1 = �: We build sequences of �l ∈ Ext(〈�, T 〉) and
ml such that �l � ΦA⊕Ge (l) = ml and �l ⊆ �l+1. This is a recursive procedure in N
as P is an et-forcing and so we can search for the next witnesses (and find them)
effectively in N . By our first assumption on 〈�, T 〉, the sequence 〈ml |l < n〉 is in R
for every n ∈ N and so f is the desired branch on R in N . �

Another property of extensions of theories expressing weakness is having a
minimal pair of extensions. We note that it follows from the cone avoiding property
in an even stronger form.

Corollary 4.6. If N0 and N1 are countable models of RCA0 with the same first
order part N, P0 and P1 are et-forcings with classes D0 and D1 of dense sets as above
(over N0 and N1, respectively), then there are Gi for i = 0, 1 which are Di -generic
for Pi such that N0[G0],N1[G1] � RCA0 and N0[G0] ∩N1[G1] = N0 ∩N1. In fact,
for any countable models N ⊆ N0 of RCA0 with the same first order part and P
an et-forcing over N there is a countable collection D of dense sets in P such that
for any D-generic G, N1 = N [G ] � RCA0 and N0 ∩N1 = N . (Note that N0 ∩N1

denotes the second order structure whose first order part is N and second order part is
S(N0) ∩ S(N1).)

Proof. Let Ci list the subsets of N which are in N0 but not in N . Apply
Theorem 4.5.3 to get the desired collection of dense sets. �

From now on, in all the cases where we establish or use the omitting branches
property similar definitions and conclusions can be made for avoiding cones and
having minimal pairs of extensions. In particular, this applies to Definition 4.7,
Theorems 4.13 and 6.2, and Corollary 7.6.

It is now standard to prove that any Π1
2 principle Q ≡ ∀X (Φ(X ) → ∃YΨ(X,Y )

with Φ and Ψ arithmetic for which solutions can be provided by an et-forcing P
are Π1

1 and r-Π1
2 conservative over RCA0. We formulate some relevant notions more

generally for later use.

Definition 4.7. Let Q ≡ ∀X (Φ(X ) → ∃YΨ(X,Y )) be a principle. Instances of
Q are specified by anX such that Φ(X ) holds. A setY is a solution for the instance of
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Q specified by X if Ψ(X,Y ) holds. If Φ and Ψ are arithmetic we say Q is a Π1
2 principle.

We also consider sets or schemes of such sentences as principles in the obvious way.
Note that we distinguish between principles and theories by subscripting with 0 to
denote the theory gotten by adding the principle to the axioms of RCA0. Thus, for
example, we denote the Π1

2 principle that every infinite subtree 2<N has an branch
by WKL while WKL0 is the standard theory gotten by adding this principle on to
RCA0.

1. We say that solutions to Q can be provided by forcing if, for every countable
N�RCA0 and instance of Q specified by anX ∈ N , there is a notion of forcing
P over N and a countable collection D of dense subclasses of P such that for
every D-generic G for P , N [G ] �RCA0 & ∃YΨ(X,Y ).

2. We say that solutions can be added omitting branches to trees if the forcing P
and dense sets D can always be chosen so that, in addition, any subtree ofN<N

(of N ) that has no branch in S(N ) has no branch in N [G ].

One can now prove by fairly standard methods that providing solutions by the
various types of forcing insures specific conservation results and other evidences of
the weakness of the given principle. We extend the usual arguments for conservation
results to cover larger classes of formulas that we now describe.

Definition 4.8. If Γ is a class of sentences and T a theory of second order
arithmetic, we say T is Γ conservative (over RCA0), if for every Λ ∈ Γ such that
T � Λ, RCA0 � Λ.

Definition 4.9. A theory T is Π1
1 conservative if it is conservative for the class

of sentences Λ of the form ∀XΦ(X ) with Φ arithmetic. We extend this to G-Π1
1,

generalized Π1
1, conservative by including all sentences Λ in the G-Π1

1 class of formulas
defined by closing the quantifier free formulas under conjunction (∧), disjunction
(∨), first order quantification (∀x and ∃x for number variables), and universal
second order quantification (∀X for set variables).

Definition 4.10. Hirschfeldt, Shore, and Slaman [15, Corollary 3.15] define
r -Π1

2 conservativity by the class of sentences Λ of the form∀X (Φ(X ) → ∃YΘ(X,Y ))
where Φ is arithmetic and Θ is Σ0

3. We extend this to
G-r-Π1

2 conservativity by including all sentences in the G- r-Π1
2 class of formulas

defined by closing all formulas which are either quantifier free or of the form
∃YΘ(Y ) where Θ is Σ0

3 under the same operations as in the definition of G-Π1
1 (∧,

∨, ∀x, ∃x, and ∀X ). Note that the G- r-Π1
2 class of formulas contains the G-Π1

1 class
of formulas and so G - r-Π1

2 conservativity implies G-Π1
1 conservativity.

We introduce other classes of conservativity results related to sentences of the form
∀X∃!YΦ(X,Y ) for Φ arithmetic in Section 7. They require additional uniformity
type conditions on our et-forcings.

All of our proofs of conservation results have the same general format. We have a
class Γ of formulas and a theory T of second order arithmetic. We want to prove T
is conservative (over RCA0) for sentences in Γ. For the sake of a contradiction, we
assume that there is a sentence Λ ∈ Γ such that T � Λ and a countable model N of
RCA0 such that N � ¬Λ. We then construct, by iterated forcing, a model N∞ of T.
In each case, we have a notion of forcing that adds solutions for all the sentences of
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T, e.g., of Π1
2 principles Q. We construct a limit ordinal length iteration of forcings

producing witnesses for the solutions for these principle. For Π1
2 principles these have

length� but other lengths will be used and we denote the length ambiguously by ∞.
This gives us a sequence of modelsNi+i = Ni [Gi ] andN� = (N,∪{S(Nα)|α < �} of
RCA0 (all with the same first order part N) such that N∞ = (N,∪{S(Ni )|i <∞})
is a model of RCA0 + T by arranging that every instance of the principles Q of T
specified by an X in some Ni is given a solution Y in some later Nj .

Next, we argue that N∞ � ¬Λ as well for a contradiction. We prove that the
truth of ¬Λ is preserved for all sentences Λ ∈ Γ with constants from N and S(N )
by an induction on the complexity of Λ. The argument can be seen as playing
a game between the two models to eliminate number quantifiers or universal set
quantifiers as well as the positive connectives. This will then complete each proof of
conservativity that we provide.

Theorem 4.11. If solutions to a Π1
2 principle Q can be provided by forcing, then

RCA0 +Q is G-Π1
1 conservative over RCA0.

Proof. We begin the plan outlined above with quantifier free G-Π1
1 sentences Λ

with constants from N and S(N ). Here the truth of both Λ and ¬Λ are preserved
from N to N∞ as N = N∞ and S(N ) ⊆ S(N∞). Suppose next that Λ = Δ0 ∧ Δ1.
As N � ¬Λ, N � ¬Δi for at least one i ∈ {0, 1}. By induction then N∞ � ¬Δi
as well as required. If Λ = Δ0 ∨ Δ1 and N � ¬Λ then N � ¬Δ0 ∧ ¬Δ1 and so by
induction N∞ � ¬Δ0 ∧ ¬Δ1 and N∞ � ¬(Δ0 ∨ Δ1) as required. Next, suppose Λ =
∀xΔ(x) and N � ¬Λ. Choose an n ∈ N such that N � ¬Δ(n). By induction, N∞ �
¬Δ(n) and soN∞ � ¬∀xΔ(x). Suppose Λ = ∃xΔ(x) andN � ¬Λ. IfN∞ � ∃xΔ(x)
choose a witness n ∈ N∞ = N so that N∞ � Δ(n). As Δ(n) is also a sentence in
Γ, we have that N � Δ(n) by induction for the desired contradiction. Finally, if
Λ = ∀XΔ(X ) and N � ¬Λ, choose aW ∈ S(N ) such that N � ¬Δ(W ). As Δ(W )
is a sentence in Γ, we again have N∞ � ¬Δ(W ) as required. �

Similarly, we can prove a G-r-Π1
2 conservation result for such Q when solutions

are provided by et-forcings using Theorem 4.5.2.

Theorem 4.12. If solutions to a Π1
2 principle Q can be provided omitting branches,

then RCA0 +Q is G-r-Π1
2 conservative over RCA0.

Proof. The argument for quantifier free sentences is as in Theorem 4.11 as are
the inductive cases for ∧, ∨, ∃x, ∀x, and ∀X . Here we also have to begin with
sentences Λ of the form ∃YΘ(x̄, ȳ, Y ) with Θ a Σ0

3 formula with constants from N
and S(N ) and suppose that N � ¬Λ. As in [15, last paragraph of page 5818], the
point here is that for any model N of RCA0 the failure of a sentence ∃YΘ(Y ) with
Θ being Σ0

3 (with set constants W̄ ) is equivalent to their being, for each k ∈ N , a
specifically defined treeTk (recursive in W̄ ) which has no branch in the model. Thus
none of these trees has a branch in N and so by our assumptions on the forcings
none in N∞ either. Thus N� � ¬∃YΘ(x̄, ȳ.Y ) as required. �

We next note the analog of these conservation results for forcings omitting
branches.

Theorem 4.13. If Q is a Π1
2 principle such that solutions can be added omitting

branches, i.e., if N �RCA0 is countable, {Rj |j ∈ �} ⊆ S(N ) and ∀j ∈ �(Rj is a
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subtree of the N<N of N without a branch in N ), then there is an extension N ′ of
N with the same first order part such that N ′ � Q+RCA0 and no Rj has a branch in
S(N ′).

Proof. As there are here no conservation results to verify the proof is simply the
basic argument given above for the construction. Then one simply notes that by the
choice of forcings no branch is added on for any Ri at any successor step and so
none enter at a limit level either. �

We now note that by interspersing the appropriate forcings in the iterations, the
class of problems described in each of the two clauses of Definition 4.7 (and so also
cone avoiding and minimal pair extension) are closed under conjunction. Indeed,
if they hold for each Qi for i ∈ � they hold for the theory T = {Qi |i ∈ �}. So to
then do the conservation results for G-Π1

1 (Theorem 4.11) and G-r-Π1
1 (Theorem

4.12) via extensions constructed omitting branches and avoiding cones. Thus we can
add on any principle with solutions given by et-forcings such as COH [4, Theorem
9.1] and [14, Theorem 2.21] (Mathias forcing); AMT [15, Corollary 3.15] as well
as BCT-II and RCA+

0 of Brown and Simpson [3, Section 4 and Corollary 6.5]
and Π0

∞G = ∪Π0
nG in the terminology of Hirschfeldt, Lange, and Shore [13, p.

89] Π0
∞ = ∪Π0

n (Cohen forcing); and the existence of minimal covers for Turing
reducibility (as mentioned in [27, p. 395]; Sacks forcing).

Remark 4.14. Moving outside of et-forcings, we can, for example, extend the
G-Π1

1 conservation results from RCA0 to WKL0 as WKL is a Π1
2 principle for

which solutions can be provided by forcing (Harrington; see [28, Section IX.2]).
So, in particular, if solutions to a Π1

2 principle Q can be provided by forcing, then
Q +WKL0 � ACA0 as ACA0 is not Π1

1 conservative over RCA0. (Indeed, [28,
Corollary VIII.1.8] shows that ACA0 is not conservative over RCA0 even for Π0

1
sentences.) Note that as WKL is itself an r-Π1

2 formula, it is not r-Π1
2 conservative

over RCA0 and so solutions for it cannot be produced by et-forcings. (They are,
however, produced in the usual proof by tree forcings, just not effective ones.)

The proof in [28, Corollary VIII.1.8] is an application of Gödel’s second
incompleteness theorem. A semantic and more dramatic demonstration that, in
this setting,Q +WKL0 � ACA0 is provided by Theorem 4.5.3 when solutions for Q
can be provided by cone avoiding forcings: If N is a model of RCA0 but not ACA0,
i.e., there is an X ∈ S(N ) such that there is no Y ∈ S(N ) satisfying the definition
of X ′ then there is an extension N ′ of N with the same first order part which also
has no such Y. Indeed, we can even omit every subset of N which is definable over
N but not in S(N ). These remarks also apply when we add on WKL as the forcing
that provides solutions for it has the cone avoiding property by using the standard
arguments for cone avoiding for Π0

1 forcing in recursion theory [16].

We would like to apply all these results to the principles LFXY of Definition 3.5
as well as others to show that they do not imply ACA0 and indeed are highly
conservative over RCA0. As we already showed that each LFXY becomes a THA
when added to ACA0, this will show that all of them (even when combined with
each other as well as WKL, COH, and more) are ATHAs. Our plan is to first show
that they all have solutions provided by et-forcings. The problem will then be that
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they are not Π1
2 principles and so we will also have to extend the theorems above to

a larger class of principles.

§5. Extending the class of principles. We want to prove that the principles asserted
to be ATHAs in Section 3 do not imply ACA0 by showing that solutions can be
provided by et-forcings and that we can extend the conservation/preservation results
of Section 4 to a wider class of principles than Π1

2 that include all of the ones that
we claimed to be ATHAs and more. We begin with showing how solutions for all
of them can be provided by et-forcings. The most interesting ones are the ones
about finding locally finite subgraphs with various properties that began our study
of ATHAs: LFXY .

Theorem 5.1. Given an X-graph H in a countable N � RCA0 which contains
arbitrarily many Y-disjoint rays we can define an et-forcingP and a countable collection
of dense sets D such that any D-generic G provides a locally finite X-subgraph H ′ of
H which also contains arbitrarily many Y-disjoint rays.

Proof. The set of vertices ofH ′ is just that of H which, without loss of generality,
we may take to be N. Thus we only need to specify the edges ofH ′. We use a pairing
function to view the numbers n as all possible edges. We writeM (v, n) to mean that
the vertex v is an element of the edge n.

Our conditions 〈�, T 〉 will satisfy various requirements in addition to the ones
common to all et-forcings. The first is that, the trees are binary (i.e., subsets of
2<N ) and for any � ∈ T , if (the pair) n is not an edge in H then �(n) = 0. Thus
each generic G : N→N can be seen as a subgraph of H in N [G ]. (G supplies the
characteristic function of the set of edges. The set of vertices we have already set to
be N.)

The intuition behind the rest of the definition of the notion of forcing is that we
want to be able, on one hand, to specify that the set of edges from some sequence
of disjoint rays of length m can be added to the final graph. On the other, for an
arbitrary vertex v we want to be able to specify that no additional edges containing
v can be added to the graph and to guarantee that only finitely many of the edges
already guaranteed to be in the graph have v as a vertex.

To these ends, for each potential condition 〈�, T 〉 we first specify various sets of
edges n based on what the condition says about their membership in G. First we have
the n > |�| such that all branches G in T haveG(n) = 1. We denote the set of such n
asY 〈�,T 〉 = {n > |�||(∀� ∈ T )(�(n) = 1)}. Next we have the ones withG(n) = 0 for
all G on T, N 〈�,T 〉 = {n > |�||(∀� ∈ T )(�(n) = 0)}. Finally, we have the n at which
G can go either way, U 〈�,T 〉 = {n > |�||(∀� ∈ T )(|�| = n → �ˆ0 ∈ T ∧ �ˆ1 ∈ T}.
Note that as T is binary all these sets are in N (even uniformly in 〈�, T 〉). We require
that every n > |�| is in one of these (clearly disjoint) sets.

We also impose some requirements on the nature of the first two of these
three sets. For Y 〈�,T 〉 there is a function f〈�,T 〉 = f such that ∀v(f(v) = |{n ∈
Y 〈�,T 〉|M (v, n)}|). So not only are there only finitely many n ∈ Y 〈�,T 〉 such that v is
a member of the edge n but we know how many and so we can uniformly determine
which they are. Finally, for N 〈�,T 〉 there is a finite set A〈�,T 〉 = A such that (∀n ∈
N 〈�,T 〉)(∃v ∈ A)M (n, v) and (∀n > |�|)(∀v ∈ A)(M (n, v) → n /∈ U 〈�,T 〉). We call
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such f and A witnesses that a 〈�, T 〉 satisfying the other requirements on Y 〈�,T 〉,
N 〈�,T 〉 and U 〈�,T 〉 is a condition. Note that f is uniquely determined but A need
not be.

Given this set of conditions, the forcing partial order is just the one defined by
the basic requirement for et-forcings in Definition 4.1.2.

Note that if 〈�, T 〉 is a condition with witnesses f and A and � ∈ T with |�| > |�|
then 〈�, T �〉 (as defined in Notation 4.3) is also a condition with the same A and a
slightly modified f′ as witnesses: let f′(v) = f(v) – |{n ∈ Y 〈�,T 〉| |�| ≤ n < |�| ∧
M (v, n)}|. Thus we have defined an et-forcing.

We now argue that we can describe a collection D of dense sets that guarantee
that any D-generic G determines (as described above) a locally finite subgraph H ′

of H which contains arbitrarily many disjoint rays.
First, we claim that for each vertex v and condition 〈�, T 〉 with witnesses A and

f as above there is a 〈�′, T ′〉 ≤ 〈�, T 〉 with witnesses f′ and A′ such that v ∈ A′.
In fact, it is easy to see from the definition of the allowed conditions that for any
v /∈ A〈�,T 〉, there is a T ′ ⊆ T such that 〈�, T ′〉 is a condition with witness f and
A′ = A ∪ {v}. We refine T by removing any � ⊃ � such that there is an n ≥ |�|
which is an edge containing v as a vertex such that both � � nˆ0 and � � nˆ1 are
in T and �(n) = 1. This moves n from U 〈�,T 〉 to N 〈�,T 〉 and so does not affect the
calculation of the required f.

So, by genericity (for these dense sets), for any vertex v there is a condition 〈�, T 〉
in the generic filter such that it has a witness A〈�,T 〉 containing v .

As for this enforcing local finiteness, consider any condition 〈�, T 〉 with witnesses
such that v ∈ A〈�,T 〉. We claim that for any G on T there are only finitely many n
withG(n) = 1 andM (v, n). Of course, there are at most |�| many edges n < |�| such

thatM (v, n). There are onlyf(v) many n ∈ Y 〈�,T 〉 = Y 〈�,T
′〉 such thatM (v, n) and

by our second condition about v ∈ A there are no n ∈ U 〈�,T 〉 such thatM (v, n). Of
course, there are no n ∈ N 〈�,T ′〉 such that G(n) = 1. (We have, in fact, uniformly
over all G on T calculated the number of n such thatM (v, n).)

Finally, we show that for each m ∈ N and condition 〈�, T 〉 with witnesses as
above, there is an extension 〈�, T ′〉 such that for any G on 〈�, T ′〉 the associated
graph contains m many disjoint rays.

By assumption there is a sequence 〈Vi , Ei , fi〉i<m+|�| of disjoint rays in H.
Obviously, there are at most |�| many n such that �(n) = 0. As each edge n can
appear in at most one Ei we can thin out the given sequence to one 〈V ′

i , E
′
i , f

′
i 〉i<m

of disjoint rays none of which contains an edge n for which �(n) = 0.
Next we deal with the conditions imposed by A〈�,T 〉. For each i < m we let

g(i) = 0 if no v ∈ A〈�,T 〉 is inV ′
i . Otherwise we let g(i) = max{n|f′

i (n) ∈ A〈�,T 〉 and
f′
i (n) ∈ V ′

i } + 1. Our construction so far guarantees that g : m → N is a member
of N . Thus we can thin out 〈V ′

i , E
′
i , f

′
i 〉i<m by taking the tail of each V ′

i beyond
g(i) to getV ′′

i = V ′
i – {f′

i (n)|n < g(i)},E ′′
i = E ′

i – {〈f′
i (n), f′

i (n + 1)〉 |n < g(i)},
and f′′

i (n) = f′
i (n + g(i)). Let E ′′ = ∪{E ′′

i |i < m}. This sequence clearly provides
m many disjoint rays in H. Thus (by genericity) it suffices to define a condition
〈�, T ′〉 ≤ 〈�, T 〉 such that E ′′ ⊆ Y 〈�,T

′〉 as then for any G on 〈�, T ′〉, G(n) = 1 for
all the edges n ∈ E ′′

i for every i < m and so 〈V ′′
i , E

′′
i , f

′′
i 〉i<m shows in N [G ] that

the subgraph H ′ of H associated with G has m many disjoint rays.
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The crucial point is that we have designed
〈
V ′′
i , E

′′
i , f

′′
i

〉
i<m

so that

E ′′ ∩N 〈�,T 〉 = ∅. Thus we may define a tree T ′ ⊆ T by simply removing all �
such that �(n) = 0 for some n ∈ E ′′. This change at most moves some edges
n ∈ U 〈�,T 〉 to Y 〈�,T

′〉 and makes Y 〈�,T
′〉 = Y = Y 〈�,T 〉 ∪ E ′′ as desired while

keeping N 〈�,T ′〉 = N 〈�,T 〉. If 〈�, T ′〉 is a condition, it clearly extends 〈�, T 〉 and so
we only have to verify that it is one. As we already have the required facts about
Y 〈�,T

′〉, N 〈�,T 〉, and U 〈�,T ′〉, we only need to supply witnesses f′ and A′. As we
have the witness f for 〈�, T 〉, to get f′ it clearly suffices to compute for each v
the number of n > |�| such that n ∈ E ′′ – Y 〈�,T 〉 and M (v, n). We begin with the

sequence
〈
V ′′
i , E

′′
i , f

′′
i

〉
i<m

of disjoint rays such that E ′′ = ∪{E ′′
i |i < m}. We first

determine those i for which v ∈ V ′′
i . (For the other j there are no n ∈ E ′′

j with
M (v, n).) As v appears in each of these V ′′

i only once, there are at most two such
edges in each of these E ′′

i . Using this information we can determine for which edges
n ∈ E ′′

i – Y 〈�,T 〉 we have M (v, n). As the E ′′
i are disjoint, we can now simply add

up the contributions (of one or two) from each E ′′
i – Y 〈�,T 〉 with v ∈ V ′′

i to get the

amount we need to add tof(v) to get the desiredf′(v). Finally, asN 〈�,T 〉 = N 〈�,T ′〉
and U 〈�,T ′〉 ⊆ U 〈�,T 〉, we can take the witness A for 〈�, T 〉 to also be the desired
witness A′ for 〈�, T ′〉. �

So solutions to all the LF principles can be provided by et-forcings. We would
like to draw the conclusions that give the conservation and preservation results of
Theorems 4.11–4.13 for all the LF principles. The problem is that they are not Π1

2-
principles. We actually needed two properties of principles to get the applications
we proved for Π1

2 principles.
One was that once a solution was provided in N [G ] by forcing, it remained a

solution in each later extension and so at the end. This was immediate from the
fact that the properties of interest were arithmetic and that the extensions preserved
the first order part of the model. This property still holds for the conclusions of
the LF principles as the conditions required of the constructed subgraph H ′ (local
finiteness) and the finite sequences 〈Vi , Ei , fi〉i<m (they are finite sequences of rays)
are also arithmetic.

The other property was that every instance of the problem that is in the final limit
model already appears in one of the models along the way. (This allows us to handle
all the instances that there are at end as we go along.) This property is not obvious
for the LF principles as the condition for H to be an instance is that H is a graph that
contains arbitrarily many rays and so of the form ∀m∃W (

〈
W [i ]|i < m

〉
is a sequence

of m many disjoint rays in H). It could be that for some graph H constructed along
the way the required Ws for each m ∈ N get constructed cofinally in the sequence
of extensions and so are instances in the limit model never solved along the way.
(There are special situations for which this cannot happen. One, in particular, is that
the failure of X to be an instance is equivalent to some trees T in the model with
H do not have branches in the model. Examples of this situation is TAC and its
variants in Proposition 5.13 and Definition 5.15. As et-forcings preserve this fact, H
would not be an instance in the limit stage model.) Here we provide a simpler more
generally applicable solution: extend the iteration to �1. (One can also get by with
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a countable iteration albeit longer than � by a look ahead procedure to make sure
possible instances with parameters that we have now but witnesses that may occur
later are handled now. The �1 iteration is, however, simpler and useful later.)

Theorem 5.2. Each of the LFXY principles is G-r-Π1
2 (and so G-r-Π1

1) conservative
over RCA0. Moreover, they can be realized in extensions that omit branches (and so
avoid cones) as in Theorem 4.13.

Proof. Continue the iteration by the et-forcings that provide solutions to an
instance of one of the LFXY principles through �1 many steps in such a way that
every H that appears as an instance at any Nα gets a solution in some N
+1 for

 ≥ α. At limit levels we still act continuously: N� is the union of the Nα for α < �.
Now ifH ∈ N�1 is an instance of the LFXY principle then, not only does H appear
in some Nα , but so do all the witnesses for H containing m many disjoint rays
for every m as there are only countably many m ∈ N and the full sequence is of
length �1. �

Theorem 5.3. All of the LFXY principles are ATHAs. Indeed, the conjunction of all
of them is an ATHA. Moreover, one can add on all other principles for which solutions
can be provided by any of et-forcings mentioned above (Cohen, Laver, Mathias, Sacks,
and Silver) while maintaining G-r-Π1

2 (and so G-r-Π1
1) conservativity over RCA0 and

realizations by extensions that omit branches (and so avoid cones). One can also
add WKL to the theory while maintaining G-r-Π1

1 conservativity and realizations by
extensions that avoid cones. Thus even with WKL added the conjunction of all of these
principles still do not prove ACA0 and remain an ATHA.

Proof. Each of these four principles together with ACA0 is a THA by
Proposition 3.6. By Theorem 5.2, none of them imply ACA0. Combining them
and any other principles for which solutions can be added by et-forcings and even
WKL by �1 iterations is routine following the route indicated in Remark 4.14 and
the comments proceeding it for � length iterations. �

We now turn to other examples from the work on Halin type theorems as well as
direct variations of choice principles. The guiding idea here is that when a principle
calls for a solution which is a sequence Xi of sets each satisfying some property
Ψ(i, X ) we are willing to accept some variations. One is that we accept a sequence
Yi such that each Yi differs from an Xi as required by a finite set. The other
basic variation is that we allow the desired witnesses to be arbitrarily distributed
among the Yi . That is, for each i there is a j such that Ψ(i, Yj). We designate
these modifications of a principle P by P∗ and P–, respectively. Of course, we could
also consider allowing both changes: the list contains a finite variant of each Xi .
The proof of the following implication shows that nothing new appears with this
combination.

Proposition 5.4 (RCA0). For any principle P whose conclusion asks for a sequence
Xi such that ∀iΨ(i, Xi), P∗ → P–.

Proof. Take the solutions Yi given by P∗ and construct the sequence Yi,� for
each finite (binary) string � with Yi,�(n) = �(n) for n < |�| and Yi,�(n) = Yi(n) for
n ≥ |�|. �
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We begin with a principle from BGS that we examined for locally finite graphs
in Proposition 3.3. It extracts the use of Σ1

1-AC needed to prove the Halin-type
theorems IRTXY in ACA0 as in BGS [Theorem 8.2].

Definition 5.5 (SCRXY ). If an X -graph G has arbitrarily many Y -disjoint X -
rays then there is a Z such that, for each k, Z [k] is a sequence 〈Zk,i |1 ≤ i ≤ k〉 of
pairwise Y -disjoint X -rays in G.

We note a couple of facts about SCRXY from BGS [Proposition 7.3 and Corollary
7.4] that include its being a THA and then a couple of variations along the lines
described above that produce ATHAs.

Proposition 5.6. (RCA0) SCRXY → ACA0.

Corollary 5.7. (RCA0) SCRXY ⇔ IRTXY .

Definition 5.8. A sequence 〈xn〉 of vertices in an X -graph G is almost an X -ray
in G if, for some k, 〈xk+n〉 is an X -ray in G. A sequence 〈Xn〉 of almost X -rays 〈xn,i〉
is almost Y -disjoint if for every n �= m there are only finitely many i, j such that
xn,i = xm,j (for Y = V ). For Y = E we require that there are only finitely many i, j
such that (xn,i , xn,i+1) = (xm,j , xm,j+1).

Definition 5.9 (SCR∗
XY ). If an X -graph G has arbitrarily many pairwise almost

Y -disjoint almost X -rays then there is a Z such that, for each k, Z [k] is a sequence
〈Zk,i |1 ≤ i ≤ k〉 of pairwise almost Y -disjoint almost X -rays in G. (Note the use of
∗ here and in later such principles is suggested by the common usage of =∗ to mean
equal up to finite difference and is not related to the induction axioms characterizing,
e.g., ACA∗

0 and related principles in BGS.)

Definition 5.10 (SCR–
XY ). If an X -graph G has arbitrarily many pairwise almost

Y -disjoint almost X -rays then there is a Z such that, for each k, there is an l such
that Z [l ] is a sequence 〈Zk,i |1 ≤ i ≤ k〉 of pairwise almost Y -disjoint almost X -rays
in G.

Clearly each of ACA0 + SCR∗
XY and ACA0+SCR–

XY imply SCRXY , a THA. Thus
to show that SCR∗

XY and SCR–
XY are ATHAs, we only have to show that they do

not imply ACA0. As should be expected, all eight variants have solutions provided
by et-forcings and so satisfy all the conclusions of Theorems 4.11 –4.13. However,
instead of presenting specific forcing notions for them we turn to Σ1

1-AC. It is clear
that it implies SCRXY . The ∗ and – analogs for it also imply those of SCRXY and
we provide the notions of forcing for them instead. This then shows that all of
these principles are ATHAs. We will then consider other well studied weakenings of
Σ1

1-AC which are THAs but whose ∗ and – analogs will also be ATHAs. In the next
section we turn to stronger versions of choice which are too strong to be THAs but
whose ∗ and – variants also have all of the same weakness properties over RCA0.

Remark 5.11. We make an brief exception to Remark 2.6 to sketch one
consideration of double rays in directed graphs because we can get ATHAs which
yield equivalences with a standard theory. We say a sequence 〈xn|n ∈ Z〉 of vertices
in a D-graph G is almost a double directed ray in G if changing finitely many of the xn
to a different vertex or removing it from the list (and reindexing) produces a double
directed ray. From the natural analogs SCRDYD for double Y -disjoint directed rays
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we form the analogous SCR∗
DYD and SCR–

DYD where, as we have allowed removing
vertices in the definition of almost rays, we use full Y -disjointness. As for SCRXY ,
these are also consequences of Σ1

1-AC∗
0 and Σ1

1-AC–
0, respectively and so weak over

RCA0. On the other hand, it is easy to see from the proof of BGS [Theorem 6.13] that,
as for SCRXY , SCR∗

DYD , and SCR–
DYD restricted to directed forests (i.e., directed

graphs whose underlying graph gotten by symmetrizing the edge relation is a disjoint
union of trees) plus ACA0 is equivalent to Σ1

1-AC0 over IΣ1
1. Thus we have two more

mathematical ATHAs for which we actually know that, with the addition of ACA0,
they are equivalent to Σ1

1-AC0 over IΣ1
1.

As there is some variation in the formulations of these principles in the literature,
we want to make the versions and the relations among them explicit. We begin with
Σ1

1-AC itself which is a THA.

Definition 5.12. Σ1
1-AC is the principle ∀A[∀n∃XΦ(n,X ) → ∃Y∀nΦ(n,Y [n])].

Here Φ is an arithmetic formula possibly with free set variables A and X but not Y.
(We take these restrictions on the free set variables for granted in all future similar
situations.) Equivalently (over RCA0), we may allow Φ to be Σ1

1.

One direction of this equivalence in RCA0 is immediate as all arithmetic
formulas are trivially equivalent to Σ1

1 formulas. For the other direction con-
sider Φ = ∃ZΨ(A, n,X,Z) (Ψ arithmetic). One simply considers the instance
∀n∃XΨ(A, n,X [0], X [1]). Clearly one can recursively recover the Y required for
Φ from the one given by Σ1

1-AC for Ψ(A, n,X [0], X [1]). We choose the version with
Φ arithmetic to match the common terminology for weak Σ1

1-AC (U-Σ1
1-AC below).

On the other hand, there is another common a priori weaker version for which the
proof of the equivalence uses ACA0. This is not an issue for Σ1

1-AC as even this
“weaker” version implies ACA0. This will no longer be true of our ∗ and – variants.

Proposition 5.13 (ACA0). Σ1
1-AC is equivalent to the principle TAC: For every

sequence Ti of trees, if ∀n∃f(f ∈ [Ti ]), then ∃f∀n(f[n] ∈ [Tn]).

This proposition is well known and follows easily from the normal form theorem
proved in ACA0 as Lemma V.5.4 of [28].

We now define our variants of Σ1
1-AC.

Notation 5.14. For a function f, finite string � (or set X), and � a finite (binary)
string we write f� , �� (or X�) to mean the function, finite string (or set) gotten by
using � to define its initial segment of length |�|: f�(i) = �(i) for i < |�|, f�(i) =
f(i) for i ≥ |�| and similarly for �� and X� . We write f[n]

� for (f[n])� and X [n]
� for

(X [n])� . Similarly, for a tree T we write T� = {�� |� ∈ T}. We write T�	 for (T�)	
where T� is defined in Notation 4.3.

Definition 5.15. For Φ arithmetic:
Σ1

1-AC∗: ∀A[∀n∃XΦ(A, n,X ) → ∃Y∀n∃�Φ(A, n,Y [n]
� )] and

Σ1
1-AC–: ∀A[∀n∃XΦ(A, n,X ) → ∃Y∀n∃mΦ(A, n,Y [m])].

TAC∗: For every sequence 〈Tn〉 of trees, if ∀n∃f(f ∈ [Tn]) then ∃f∀n∃�(f[n]
� ∈

[Tn]).

TAC–: For every sequence 〈Tn〉 of trees, if ∀n∃f(f ∈ [Tn]) then ∃f∀n∃m(f[m] ∈
[Tn]).
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As with Σ1
1-AC, Σ1

1-AC∗ and Σ1
1-AC– are each equivalent (over RCA0) to the

analogous principle with Φ being Σ1
1.

Proposition 5.16. In RCA0, Σ1
1-AC → Σ1

1-AC∗ → Σ1
1-AC – & TAC∗; Σ1

1-AC – →
TAC –; TAC∗ → TAC – and TAC – →TAC∗. In ACA0 all of these principles are
equivalent to Σ1

1-AC.

Proof. The implication Σ1
1-AC→ Σ1

1-AC∗ is immediate as solutions to instances
of the former are also solutions to the same instance of the latter. The implications
from a ∗ version to the corresponding – one in RCA0 are essentially instances
of Proposition 5.4. Of course, the versions of TAC are simply special cases of
the corresponding one for Σ1

1-AC. (The 〈Ti〉 is absorbed into the set parameters.)
For the equivalences in ACA0 it thus suffices to show that TAC– → Σ1

1-AC0. First
note that TAC follows from TAC– in ACA0 as, given an instance of TAC and
the f provided by TAC–, one can construct the one required by TAC recursively
in the jump of f and the given sequence of trees. Now we have Σ1

1-AC by
Proposition 5.13.

Finally that RCA0 � TAC– → TAC∗ requires an argument that does not work for
the Σ1

1-AC analogs. We are given a sequence 〈Tn〉 of trees such that ∀n∃f(f ∈ [Tn])
and an f such that ∀n∃m(f[m] ∈ [Tn]) and must produce a g such that ∀n∃�(g [n]

� ∈
[Tn]. To construct g [n] we start by copying f[0] until we have an s0 such that f[0] �
s0 + 1 /∈ Tn. If we never find such an s we have computed a branch on Tn and so
g [n] = g [n]

∅ is as required. If we find such an s0 we switch to copying f[1] for inputs
from s0 onward. We continue until we once again fall off Tn, i.e., f[1] � s1 + 1 /∈ Tn.
By the conclusion of TAC – from some point onward there is a fixed m such that we
are copying f[m] and f[m] ∈ [Tn]. We have thus constructed a g such that g� ∈ [Tn]
with � = f[m] � sm–1. �

We do not know if RCA0 � Σ1
1-AC– → Σ1

1-AC∗. We also note other views of
Σ1

1-AC∗ and Σ1
1-AC–.

Proposition 5.17. In RCA0, Σ1
1-AC∗ is equivalent to Σ1

1-AC restricted to predicates
Φ(A, n,X ) that are invariant under finite changes in X, i.e.,∀A∀n∀X∀�(Φ(A, n,X ) ⇔
Φ(A, n,X�)).

Proof. If a given instance Φ(A, n,X ) of Σ1
1-AC is invariant under finite changes

then a solution for the same instance of Σ1
1-AC∗ is also one for Σ1

1-AC. In the other
direction, given an instance Φ(A, n,X ) of Σ1

1-AC∗, consider the one Ψ(A, n,X ) ≡
∃�Φ(A, n,X�) for Σ1

1-AC. Clearly Ψ(A, n,X ) is closed under finite changes and
any Σ1

1-AC solution for Ψ is also a Σ1
1-AC∗ solution for the Σ1

1-AC∗ instance
Φ(A, n,X ). �

As for Σ1
1-AC–, when we told some people about some of the results in this paper

both Antonio Montalbán and Keita Yokoyama informed us of some early work by
Tanaka, Yamazaki, and Montalbán on variations of choice principles. In particular,
they considered Σ1

1-AC– under the natural name Σ1
1-collection as well as the natural

generalizations we call Σ1
n-AC– and Σ1

∞-AC– under the names Π1
n-collection and

Π1
∞-collection and proved several conservation results. We discuss those results in

Section 7.
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Theorem 5.18. For each of the ∗ and – versions of Σ1
1-AC in Definition 5.15

solutions can be provided by et-forcings. Thus they are G-r-Π1
2 (and so G-r-Π1

1)
conservative over RCA0. Moreover, they can be realized in extensions that omit
branches (and so avoid cones) as in Theorem 4.13.

Proof. By Proposition 5.16 it suffices to prove the theorem for Σ1
1-AC∗. Given a

countable model N of RCA0 and an arithmetic Φ such that N � ∀n∃XΦ(A, n,X )
we define a forcing with conditions 〈�, T 〉 such that, in N , there is a finite set F and
a sequence 〈Xi |i ∈ F 〉 such that ∀i ∈ FΦ(A, i, Xi ) and for all � ∈ T , |�| > n ≥ |�|
with n = 〈i, m〉 for some i ∈ F , �(n) = Xi(m). (Otherwise there are no restrictions
on �.)

It is now easy to see that the associated notion of forcing is et: If 〈�, T 〉 is a
condition and � ∈ T then 〈�, T �〉 is a condition with the same F and Xi which
extends 〈�, T 〉. It is also clear the sets Di of conditions such that i is a member
of the associated F are dense. (Just thin out a given 〈�, T 〉 by choosing an Xi
such that Φ(A, i, Xi) and keeping only those � ∈ T which satisfy the condition that
�(〈i, m〉) = Xi(m) for 〈i, m〉 ≥ |�|.) Moreover, for any G on this thinned out tree,
G [i ] =∗ Xi . Thus for any G generic for these Di , G is the desired witness for this
instance of Σ1

1-AC∗.
The argument in the proof of Theorem 5.2 now shows that all the desired

properties hold for these choice principles as well. �

We now turn to Σ1
1-AC itself and some of its choice like consequences. Each of

them has versions with the property Ψ(i, Y ) required of the Xi being arithmetic or
equivalently Σ1

1 and versions with it being Π0
2 or equivalently asking for a branch on

a tree Ti in a uniform sequence of trees. These are easily seen to be equivalent over
ACA0 but not over RCA0. In particular, we want to consider the versions where
we restrict the principles to Φ such that, for each n, there are only finitely many X
for which Φ(A, n,X ) holds (F-Σ1

1-AC) or exactly one such X (U-Σ1
1-AC) which is

generally called weak Σ1
1-AC. These can also be phrased in terms of sequences 〈Ti〉

of trees as in TAC by restricting to Ti with only finitely many or exactly one branch.
We will explicitly just consider the Σ1

1-AC versions. We are here interested in the
∗ and – versions.

Theorem 5.19. RCA0 � Σ1
1-AC∗ → F-Σ1

1-AC∗ → U-Σ1
1-AC∗. None of these

implications can be reversed and all of these principles are ATHAs. The same holds for
the – versions.

Proof. We consider the ∗ versions but all the arguments apply to the – ones as
well.

It is obvious that Σ1
1-AC0 → Σ1

1-AC∗ → F-Σ1
1-AC∗ → U-Σ1

1-AC∗ in RCA0. As
in Proposition 5.16, it is easy to see that with the addition of ACA0 each of the
∗ principles is equivalent to the standard unstarred version. Each of the standard
principles is a THA (see [21, p. 564], the references therein, and [9]). Theorem 5.18
shows that none of them implies ACA0 (over RCA0) and so are all ATHAs. The
known separations of all of the unstarred versions provide witnesses that are even
standard models of much more than ACA0 (see [9, 30, 31]). They then are also
witnesses for the nonimplications among the ∗ versions. �
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§6. Higher choice principles. In this section we want to study the ∗ and – variations
of choice principles that replace the arithmetic formulas Φ and Ψ in Σ1

1-AC
by arbitrary formulas. The usual terminology has Σ1

n+1-AC being the principle
∀A[∀n∃XΦ(A, n,X ) → ∃Y∀nΦ(A, n,Y [n])] for Φ Σ1

n+1. As with Σ1
1 these and their

∗ and – versions are equivalent to the ones with Φ being Π1
n. We take the Π1

n versions
to be our official definitions for notational convenience. As usual Σ1

∞-AC is the
union of all the Σ1

n+1-AC and so for the ∗ and – versions. The variations on these
principles supply us with another collection of principles that are very weak over
RCA0 but very strong over ACA0. At the end we have Σ1

∞-AC∗ (and so Σ1
∞-AC–)

which have solutions produced (in a new sense) by et-forcings and for which we
argue for all the properties guaranteed for Π1

2 principles by Theorems 4.11–4.13.
The forcing notions are quite straightforward. The argument that the property holds
at the limit of even an �1 length iteration, however, needs a new twist.

For Σ1
∞-AC– actually, there is a very simple known et-forcing that does more

and requires no new ideas. The small trick is that one adds to a given countable
N � RCA0 a generic G such that ∀A ∈ S(N )(∃i)(A = G [i ]). The conditions are
just 〈�, T 〉 with T a binary tree such that, in N , there is a finite set F and a
sequence 〈Ai |i ∈ F 〉 such that for � ∈ T with |�| > 〈i, n〉 ≥ |�| (i ∈ F and n ∈ N ),
�(〈i, n〉) = Ai(n). Otherwise, for � ⊇ � there are no restrictions on � ∈ T . Clearly
this forcing adds a G as required. Iterating this forcing �1 many times gives a model
N�1 of Σ1

∞-AC –: For any instance specified by ∀n∃XΦ(A, n,X ) with A ∈ N�1 and
so A ∈ Nα for α countable, witness Xn that ∃XΦ(n,X ) for each n appear in some
N
 for a countable 
 . Thus each is a G [k]


+1 for some k as required by Σ1
∞-AC –.

Our proof for Σ1
∞-AC∗ requires more interesting twists and we present it in detail.

As Σ1
∞-AC∗ implies all of the other principles in RCA0, proving the conservation

results for it implies them for the others. Thus we need not expand on the sketch
just given for Σ1

∞-AC–.

Theorem 6.1. For N a countable model of RCA0, and any second order Φ such
that N � ∀k∃XΦ(A, k,X ) and N ′ a countable extension of N satisfying RCA0 with
the same first order part as N , there is an et-forcing P over N ′ with an appropriate
collection D of dense sets such that for any D-generic G,G [k] ∈ S(N ) for every k ∈ N
and for every k ∈ N , N � ∃�Φ(A, k,G [k]

� ).

Proof. Forcing conditions are like those described above for Σ1
1-AC–but tied to Φ

and A: 〈�, T 〉withT a binary tree such that there is, inN , a finite set F and a sequence
〈Xi |i ∈ F 〉 such N �Φ(A, i, Xi ) for every i ∈ F and for � ⊇ � and |�| = 〈i, n〉 ≥ |�|,
if i ∈ F ,�ˆj ∈ T ⇔ j = Xi(n). For other 〈i, n〉, both�ˆ0 and�ˆ1 are in T. While this
forcing is not in general definable overN ′ as it refers to membership inN , it is clearly
an et-forcing over N ′ as each condition is in N ⊆ N ′ and � ∈ Ext(〈�, T 〉) ⇔ � ∈ T
as then 〈�, T�〉 ≤ 〈�, T 〉. Moreover, the sets {〈�, T 〉 |i ∈ F〈�,T 〉} are clearly dense for
each i (again even if not definable over N ′). Thus, for any D-generic G where D
includes these sets, it is clear that G [i ] =∗ X for some X such that N � Φ(A, i, X )
as required for G to satisfy the desired property. �

We now wish to iterate this theorem to produce the desired extension N�1 � Σ1
∞ –

AC ∗.
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Theorem 6.2. If N is a countable model of RCA0 then there are extensions Nα for
α < �1 with the same first order part asN such that∪{Nα |α < �1} = N�1 �RCA0 +
Σ1
∞-AC∗ generated by extensions via et-forcings which therefore omits branches (and

so avoids cones). Thus Σ1
∞-AC∗ is also G-r-Π1

2 (and so G-r-Π1
1) conservative over

RCA0.

Proof. We define a sequence Nα , α < �1 of countable models of RCA0 with
the same first order part. We begin with N0 = N . Given Nα we list the countably
many instances given by Aj and Φj for j ∈ � such that Nα � ∀k∃XΦj(Aj, k, X ).
We then define an � length iteration to construct Nα,l starting at Na,0 = Nα and
taking Nα,l+1 to be an extension of Nα,l by a generic for the forcing described above
for the lth instance of ∀n∃XΦ(A, n,X ) in Nα . We set Nα+1 = ∪{Nα,l |l ∈ �}. As we
use et-forcings, all the conditions needed for our conclusions are met along the way
and at N�1 = ∪{Nα |α < �1}.

All that needs to be verified here beyond what was done for Σ1
1-AC∗ is that N�1 �

Σ1
∞-AC∗. The crucial fact here is that the α such that Nα is an elementary submodel

of N�1 (in the full second order language) include a closed unbounded set. With this
in mind, consider any A ∈ N�1 and Φ(A, n,X ) such that N�1 � ∀n∃XΦ(A, n,X ).
Take an α such that A ∈ Nα which is an elementary submodel of N�1 and so also
satisfies ∀n∃XΦ(A, n,X ). Our construction therefore guarantees that there is an
l and a Z ∈ Nα,l so that for every n ∈ N , Z [n] ∈ Nα and Nα � ∃�Φ(A, n,Z [n]

� ).
As A,Z ∈ N�1 which is an elementary extension of Nα , we now have that N�1 �
∃�Φ(A, n,Z [n]

� ) for every n ∈ N and soN�1 � ∃Z∀n∃�Φ(A, n,Z [n]
� ) as required. �

Theorem 6.3. For each n ∈ �, ACA0 � Σ1
n+2-AC∗ → Σ1

n+2-AC– → Σ1
n+1-CA0 and

so ACA0 � Σ1
∞-AC∗ → Σ1

∞-AC– → Σ1
n+1-CA0.

Proof. The implication Σ1
n+2-AC∗ → Σ1

n+2 -AC– is Proposition 5.4. We prove
Σ1
n+2-AC– → Σ1

n+1-CA0 in ACA0 by induction on n. Consider ∃XΨ(k,X ) for a
Π1
n formula Ψ (Π1

0 is arithmetic). We want to prove that there is a set R =
{k|∃XΨ(k,X )}. Define Φ(k,X ) as Ψ(k,X ) ∨ (X = ∅ ∧ ¬∃Y�(k,Y )). Clearly
Φ is Π1

n+1 and ∀k∃XΦ(k,X ). Thus we may apply Σ1
n+2-AC– to get a set Z

such that ∀k∃mΦ(k,Z [m]). Thus k ∈ R⇔ ∃XΨ(k,X ) ⇔ ∃mΨ(k,Z [m]). Now S =
{〈k,m〉 |Ψ(k,Z [m])} is Π1

n and so exists by induction. (For n = 0 this is ACA0.) And
so R = {k|∃m(〈k,m〉 ∈ S} exists by ACA0. �

Thus we have whole hierarchies of principles that are very weak over RCA0 but
very strong over ACA0 and indeed equivalent to a hierarchy of standard systems. At
the end, Σ1

∞ – AC ∗ and Σ1
∞-AC– are G-r-Π1

2 conservative over RCA0 with extensions
omitting branches but, over ACA0, are both equivalent to Σ1

∞ – AC∞ and so strictly
stronger than full second order arithmetic (Feferman and Levy; see [28, Remark
VII.6.3]). We view these results and the ones on ATHAs that are equivalent to
known THAs over ACA0 as supplying answers to the question raised by Hirschfeldt
and repeated in [22] by providing an ample list of many pairs of principles that are
very different over RCA0 but equivalent over ACA0. It could well be argued that
these weak ones should really be seen as the same as their strong counterparts in an
analysis that works over ACA0 rather than RCA0.
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§7. Tanaka conservativity. We close with some words about earlier work on the
collection axioms (Σ1

n-AC– and Σ1
∞-AC–) and another type of conservation result

that was brought to our attention by this work which applies to all the principles we
have investigated here.

The work by Tanaka, Montalbán, and Yamazaki on conservativity of Σ1
∞-AC– (or

as they call it, Π1
∞ collection) over RCA0 has, far as we have determined, never been

published. The only source I have access to is a set of slides from a talk by Yamazaki
[33] sent to me by Keita Yokoyama. Based on those slides, the methods used seem
considerably more complicated than the ones presented here. In particular, to prove
Π1

1 conservativity they seem to restrict attention to principle models of RCA0 (ones
with a single set such that every set in the model is recursive in it) and use both Π0

1
forcing (i.e., infinite binary trees recursive in a single set) and forcing with uniformly
pointed perfect trees along with �1 iterations. (Of course, the slides just outline
proofs at best.)

Our proofs, certainly for Σ1
∞-AC– and, I would say, even for Σ1

∞-AC∗, are much
simpler. Yamazaki does get more by including WKL0 as well (and so the use of Π0

1
forcing makes sense). We have already pointed out that for Π1

1 conservativity, we
can easily add solutions to WKL to our constructions with its own forcing notion
(with Π0

1 classes) to get this Π1
1 conservativity result and the same one for Σ1

∞-AC∗.
Yamazaki does not consider r-Π1

2 conservativity although he does present an analog
of minimal pairs for models of WKL0 from [29]. They are used in STY even in
their proof of Π1

1 conservativity. I expect this analysis was motivated in the same
way as in STY by the desire to prove a different kind of conservativity over RCA0

conjectured for WKL0 by Tanaka and proved in STY. We establish this conservation
result for Σ1

1-AC∗ and indeed for all principles we have analyzed using forcing.
Moreover, we prove both a generalization of Tanaka conservativity analogous to
our generalization for Π1

1 conservativity (Definition 4.9 and Theorem 4.11) and
a more inclusive variation analogous to our generalization of r-Π1

2 conservativity
(Definition 4.10 and Theorem 4.12). (This one fails for WKL as for the previously
mentioned r-Π1

2 conservativity as it is more general.)

Definition 7.1. Tanaka conservativity means conservativity for all sentences of
the form ∀X∃!YΦ(X,Y ) for arithmetic Φ. We define G-Tanaka conservativity to be
conservativity for sentences in the class of G-Tanaka formulas which are formed by
closing the quantifier free formulas and those of the form ∃!YΦ(Y ) for arithmetic Φ
under the same operations as for G-Π1

1 in Definition 4.9 (∧, ∨, ∀x, ∃x, and ∀X ). We
define the G-r-Tanaka formulasas we did the G-Tanaka ones but including formulas
of the form ∃!Y∃ZΨ(x̄, Y,Z) with Ψ a Σ0

3 formula in the base class of formulas
(and then closing under ∧, ∨, ∀x, ∃x, and ∀X ). G-r-Tanaka conservativity is then
defined as usual.

Remark 7.2. Tanaka conservativity was called Uniq conservativity in [34]. He
studied it primarily for Π1

2 principles including WKL, COH, RCA+ (or Π1
∞G) over

RCA0 + IΣ0
n and he cites earlier work of Kihara [18] on COH and Yamazaki [32] on

RCA+ and unpublished work on COH. We thank Yokoyama for these references as
well.

It is clear that G-r-Tanaka conservativity includes all the other versions defined
here as well as those in Section 4. We prove these conservativity results by isolating

https://doi.org/10.1017/jsl.2022.58 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.58


ALMOST THEOREMS OF HYPERARITHMETIC ANALYSIS 691

one extra property of et-forcings needed to carry out the proof and note that the
et-forcings used for our Σ1

∞ – AC ∗ results as well as all the others in this paper have
this property. The idea is that for any condition 〈�, T 〉 the subtrees above any two
	, � ∈ T of the same length look the same. Although stronger or simpler restrictions
can be given that fit most of our examples, we formulate “look the same” in a fairly
general way that matches our overall approach to et-forcings yet is strong enough
to eliminate some technical problems.

Definition 7.3. An et-forcing P is uniform (a uet-forcing) if, for every condition
〈�, T 〉, every 	, � ∈ Ext(〈�, T 〉) with |	| = |�|, and every 〈	′′, R′′〉 ≤ 〈	′, R′〉 ≤
〈�, T 〉 with 	 ⊆ 	′, 〈	′′� , R′′

� 〉 ≤ 〈	′�, R′
�〉 ≤ 〈�, T 〉. (Of course, then � ⊆ 	′� .) As a

technical convenience we add on another condition that clearly cannot change the
results of a forcing construction: If 〈�, T 〉 ∈ P and the stem of T is some � ⊃ � then
〈	, T 〉 ≤ 〈�, T 〉 whenever � ⊇ 	 ⊇ �.

The crucial lemma that we need about uet-forcings is the following:

Lemma 7.4. Suppose P is a uet-forcing (over a countable N �RCA0) and D is a
countable collection of dense sets. We can extend D to another countable collection of
dense sets D′ such that for any 〈�, T 〉 ∈ P , 	, � ∈ Ext(〈�, T 〉) of the same length and
D′-generic G ⊇ 	 whose generic filter contains 〈�, T 〉, G� is D-generic.

Proof. We want to guarantee that for any G ⊇ 	 with a D′-generic sequence〈
	i , Ri

〉
(i.e., for each D′ ∈ D′, there is an i such that

〈
	i , Ri

〉
∈ D′) all extending

〈�, T 〉 and wlog 	i ⊇ 	,
〈
	i�, R

i
�

〉
is a D-generic sequence. It is a decreasing sequence

of conditions all extending 〈�, T 〉 by uniformity. Of course, its generic (∪	i�) is G�
as required. Consider then any D ∈ D. We want an m such that 〈	m� ,Rm� 〉 ∈ D. We
define aD′ by removing all 〈�′, T ′〉 ≤

〈
	0, R0

〉
from D and adding in

〈
�′	, T

′
	

〉
for each

〈�′, T ′〉 ≤
〈
	0
�, R

0
�

〉
in D.

Now if D′ is dense we can put it into D′. On this assumption, we have an m
such that 〈	m,Rm〉 =

〈
�′	, T

′
	

〉
for some 〈�′, T ′〉 ≤

〈
	0
�, R

0
�

〉
in D. Now 〈	m� ,Rm� 〉 =〈

(�′	)�, (T
′
	)�

〉
= 〈�′, T ′〉 ∈ D as required. (Note that �′ ⊇ 	0

� ⊇ � so (�′	)� = �′ as
|�| = |	|.)

All that remains is to prove that each such D′ is dense. Consider any 〈�, T 〉. If it
is incompatible with

〈
	0, R0

〉
then any extension in D is in D′. Otherwise we have a

〈�′, T ′〉 extending both. By uniformity, 〈�′�, T ′
�〉 ≤

〈
	0
�, R

0
�

〉
. By the density of D we

have a 〈�′′, T ′′〉 ≤ 〈�′�, T ′
�〉 in D. So by uniformity again,

〈
�′′	 , T

′′
	

〉
≤ 〈(�′�)	, (T ′

�)	〉 =
〈�′, T ′〉 as required. �

Up until now we have not needed more about forcing than the starting level for
Σ0

1 sentences. For Theorem 7.5 we need to be able to handle all arithmetic sentences.
Rather than try to give formal definitions for models N of RCA0 (of which there are
several in the literature of reverse mathematics) we just note the relevant properties.
Typically one considers forcings which are at least definable. While most of the ones
we have used are definable, the one for Σ1

1-AC∗ was not. Now one can make due with
definable forcings there by at every even stage or limit stage � first using the forcing
defined for Σ1

1-AC– that makes everyA ∈ N� a column ofG�+1. Then one can define
the forcing we wanted to use at each successor stage for Σ1

1-AC ∗ for the G�+n+2

and defining the forcing over N�+n+1 where one can quantify over sets in N� by
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using G�+1 as a parameter. However, we claim that this is not really necessary to get
the required properties of forcing. What we want to know is that we can define the
forcing relation 〈�, T 〉 � Θ starting at the Σ0

1 level as before so that there it depends
only on the � in our conditions 〈�, T 〉 in N and implies truth for all extensions of �.
(This level includes what we have already assumed about members of N [G ] being of
a form that we think of as ΦA⊕Ge for e ∈ N and A ∈ S(N ) in a way that only relies
on the initial segments � of G in the conditions in the generic filter.) We can then
continue on up the arithmetic hierarchy so as to guarantee the density of conditions
deciding each sentence and forcing equals truth for all sufficiently generic sets. (So
for G generic, N [G ] � Θ if and only if there is a condition 〈�, T 〉 in the generic filter
such that 〈�, T 〉 � Θ.) We are not concerned with the level of the definability of the
forcing relation (or even with the notions being definable over N at all).

If one wanted to be more specific, we would deal only with prenex normal
sentences and take negation to be a shorthand for the prenex normal equivalent
of the negation of the given sentence. At the Π0

1 level we explicitly define 〈�, T 〉 �
∀xΦ(x,G) as there being no � ∈ Ext(〈�, T 〉) and no n such that � � ¬Φ(n,G). We
then proceed by induction on the number of quantifiers in our prenex normal Φ
as usual: 〈�, T 〉 � ∃xΨ(x,G) if 〈�, T 〉 � Ψ(n,G) for some n; 〈�, T 〉 � ∀xΨ(x,G)
if there is no 〈�′, T ′〉 ≤ 〈�, T 〉 and no n such that 〈�′, T ′〉 � ¬Ψ(n,G). In any case,
there are countably many dense sets that guarantee the every arithmetic sentence
about G (with parameters from the ground model N ) or its negation is forced and
that being forced is equivalent to the sentence being true in the generic extension. We
assume that all generics in the rest of this section are generic for all these dense sets
as well as the ones of Theorems 4.5.1 and 4.5.2 for all trees in N with no branches
in N .

We can now state the main property need for our conservation results.

Theorem 7.5. For any countable model N of RCA0 and any extension N∞
constructed at each successor stage α + 1 via a uet-forcing and any G-r-Tanaka
sentence Λ, if N � ¬Λ then N∞ � ¬Λ.

Proof. The argument for quantifier free sentences is as in Theorem 4.11 as are
the inductive cases for∧,∨,∃x,∀x, and∀X . We need to verify the claim for sentences
of the form ∃!YΦ(Y ) for arithmetic Φ and ∃!Y∃ZΨ(Y,Z) with Ψ a Σ0

3 formula
(each with constants for elements of N and S(N )).

Consider first one of the forms ∃!YΦ(Y ) for arithmetic Φ. If there are two Y inN
such that N � Φ(Y ) then they also satisfy the same sentence in N∞ for the desired
contradiction. So we assume there is no such Y in N while there is (exactly) one, say
V, in N∞. So there is a least α such that V ∈ Nα+1 = Nα[G ]. (We write G for Gα
for notational convenience.) Let V = ΦA⊕Ge for some A ∈ S(Nα) and vn = V (n).

We now take a 〈�, T 〉 in the generic filter for G (for the forcing used over Nα) such
that 〈�, T 〉 � ∀x(ΦA⊕Ge (x) = 0 ∨ ΦA⊕Ge (x) = 1) ∧ Φ(ΦA⊕Ge ). For each n we have a
〈�n, Tn〉 in the generic filter for G (and so wlog extending 〈�, T 〉) such that �n �
ΦA⊕Ge (n) = vn. Much as in the proof of Theorem 4.5, if there is no �′ ∈ Ext(〈�, T 〉)
and n such that �′ � ΦA⊕Ge (n) = 1 – vn then V = ΦA⊕Ge ∈ Nα for a contradiction.
By the definition of uet-forcings we may choose 〈�′, T ′〉 ≤ 〈�, T 〉 and m ≥ n such
that |�m| = |�′| = k > |�|. As G ⊇ �m is generic, G�′ is generic for the dense sets
deciding all arithmetic formulas and so as 〈�, T 〉 is also in the filter forG�′ ,Nα[G�′ ] �
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∀x(ΦA⊕Ge (x) = 0 ∨ ΦA⊕Ge (x) = 1) ∧ Φ(ΦA⊕Ge ). AsG�′ differs from G by a finite set,
it is also in Nα[G ] = Nα[G�′ ] = Nα+1. Thus in Nα+1, ΦA⊕Ge = V ′ and ΦA⊕Ge = V
both exist, are different at n, and are witnesses for the arithmetic formula Φ(Y ).
Thus they remain such in N∞ for a contradiction.

We now turn to the case for Λ of the form ∃!Y∃ZΨ(Y,Z) for a Σ0
3 formula Ψ. As

in the previous case we have a least α such that there is witness V for Y in Nα+1. If
there is also a witness U for Z in Nα+1 then essentially the same argument as above
(writing U as ΦB,Gi ) shows that there are two distinct witnesses V and V ′ in Nα+1

which have witness U and U ′ such that Nα+1 � Ψ(X,V,U ) ∧ Ψ(X,V ′, U ′) which
again provides the contradiction to there being only one witness for Y in N∞. On
the other hand, as in the proof of Theorem 4.12, if there is no such U in Nα+1 then,
for every k, the tree in Nα+1 (recursive in V) associated with k being a witness for
the Σ0

3 formula Ψ has no branch in Nα+1. By Theorem 4.5.3 the nonexistence of a
branch in any of these trees is propagated through the iteration and so V has no
witness for Z in N∞ for another contradiction. �

By our usual arguments, this theorem provides the further conservation results
for all our principles as well as many others as corollaries.

Corollary 7.6. The following principles (and even their union) are all G-r-Tanaka
(and hence G-Tanaka, G-r-Π1

2 and G-Π1
1) conservative over RCA0 via extensions with

forcings that omit branches (and so avoid cones): Σ1
∞ – AC ∗ (and all its consequences

such as Σ1
∞ – AC –, Σ1

n – AC ∗, and Σ1
n – AC –, SCR∗

XY and SCR –
XY ), LFXY , COH,

AMT, Π0
∞G (RCA+

0 ), the existence of minimal covers for Turing reducibility and
related theorems.

Proof. We need only check that the et-forcings used or mentioned so far are
actually uet-forcings. These checks are basically straightforward except for Sacks
forcing. The version of Sacks forcing typically used to construct, for example,
minimal covers is not uniform in our sense. This application as well as other similar
results can, as is well known, be proven using uniform recursive (in a specific A)
trees as conditions (as in [19, Chapter VI]. That construction is then easily seen to
be one with a uet-forcing. �

The proof of the case for ∃!YΦ(Y ) in Theorem 7.5 essentially shows that if there
is a Y ∈ S(N [G ]) – S(N ) for a sufficiently generic G over a uet-forcing such that
N [G ] � Φ(Y ) then there are at least twoZ ∈ S(N [G ]) such that N [G ] � Φ(Z). We
improve this to there being infinitely many. We then mention some applications of
this improvement as well as that of going to G-Tanaka formulas that do not seem
to follow from standard Tanaka conservativity.

Proposition 7.7. IfN � RCA0 is countable,P is a uet-forcing overN , G is generic
over P , and Θ(Y ) is an arithmetic formula over N such that there is aY ∈ S(N [G ]) –
S(N ) for which N [G ] � Θ(Y ) then there is a sequence 〈Yi |i ∈ N 〉 ∈ S(N [G ]) with
the Yi pairwise distinct such that N [G ] � (∀i)(Θ(Yi)). (Actually if one correctly
defines the forcing relation for all second order sentences, essentially the same argument
will work for arbitrary Θ.)

Proof. Suppose that the Y given by the proposition is ΦA⊕Ge for some e ∈ N and
A ∈ S(N ) and 〈�, T 〉 � Θ(ΦA⊕Ge ). The argument in the proof of Theorem 7.5 shows
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that for any � ⊆ G (and so � ∈ Ext(〈�, T 〉) there are �′, �′ ⊇ � in Ext(〈�, T 〉),
j �= k and x such that �′ ⊆ G , �′ � ΦA⊕Ge (x) = j and �′ � ΦA⊕Ge (x) = k. In
N [G ] we can then recursively in G construct sequences �i , �i , xi , ji , and ki such that
�i ⊆ �i+1 ⊆ G ,�i ⊆ �i ∈ Ext(〈�, T 〉),�i+1 � ΦA⊕Ge (xi) = ji , and �i � ΦA⊕Ge (xi) =

ki �= ji . We now claim that the sequence Φ
A⊕G�i
e is as desired. The argument in

Theorem 7.5 shows that each of these is in N [G ] and satisfies Θ there. The

construction guarantees that, for each i, Φ
A⊕G�i
e (xi) = ki �= ji = Φ

A⊕G�i+1
e (xi) =

ΦA⊕Ge (xi) = Φ
A⊕G�l
e (xi) for every l > i . Thus the Φ

A⊕G�i
e are pairwise distinct. �

We now consider some generalizations of unique existence assertions to other
cardinality quantifiers and applications to show that for such assertions we can also
derive information about the existence of recursive solutions. (This is done in STY
[Theorem 4.18] for unique existence for WKL0.)

We begin by formalizing the notions of “there are exactly,” “at least,” or “at most”
m many Y such that Φ(Y ) holds. In general, Φ can be arbitrary but we will restrict
our attention to the arithmetic case for our applications. We are formalizing the
definition of cardinality m that asserts the existence of a one–one correspondence
with the natural numbers less than m in a way that works well in RCA0.

Definition 7.8. We say that there are exactly m many Y such that Φ(Y ),
(∃=mY )Φ(Y ), if there is a pairwise distinct sequence 〈Yi |i < m〉 such that (∀i <
m)Φ(Yi) and ∀W (Φ(W ) → ∃i < m)((W = Yi)). Note that, in RCA0, this is
equivalent to the existence of a unique such sequence where the Yi are in strict
ascending lexicographic order. It is also worth pointing out that for m ∈ N we can
express this by a single formula not mentioning m. On the other hand, we can view
m as a variable over the numbers N in any model of RCA0. This allows to express the
quantifier there are finitely many Y such that Φ(Y ) as ∃m(∃=mY )(Φ(Y )) which we
write as (∃FinY )(Φ(Y )). Similarly, we say (∃≥mY )Φ(Y ) or (∃≤mY )(φ(Y )), if there
is a pairwise distinct sequence 〈Yi |i < m〉 such that (∀i < m)Φ(Y ) or, respectively,
if there is a pairwise distinct sequence 〈Yi |i < m〉 such that ∀W (Φ(W ) → ∃i <
m)((W = Yi)). Of course, (∃=mY )Φ(Y ) ⇔ (∃≥mY )Φ(Y ) & (∃≤mY )(φ(Y )).

We now give some applications.

Theorem 7.9. Let Q be any of the theories mentioned in this section (or
combinations of them) which can be guaranteed to hold by iterating uet-forcings over
any countable model N of RCA0 to produce a model N∞ of Q with the same first order
part as N . Let Φ(Y ) be any arithmetic formula of the pure second order language, i.e.,
lightfaced—with no parameters—and with its only free variable being Y and k ∈ N be
a standard number. Note that below by recursive we mean lightfaced Δ0

1.

1. If Q � (∃FinY )Φ(Y ) then RCA0 � (∃FinY )Φ(Y ).
2. IfQ � (∃FinY )Φ(Y ) & (∃≥kY )Φ(Y ) then RCA0 � (∃FinY )Φ(Y ) & (∃≥kY )(Y

is recursive and Φ(Y )).
3. If Q � (∃≤kY )Φ(Y ) then RCA0 � (∃≤kY )Φ(Y ).
4. If Q � (∃=kY )Φ(Y ) then RCA0 � (∃=kY )Φ(Y ) & (∀Y )(Φ(Y ) → Y is recur-

sive).
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Proof. For each assertion, suppose we have a countable N � RCA0 which
provides a counterexample to the desired conclusion. We argue for a contradiction
to the associated hypothesis.

1. Note that (∃FinY )Φ(Y ) is equivalent (in RCA0) to ∃m∃!Z(Z is a sequence
of sets 〈Zi |i < m〉 in strictly ascending lexicographical order such that (∀i <
m)(Φ(Zi)). As the formula in parentheses here is arithmetical (in m and Z),
the whole assertion is a G-Tanaka sentence. Theorem 7.5 then guarantees that
it and so (∃FinY )Φ(Y ) is a theorem of RCA0 as desired.

2. We already have that RCA0 � (∃FinY )Φ(Y ) and so we assume that we have a
countable model N of RCA0 not containing k many recursive solutions to Φ.
Let N ′ have the same first order part as N and second order part R(N ) the
collection of subsets of N which are recursive in N . Of course, N ′ � RCA0

as well but as N and N ′ have the same first order part, they have the same
recursive sets and so N ′ � ¬∃≥kY (Φ(Y )). Now construct N ′

∞ � Q by an
iteration beginning with N ′. By our assumption, there are at least k many
solutions Y for Φ in N ′

∞ and so one not in N ′ must appear for the first time
at some Nα+1. Proposition 7.7 then guarantees that there is, in Nα+1 and so in
N∞, an infinite sequence 〈Zi〉 of solutions to Φ for the desired contradiction
to the assumption that Q � (∃FinY )Φ(Y ).

3. This one is simple. If we have a countable model N of RCA0 with more than k
many solutions Y for Φ then all of them are solutions inN∞ for a contradiction.

4. This follows directly from the previous cases. �

If in the previous theorem and proof we consider formulas Φ(X,Y ) with a free
set variable X and assume that the hypotheses hold for the universal closure with
respect to X, then so do the conclusions where we replace recursive by recursive in X.
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